BOUNDEDNESS OF SOLUTIONS TO PARABOLIC-ELLIPTIC CHEMOTAXIS-GROWTH SYSTEMS WITH SIGNAL-DEPENDENT SENSITIVITY

Kentarou Fujie, Tomomi Yokota, Tokyo

(Received September 30, 2013)

Abstract. This paper deals with parabolic-elliptic chemotaxis systems with the sensitivity function $\chi(v)$ and the growth term $f(u)$ under homogeneous Neumann boundary conditions in a smooth bounded domain. Here it is assumed that $0 < \chi(v) \leq \frac{\chi_0}{v^k}$ ($k \geq 1$, $\chi_0 > 0$) and $\lambda_1 - \mu_1 u \leq f(u) \leq \lambda_2 - \mu_2 u$ ($\lambda_1, \lambda_2, \mu_1, \mu_2 > 0$). It is shown that if χ_0 is sufficiently small, then the system has a unique global-in-time classical solution that is uniformly bounded. This boundedness result is a generalization of a recent result by K. Fujie, M. Winkler, T. Yokota.

Keywords: chemotaxis; global existence; boundedness

MSC 2010: 35B40, 35K60

1. INTRODUCTION AND MAIN RESULT

In this paper we consider the global existence and boundedness in the parabolic-elliptic chemotaxis-growth system

$$\begin{cases}
t_u = \Delta u - \nabla \cdot (u\chi(v)\nabla v) + f(u), & x \in \Omega, \ t > 0, \\
0 = \Delta v - v + u, & x \in \Omega, \ t > 0, \\
\frac{\partial u}{\partial \nu} = \frac{\partial v}{\partial \nu} = 0, & x \in \partial \Omega, \ t > 0, \\
u(x, 0) = u_0(x), & x \in \Omega,
\end{cases}
$$

where Ω is a bounded domain in \mathbb{R}^n ($n \in \mathbb{N}$) with smooth boundary $\partial \Omega$. We assume

Partially supported by Grant-in-Aid for Scientific Research (C), No. 25400119.
that the initial data u_0 satisfies

(1.2) \[u_0 \in C^0(\overline{\Omega}), \quad u_0 \geq 0 \quad \text{and} \quad \int_{\Omega} u_0 > 0. \]

As for the chemotactic sensitivity function, we assume that

(1.3) \[\chi \in C^1((0, \infty)) \quad \text{with} \quad \chi > 0. \]

Also we assume that $f \in C^1([0, \infty))$ and there exist $\lambda_1, \lambda_2, \mu_1, \mu_2 > 0$ such that

(1.4) \[\lambda_1 - \mu_1 s \leq f(s) \leq \lambda_2 - \mu_2 s \quad \text{for all} \quad s \in [0, \infty). \]

This system was introduced by Keller and Segel [6], [7] (see also [4], [14], [15]), and the mathematical study of this system has developed extensively. In this paper we especially focus on the signal-sensitivity function and the growth term. There are some known results related to this system in [1], [2], [8]–[13], [16]–[19]. The present work is devoted to the global existence and boundedness. We remark that the existence of classical solutions to (1.1) is shown by a similar way as in [3]. Since $f(0) \geq \lambda_1 > 0$ by (1.4), the solution to (1.1) is nonnegative.

In order to formulate our main result, given a nonnegative $0 \neq u_0 \in C^0(\overline{\Omega})$, let us define a constant $\gamma > 0$ as

(1.5) \[\gamma := \min \left\{ \| u_0 \|_{L^1(\Omega)}, \frac{\lambda_1}{\mu_1} |\Omega| \right\} \int_0^{\infty} \frac{1}{(4\pi t)^{n/2}} e^{-\left(t + \frac{\text{diam} \Omega}{4t} \right)^2} \frac{1}{(4\pi t)^{n/2}} e^{-\frac{\text{diam} \Omega}{4t}} \, dt < \infty, \]

where $\text{diam} \Omega := \max_{x, y \in \overline{\Omega}} |x - y|$. We remark that the integrand in (1.5) decays exponentially not only as $t \to \infty$ but also as $t \to 0$, and so $\gamma < \infty$ for all $n \in \mathbb{N}$. The constant γ marks an a priori pointwise lower bound on the solution component v, as we shall see below. In what follows, when $k = 1$ we regard the value of $k^k/(k - 1)^{k-1}$ as 1.

Theorem 1.1. Let $n \in \mathbb{N}$, and suppose that u_0, χ and f satisfy (1.2), (1.3) and (1.4), respectively. Moreover, assume that χ satisfies

\[\chi(s) \leq \frac{\chi_0}{s^k} \quad \text{for all} \quad s \in [\gamma, \infty), \]

with some $k \geq 1$ and some $\chi_0 > 0$ fulfilling

\[\chi_0 < \frac{2}{n} \frac{k^k}{(k - 1)^{k-1}} \gamma^{k-1}. \]
Then (1.1) possesses a unique global classical solution \((u, v)\) which satisfies

\[
\|u(\cdot, t)\|_{L^\infty} \leq M_\infty \quad \text{for all } t \in [0, \infty)
\]

with some constant \(M_\infty > 0\).

2. Preliminaries

We begin with the following lemma shown in [3]. This lemma is key to deriving a uniform-in-time estimate for \(v\).

Lemma 2.1. Let \(w \in C^0(\Omega)\) be a nonnegative function such that \(\int_\Omega w > 0\). If \(z\) is a weak solution to

\[
\begin{aligned}
-\Delta z + z &= w, \quad x \in \Omega, \\
\frac{\partial z}{\partial \nu} &= 0, \quad x \in \partial \Omega,
\end{aligned}
\]

then

\[
z \geq \left(\int_0^\infty \frac{1}{(4\pi t)^{n/2}} e^{-t + (\text{diam } \Omega)^2/(4t)} \, dt \right) \int_\Omega w > 0 \quad \text{in } \Omega.
\]

Here we give an a priori pointwise lower bound on the solution component \(v\). The first equation in (1.1) and the condition (1.4) imply

\[
\frac{d}{dt} \int_\Omega u = \int_\Omega f(u) \geq \lambda_1 |\Omega| - \mu_1 \int_\Omega u.
\]

Integrating this inequality, we have

\[
\int_\Omega u \geq \frac{\lambda_1}{\mu_1} |\Omega| + e^{-\mu_1 t} \left(\|u_0\|_{L^1(\Omega)} - \frac{\lambda_1}{\mu_1} |\Omega| \right) \quad \text{for all } t \in (0, \infty),
\]

and then

\[
\int_\Omega u \geq \min \left\{ \|u_0\|_{L^1(\Omega)}, \frac{\lambda_1}{\mu_1} |\Omega| \right\}.
\]

By virtue of Lemma 2.1 we can thereby estimate \(v\) from below as follows:

\[
(2.1) \quad v(x, t) \geq \gamma
\]

for all \(x \in \Omega\) and \(t \in (0, T)\), whenever \((u, v)\) solves (1.1) in \(\Omega \times (0, T)\) for some \(T > 0\). Here \(\gamma > 0\) is a constant defined as (1.5).

Remark 2.1. The maximum principle yields the lower pointwise estimate for \(v(\cdot, t)\) for fixed \(t > 0\). On the other hand, Lemma 2.1 and the uniform-in-time estimate for mass imply the uniform estimate (2.1).

We next collect some known facts concerning the Neumann Laplacian in \(\Omega\). For the proof of (iii) see [5], Lemma 2.1.
Lemma 2.2. For \(r \in (1, \infty) \), let \(\Delta \) denote the realization of the Laplacian in \(L^r(\Omega) \) with domain \(\{ w \in W^{2,r}(\Omega); \partial w/\partial n = 0 \text{ on } \partial \Omega \} \). Then the operator \(-\Delta + 1\) is sectorial and possesses closed fractional powers \((-\Delta + 1)^\theta\), \(\theta \in (0, 1) \), with dense domain \(D((-\Delta + 1)^\theta) \). Moreover, the following statements hold:

(i) If \(m \in \{0, 1\}, p \in [1, \infty] \) and \(q \in (1, \infty) \), then there exists a constant \(c_{m,p} > 0 \) such that for all \(w \in D((-\Delta + 1)^\theta) \),

\[
\|w\|_{W^{m,p}(\Omega)} \leq c_{m,p}\|(-\Delta + 1)^\theta w\|_{L^q(\Omega)},
\]

provided that \(m < 2\theta \) and \(m - n/p < 2\theta - n/q \).

(ii) Let \(p \in (1, \infty) \). Then there exist \(c > 0 \) and \(\nu_1 > 0 \) such that for all \(u \in L^p(\Omega) \) and any \(t > 0 \),

\[
\|(-\Delta + 1)^\theta e^{t(\Delta - 1)}u\|_{L^p(\Omega)} \leq ct^{-\theta}e^{-\nu_1 t}\|u\|_{L^p(\Omega)}.
\]

(iii) Let \(p \in (1, \infty) \). Then there exists \(\nu_2 > 1 \) such that for \(\varepsilon > 0 \) there exists \(c_\varepsilon > 0 \) such that for all \(\mathbb{R}^n\)-valued \(z \in C_0^\infty(\Omega) \),

\[
\|(-\Delta + 1)^\theta e^{t(\Delta - 1)}\nabla \cdot z\|_{L^p(\Omega)} \leq c_\varepsilon t^{-\theta - 1/2 - \varepsilon}e^{-\nu_2 t}\|z\|_{L^p(\Omega)}, \quad t > 0.
\]

Accordingly, for all \(t > 0 \) the operator \((-\Delta + 1)^\theta e^{t\Delta} \cdot \) admits a unique extension to all of \(L^p(\Omega) \) which, again denoted by \((-\Delta + 1)^\theta e^{t\Delta} \cdot \), satisfies the above estimate for all \(\mathbb{R}^n\)-valued \(z \in L^p(\Omega) \).

3. Proof of main result

We first deduce \(L^p \)-boundedness of solutions to (1.1). Next let us show that \(L^p \)-boundedness with sufficiently large \(p \) implies \(L^\infty \)-boundedness. Combining these results will prove our main theorem.

Lemma 3.1. Let \(p > 1 \), and suppose that \((u, v)\) is a classical solution to (1.1) in \(\Omega \times (0, T) \) for some \(T > 0 \). Then there exist \(C_1, C_2 > 0 \) such that

\[
\frac{d}{dt} \int_\Omega u^p \leq -\frac{p(p-1)}{2} \int_\Omega u^{p-2} |\nabla u|^2 + \frac{p(p-1)}{2} \int_\Omega u^p \chi^2(v) |\nabla v|^2 + C_1 \int_\Omega u^p + C_2 \quad \text{for all } t \in (0, T).
\]
The condition (1.4) yields
\[\phi \in \Omega \text{ in } (s_\phi, T) \]
for some constants \(C \) and \(T > 0 \). Using integration by parts, we see that
\[p \in \exists k \geq 1 \text{ such that } \int_\Omega u^{p-1}f(u) \leq C_1 \int_\Omega u^p + C_2 \text{ for some constants } C_1, C_2 > 0, \text{ and hence we obtain the desired inequality}. \]

The next lemma is obtained in [3]. For convenience we give the sketch of the proof.

Lemma 3.2. Let \(p > 1 \), and suppose that \((u, v)\) is a classical solution to (1.1) in \(\Omega \times (0, T) \) for some \(T > 0 \). Moreover, for \(\gamma > 0 \) given by (1.5) (see also (2.1)), let \(\varphi \in C^1([\gamma, \infty)) \) such that \(\varphi \geq 0 \) and there exists a constant \(M > 0 \) satisfying \(s\varphi(s) \leq M \) for all \(s \geq \gamma \). Let \(A \) and \(B \) be positive constants such that \(AB = p \).

Then
\[\int_\Omega u^p (-\varphi'(v) - \frac{B^2}{2} \varphi^2(v)) |\nabla v|^2 \leq \frac{A^2}{2} \int_\Omega u^{p-2} |\nabla u|^2 + M \int_\Omega u^p \text{ for all } t \in (0, T). \]

Sketch of the proof. Multiplying the second equation in (1.1) by \(u^p \varphi(v) \) and using integration by parts, we see that
\[-\int_\Omega u^p \varphi'(v) |\nabla v|^2 = p \int_\Omega u^{p-1} \varphi(v) \nabla u \cdot \nabla v + \int_\Omega u^p \varphi(v) v - \int_\Omega u^{p+1} \varphi(v). \]

Applying Young's inequality completes the proof. \(\Box \)

Now we give \(L^p \)-boundedness of solutions to (1.1).

Proposition 3.3. Suppose that \(n \in \mathbb{N} \), and that \(u_0, \chi \) and \(f \) satisfy (1.2), (1.3) and (1.4), respectively. Let \((u, v)\) be a classical solution to (1.1) in \(\Omega \times (0, T) \) for some \(T > 0 \). Moreover, let \(\gamma > 0 \) be as in (1.5) and (2.1). Suppose that there exist \(k \geq 1 \) and \(\chi_0 > 0 \) such that \(\chi(s) \leq \chi_0/s^k \) for all \(s \geq \gamma \). Then for any \(p \in [1, \chi_0^{-1}[k^k/(k - 1)^{k-1}]^{k-1} \) there exists a constant \(M_p > 0 \) fulfilling
\[\|u(\cdot, t)\|_{L^p} \leq M_p \text{ for all } t \in [0, T). \]

Proof. Taking any \(p \in [1, \chi_0^{-1}[k^k/(k - 1)^{k-1}]^{k-1} \), we have \(\chi_0 < p^{-1}[k^k/(k - 1)^{k-1}]^{k-1} \). Now we take \(\varepsilon > 0 \) and \(L > 0 \) such that
\[\varepsilon < p(p-1), \quad L < \gamma < \frac{k}{k-1}L \text{ and } \chi_0 \leq \frac{1}{p} \sqrt{\frac{p(p-1)-\varepsilon}{p(p-1)}} \frac{k^k}{(k - 1)^{k-1}}L^{k-1}. \]
Applying Lemma 3.2 to \(\varphi(s) := 1/(B^2(s - L)) \), \(A := \sqrt{p(p - 1) - \varepsilon} \) and \(B := p/\sqrt{p(p - 1) - \varepsilon} \), we infer that

\[
\int_\Omega u^p \left(- \varphi'(v) - \frac{B^2}{2} \varphi^2(v) \right)|\nabla v|^2 \leq \frac{p(p - 1) - \varepsilon}{2} \int_\Omega u^{p-2} |\nabla u|^2 + M \int_\Omega u^p
\]

and

\[
\frac{p(p - 1)}{2} \chi^2(s) \leq -\varphi'(s) - \frac{B^2}{2} \varphi^2(s) \quad \text{for all } s \geq \gamma.
\]

Now by (3.2), we can combine (3.1) with Lemma 3.1 to see that

\[
\frac{d}{dt} \int_\Omega u^p \leq - \frac{p(p - 1)}{2} \int_\Omega u^{p-2} |\nabla u|^2 + \frac{p(p - 1) - \varepsilon}{2} \int_\Omega u^{p-2} |\nabla u|^2 + (M + C_1) \int_\Omega u^p + C_2
\]

for all \(t \in (0, T) \). Since the first equation in (1.1) and the condition (1.4) yield

\[
\frac{d}{dt} \int_\Omega u = \int_\Omega f(u) \leq \lambda_2 |\Omega| - \mu_2 \int_\Omega u,
\]

we see that for all \(t \in (0, \infty) \),

\[
\int_\Omega u \leq \frac{\lambda_2}{\mu_2} |\Omega| + e^{-\mu_2 t} \left(\|u_0\|_{L^1(\Omega)} - \frac{\lambda_2}{\mu_2} |\Omega| \right) \leq \max \left\{ \|u_0\|_{L^1(\Omega)} , \frac{\lambda_2}{\mu_2} |\Omega| \right\}.
\]

By virtue of this estimate, proceeding similarly as in [3], Proposition 4.3, we can complete the proof from (3.3).

Next, assuming \(L^p \)-boundedness, we derive \(L^\infty \)-boundedness.

\textbf{Proposition 3.4.} Let \(n \in \mathbb{N} \), and assume that \(u_0, \chi \) and \(f \) satisfy (1.2), (1.3) and (1.4), respectively. Let \((u, v)\) be the classical solution to (1.1) in \(\Omega \times (0, T) \), and assume further that \(\chi \in L^\infty((\gamma, \infty)) \) with \(\gamma > 0 \) given by (1.5) (see also (2.1)). Then if there exist \(p > n/2 \) and a constant \(M_p > 0 \) such that \(\|u(\cdot, t)\|_{L^p} \leq M_p \) for all \(t \in (0, T) \), then there exists a constant \(M_\infty > 0 \) independent of \(T \) such that

\[
\|u(\cdot, t)\|_{L^\infty} \leq M_\infty \quad \text{for all } t \in (0, T).
\]
Proof. Let \(p > n/2 \). We may assume that \(p < n \). We see from (1.4) that \(f(s) + s \leq C(1 + s) \) for some \(C > 0 \). We can take \(q > n \) so that \(q > p \). Then we have

\[
\|f(u) + u\|_{L^q(\Omega)} \leq C\|1 + u\|^{p/q}_{L^p(\Omega)} \!
\leq C' \|1 + u\|^{1-p/q}_{L^\infty(\Omega)} \!
\leq C'' + C''' \|u\|^{1-p/q}_{L^\infty(\Omega)},
\]

where \(C', C'' \) are some positive constants. Recalling the choice of \(q \), we see that \(1-p/q \in (0,1) \). Moreover, we choose \(q > n \) satisfying further that \(1-(n-p)q/(np) > 0 \), which enables us to pick \(\lambda \in (1,\infty) \) fulfilling \(1/\lambda < 1 - (n-p)q/(np) \). The elliptic regularity \((\|\nabla v\|_{L^{np/(n-p)}(\Omega)} \leq k_p \|u\|_{L^p(\Omega)}) \) and Hölder’s inequality yield

\[
\|u\chi(v)\nabla v\|_{L^q(\Omega)} \leq \|\chi\|_{L^{\infty}(\Omega)} \|\nabla v\|_{L^{np/(n-p)}(\Omega)} \|u\|_{L^{\infty}(\Omega)}
\leq \|\chi\|_{L^{\infty}(\Omega)} \|\nabla v\|_{L^{np/(n-p)}(\Omega)} \|u\|_{L^{\infty}(\Omega)}
\leq \|\chi\|_{L^{\infty}(\Omega)} \|\nabla v\|_{L^{np/(n-p)}(\Omega)} \|u\|_{L^{\infty}(\Omega)}
\leq K_p \|u\|^{\beta}_{L^{\infty}(\Omega)},
\]

where \(\lambda' := \lambda/(\lambda - 1) \), for some \(\beta \in (0,1) \) and \(K_p > 0 \). Now let \(t \in (0,T) \). Then we have

\[
u(s) = e^{t(\Delta - 1)} u_0 - \int_0^t e^{(t-s)(\Delta - 1)}(\nabla \cdot (u(s)\chi(v(s))\nabla v(s)) + (f(u(s)) + u(s))) \, ds.
\]

Let \(\theta \in (n/(2q),1/2) \) and \(\varepsilon \in (0,1/2 - \theta) \). Using Lemma 2.2, we see that

\[|u(\cdot,t)|_{L^\infty(\Omega)} \leq |u_0|_{L^\infty(\Omega)} + c_0, \varepsilon \int_0^t (t-s)^{-\theta} e^{-\nu_1(t-s)} \|f(u(s)) + u(s)\|_{L^q(\Omega)} \, ds
\]

Combining (3.4) and (3.5) with the above inequality implies the uniform estimate:

\[
u(\cdot,t)|_{L^\infty(\Omega)} \leq K_0 + K_1 \left(\sup_{t \in [0,T]} |u(\cdot,t)|_{L^\infty(\Omega)} \right)^\beta + K_2 \left(\sup_{t \in [0,T]} |u(\cdot,t)|_{L^\infty(\Omega)} \right)^{1-p/q}
\]

for some \(K_0, K_1, K_2 > 0 \). Since \(\beta, 1-p/q \in (0,1) \), we obtain the desired inequality.

\(\square \)

We are now in a position to prove the main result.

645
Proof of Theorem 1.1. As stated in Section 1, by a similar way as in [3] we can show that there exist $T_{\text{max}} \leq \infty$ (depending only on $\|u_0\|_{L^\infty(\Omega)}$) and exactly one pair (u, v) of nonnegative functions $u \in C^{2,1}(\overline{\Omega} \times (0, T_{\text{max}})) \cap C^0([0, T_{\text{max}}); C^0(\Omega))$, and $v \in C^{2,0}(\overline{\Omega} \times (0, T_{\text{max}})) \cap C^0([0, T_{\text{max}}); C^0(\Omega))$ that solves (1.1) in the classical sense. According to the condition for k and χ_0, by Proposition 3.3 we can find some $p > n/2$ and $M_p > 0$ such that $\|u(\cdot, t)\|_{L^p} \leq M_p$ for all $t \in (0, T_{\text{max}})$. Therefore Proposition 3.4 completes the proof. □

Remark 3.1. The local-in-time existence of classical solutions to (1.1) can be provided under the only lower condition: $\lambda_1 - \mu_1 s \leq f(s)$. Moreover, if the growth term f satisfies the relaxed condition: $\lambda_1 - \mu_1 s \leq f(s) \leq \lambda_2 + \mu_2 s$, then we have the upper mass estimate depending on time t similarly, and so the global existence of solutions without uniform boundedness is proved.

References

Authors’ address: Kentarou Fujie, Tomomi Yokota, Department of Mathematics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan, e-mail: kentarou.fujie@gmail.com, yokota@rs.kagu.tus.ac.jp.