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Abstract. Let H be a complex Hilbert space, A a positive operator with closed range
in B(H) and BA(H) the sub-algebra of B(H) of all A-self-adjoint operators. Assume ϕ :
BA(H) onto itself is a linear continuous map. This paper shows that if ϕ preservesA-unitary
operators such that ϕ(I) = P then ψ defined by ψ(T ) = Pϕ(PT ) is a homomorphism or
an anti-homomorphism and ψ(T ♯) = ψ(T )♯ for all T ∈ BA(H), where P = A

+A and A+ is
the Moore-Penrose inverse of A. A similar result is also true if ϕ preserves A-quasi-unitary
operators in both directions such that there exists an operator T satisfying Pϕ(T ) = P .
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1. Introduction

Linear preserver problems are an active research area in matrix and operator the-

ory and Banach algebras. It has attracted the attention of many mathematicians

in the last few decades ([3], [4], [9]–[11], [17]–[19]). By a linear preserver we mean

a linear map of an algebra A into itself which, roughly speaking, preserves certain

properties of some elements in A . Linear preserver problems concern the charac-

terization of such maps. Automorphisms and anti-automorphisms certainly preserve

various properties of the elements. Therefore, it is not surprising that these two types

of maps often appear in the conclusions of the results. In this paper, we concentrate

on the case when A = B(H), the algebra of all bounded linear operators on a com-

plex Hilbert space H. We point out that a great deal of work has been devoted to

the case when H is finite dimensional, that is, the case when A is a matrix algebra

(see survey articles [9], [11], [15]), and that the first papers concerning this case date

back to the 19th century [7].
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The aim of this paper is to prove some results for A-self-adjoint operators,

A-projections, A-unitary operators and A-quasi-unitary operators, which are useful

to give the concrete form of continuous linear maps

ϕ : BA(H) → BA(H)

that preserve A-unitary-operators. As a consequence, we describe surjective contin-

uous linear maps from BA(H) onto itself that preserve A-quasi-unitary operators.

2. Preliminaries and results

Throughout, H denotes a Hilbert space with an inner product 〈, 〉. By B(H) we

denote the algebra of all linear bounded operators on H. Also, for T ∈ B(H), R(T )

denotes the range of T and N(T ) the kernel of T .

Any A ∈ B(H)+ defines a positive semi-definite sesquilinear form as follows:

〈, 〉A : H×H → C; 〈x, y〉A = 〈Ax, y〉.

By ‖·‖A we denote the semi-norm induced by 〈x, y〉A, i.e., ‖x‖A = 〈x, x〉
1/2
A . Ob-

serve that ‖x‖A = 0 if and only if x ∈ N(A). Then ‖·‖A is a norm if and only if A

is an injective operator. Moreover, ‖·‖A induces a semi-norm on a certain subset of

B(H), namely, on the subset of all T ∈ B(H) for which there exists a constant c > 0

such that ‖Tx‖A 6 c‖x‖A for all x ∈ H . These operators satisfy

‖T ‖A = sup
x∈R(A),x 6=0

‖Tx‖A
‖x‖A

<∞.

Definition 2.1. Given an operator T ∈ B(H), an operator W ∈ B(H) is called

an A-adjoint of T if

〈Tx, y〉A = 〈x,Wy〉A

for every x, y ∈ H. So, T is called A-self-adjoint if AT = T ∗A, and T is called

A-positive if AT is positive.

The following theorem due to Douglas will be used frequently (see [5], [6]).
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Theorem 2.2. Let A,B ∈ B(H). The following conditions are equivalent.

(1) R(B) ⊂ R(A).

(2) There exists a positive number λ such that BB∗ 6 λAA∗.

(3) There exists D ∈ B(H) such that AD = B.

If one of these conditions holds then there exists a unique operator D ∈ B(H) such

that AD = B, R(D) ⊂ R(A∗) and N(D) = N(B). Moreover, ‖D‖2 = inf{λ > 0:

BB∗ 6 λAA∗}. We shall call D the reduced solution of AX = B.

The reduced solution of the equation AX = B can be obtained by means of

the Moore-Penrose inverse of A. Recall that given A ∈ B(H) the Moore-Penrose

inverse of A, denoted by A+, is defined as the unique linear extension of Ã−1 to

D(A+) := R(A) +R(A)⊥ with N(A+) = R(A)⊥, where Ã is the isomorphism

A|N(A)⊥ : N(A)⊥ → R(A).

Moreover, A+ is the unique solution of the four Moore-Penrose equations

AXA = A; XAX = X ; XA = P|N(A)⊥ ; AX = (PR(A))|D(A+).

It is easy to prove that A+ has closed graph and is bounded if and only if R(A)

is closed. As a consequence, given A,B ∈ B(H) such that R(B) ⊂ R(A) then

A+B ∈ B(H) even if A+ is not bounded. Moreover, A+B is the reduced solution

of the equation AX = B. In fact, AA+B = (PR(A))|D(A+)B = B. Furthermore, as

A+B ∈ B(H) and R(A+B) ⊂ R(A), A+B is the reduced solution of the equation

AX = B.

Note every T ∈ B(H) admits an A-adjoint operator. In fact, T ∈ B(H) has

an A-adjoint operator if and only if there exists W ∈ B(H) such that AW = T ∗A,

if and only if the equation AX = T ∗A has a solution; then, by the Douglas theorem,

T admits an A-adjoint operator if and only if R(T ∗A) ⊂ R(A).

From now on, BA(H) denotes the set of all T ∈ B(H) which admit an A-adjoint,

that is

BA(H) = {T ∈ B(H) : R(T ∗A) ⊂ R(A)}.

BA(H) is a sub-algebra of B(H) which is neither closed nor dense in B(H). In fact,

if A has closed range, we have that BA(H) is closed and therefore complete.

If T ∈ B(H) admits an A-adjoint operator, i.e., if R(T ∗A) ⊂ R(A), then there

exists a distinguished A-adjoint operator of T , namely, the reduced solution of the

equation AX = T ∗A, i.e., A+T ∗A. We denote this operator by T ♯. Therefore,

T ♯ = A+T ∗A and

AT ♯ = T ∗A, R(T ♯) ⊂ R(A) and N(T ♯) = N(T ∗A).
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In the sequel we give some important properties of T ♯ without proof (cf. [1], [2]).

Theorem 2.3. Let T ∈ BA(H). Then:

(1) (At)♯ = At for every t > 0.

(2) If AT = TA then T ♯ = PT ∗.

(3) If AT = T ∗A then (A1/2)+T ∗A1/2 is self-adjoint.

(4) If W ∈ BA(H) then TW ∈ BA(H) and (TW )♯ =W ♯T ♯.

(5) T ♯ ∈ BA(H), (T ♯)♯ = PTP and ((T ♯)♯)♯ = T ♯.

(6) T ♯T and TT ♯ are A-self-adjoint and A-positive.

For more details cf. [1], [2].

Throughout this paper A always denotes a positive operator with closed range in

B(H). So P|N(A)⊥ = (PR(A))|D(A+) will be denoted by P = AA+ = A+A.

Now we shall prove some natural properties of A-self-adjoint operators, A-projec-

tions and A-unitary operators, which will be useful in our main results.

Proposition 2.4. Let T be an operator in BA(H). Then the following assertions

are equivalent:

(1) T is A-self-adjoint.

(2) PT = T ♯.

(3) (T ♯)♯ = T ♯.

P r o o f. 1 ⇒ 2. From Definition 2.1, if T is A-self-adjoint, then AT = T ∗A, and

by left multiplication of this equality by A+ we get PT = T ♯.

2 ⇒ 3. If PT = T ♯, since T ♯P = PT ♯ = T ♯ for all T ∈ BA(H), so (T ♯)♯ = T ♯.

3 ⇒ 1. If (T ♯)♯ = T ♯, so PTP = A+T ∗A, and by left multiplication by A we

get APTP = AA+T ∗A; since AP = A, ATP = AT , and PT ∗A = T ∗A, we have

AT = T ∗A, therefore T is A-self-adjoint. �

Proposition 2.5. Let p and q be two A-projections, then p+q is an A-projection

if and only if Apq = Aqp = 0.

P r o o f. If p+ q is an A-projection so

A(p+ q)2 = A(p+ q) = (p+ q)∗A,

and so

(2.1) Apq +Aqp = 0.
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Now, right multiplication of (2.1) by p gives

Apqp+Aqp = 0.

Afterward, by left multiplication of the equality (2.1) by p∗, we obtain

Apq +Apqp = 0,

and these three equalities yield Apq = Aqp = 0.

Conversely, if p and q are A-projections such that Apq = Aqp = 0, then

A(p+ q)2 = Ap2 +Apq +Aqp+Aq2 = Ap2 +Aq2 = (p+ q)∗A = A(p+ q).

�

Proposition 2.6. Let p and q be two A-projections. Then p−q is an A-projection

if and only if Apq = Aqp = Aq.

P r o o f. From Proposition 2.5, p− q and q being A-projections is equivalent to

A(p− q)q = Aq(p− q) = 0

and this is equivalent to Apq = Aqp = Aq. �

Proposition 2.7. Let B in BA(H). Then the following statements are equivalent:

(1) B is an A-projection.

(2) PB2 = PB = B♯.

(3) PB = B♯ = (B2)♯.

P r o o f. 1 ⇒ 2. If B is an A-projection, so AB2 = AB = B∗A, and by left

multiplication of this equality by A+, we get PB2 = PB = B♯.

2 ⇒ 3. If we have PB2 = PB = B♯, right multiplication this equality by B yields

PB2 = PB = B♯B, since B♯P = B♯, this implies that PB = B♯ = (B2)♯.

3 ⇒ 1. If PB = B♯ = (B2)♯, right multiplication of this equality by B yields

PB2 = PB = B♯B; now left multiplication of this equality by A yields AB2 =

AB = PB∗A; since PB∗A = B∗A, it follows that B is an A-projection. �
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Proposition 2.8. Let B and C be A-projections. Then BC is an A-projection if

and only if ABC = ACB.

P r o o f. If BC is A-projection, then

ABCBC = ABC = C∗B∗A;

since B and C are A-projections, we have

ABC = C∗B∗A = ACB.

For the converse implication, if we have ABC = ACB and B and C are A-projec-

tions, then

ABCBC = C∗B∗ABC = C∗B∗ACB = C∗AB2C

= C∗ABC = C∗ACB = ACB = ABC = C∗B∗A.

This completes the proof. �

Proposition 2.9. Let U ∈ BA(H). The following assertions are equivalent:

(1) U is an A-unitary operator.

(2) PU is an A-unitary operator.

(3) U ♯ is an A-unitary operator.

P r o o f. (1) ⇔ (2). We know that

PB♯ = B♯P = B♯

for all B ∈ BA(H). So

U ♯U = (U ♯)♯U ♯ = P

is equivalent to

(PU)♯PU = ((PU)♯)♯(PU)♯ = P,

which completes the proof.

(1) ⇔ (3). U being an A-unitary operator is equivalent to

U ♯U = (U ♯)♯U ♯ = P,

this is equivalent to

(U ♯U)♯ = ((U ♯)♯U ♯)♯ = P,

this is equivalent to

((U ♯)♯)♯(U ♯)♯ = (U ♯)♯U ♯ = P,

which is equivalent to U ♯ being an A-unitary operator. �
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Proposition 2.10. For all A-self-adjoint S ∈ BA(H), exp(itS) is an A-unitary

operator for every t ∈ R.

P r o o f. We have (S♯)k = A+(S∗)kA; since S is A-self-adjoint so S∗A = AS and

(S∗)kA = ASk, consequently (S♯)k = PSk, then (exp(itS))♯ = P exp (−itS). As

BA(H) is complete, it follows that

(exp(itS))♯ =
∞∑

k=0

(−it)k

k!
(S♯)k = P

∞∑

k=0

(−it)k

k!
Sk = P exp(−itS),

then (exp(itS))♯ = P exp(−itS), so (exp(itS))♯(exp(itS)) = P .

Conversely, we have ((S♯)♯)k = (S♯)k, then

((exp(itS))♯)♯(exp(itS))♯ = (exp(−itS))♯P (exp(−itS))

= P (exp(itS))(exp(−itS)) = P.

Consequently, exp(itS) is an A-unitary operator. �

In 1977 Phadke et al. in [14] introduced the notion of a quasi-unitary operator on

a Hilbert space as follows.

Definition 2.11. An operator T on a Hilbert space H is called quasi-unitary if

TT ∗ = T ∗T = T + T ∗.

It is easy to see that the following proposition holds true.

Proposition 2.12. An operator T is quasi-unitary in a Hilbert space if and only

if I − T is a unitary operator.

For more information on quasi-unitary operators the reader can see [12]–[14], [16].

By combining definitions of A-unitary and quasi-unitary operators, we define an

A-quasi-unitary operator as follows.

Definition 2.13. An operator T on a Hilbert spaceH is called A-quasi-unitary if

T ♯T = (T ♯)♯T ♯ = T ♯ + (T ♯)♯.

E x am p l e 2.14. If

A =

(
1 1

1 1

)
∈M+

2 (C)

then

T =

(
0 n− 1

0 1− n

)

is A-quasi-unitary for all n ∈ N.
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Proposition 2.15. An operator U is an A-quasi-unitary operator on a Hilbert

space H if and only if I − U is an A-unitary operator.

P r o o f. For the first implication, we have (I −U)♯(I −U) = P −U ♯−PU +U ♯U

and

((I − U)♯)♯(I − U)♯ = P − (U ♯)♯ − U ♯ + (U ♯)♯U ♯;

since U is an A-quasi-unitary operator and PU + U ♯ = (U ♯)♯ + U ♯, so

(I − U)♯(I − U) = ((I − U)♯)♯(I − U)♯ = P.

For the converse implication, we have

(I − U)♯(I − U) = ((I − U)♯)♯(I − U)♯ = P,

then by PU +U ♯ = (U ♯)♯ +U ♯ we have U ♯U = (U ♯)♯U ♯ = (U ♯)♯ +U ♯, consequently

U is A-quasi-unitary. �

Proposition 2.16. Let U ∈ BA(H). The following assertions are equivalent:

(1) U is an A-quasi-unitary operator.

(2) PU is an A-quasi-unitary operator.

(3) U ♯ is an A-quasi-unitary operator.

P r o o f. This proof is similar to the proof of Proposition 2.9. �

A linear map ϕ from an algebra A into an algebra B is called a Jordan ho-

momorphism if ϕ(x2) = ϕ(x)2 for every x ∈ A . A well known result of Herstein

([8], Theorem 3.1) shows that a Jordan homomorphism on a prime algebra is either

a homomorphism or an anti-homomorphism.

3. Linear maps preserving A-unitary operators

Theorem 3.1. Let H be a complex Hilbert space and let ϕ : BA(H) → BA(H)

be a linear continuous map such that ϕ(I) = P . If ϕ preserves A-unitary operators

then ψ is a homomorphism or an anti-homomorphism and ψ(T ♯) = ψ(T )♯ for all

T ∈ BA(H), where ψ is defined by ψ(T ) = Pϕ(PT ) for all T ∈ BA(H).

P r o o f. Pick an A-self-adjoint S ∈ BA(H). According to Proposition 2.10,

exp(itS) is an A-unitary operator for every t ∈ R. Therefore,

P = ϕ(exp(itS))♯ϕ(exp(itS))

= ϕ
(
I + itS +

(it)2

2!
S2 + . . .

)♯

ϕ
(
I + itS +

(it)2

2!
S2 + . . .

)

= P + itP (ϕ(S)− ϕ(S)♯)− t2
Pϕ(S2)♯ + Pϕ(S2)

2
+ t2ϕ(S)♯ϕ(S) + . . .
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Hence

(3.1) Pϕ(S) = Pϕ(S)♯

and

(3.2) −
Pϕ(S2)♯ + Pϕ(S2)

2
+ Pϕ(S)♯Pϕ(S) = 0

for all A-self-adjoint S. If S is A-self-adjoint so S♯ is A-self-adjoint, and so

(3.3) ψ(S♯) = ψ(S♯)♯

for any A-self-adjoint operator S. Using the fact that every B ∈ BA(H), can be

written as B = S + iT with A-self-adjoint operators S, T , we conclude that B♯ =

S♯ − iT ♯ and (B♯)♯ = S♯ + iT ♯. Note that if S is A-self-adjoint, then S♯ is A-self-

adjoint, hence S♯ = PS. By (3.1) and linearity of ϕ we get that ψ(B♯) = ψ(B)♯.

Now we will prove that ψ is a Jordan homomorphism.

Every operator B ∈ BA(H) can be written as B = S + iT with A-self-adjoint

operators S, T . Hence

B♯ = S♯ − iT ♯

and

B♯ = PS − iPT.

By (3.2),

(3.4) ψ(S2) = ψ(S)2

for every A-self-adjoint operator S. As S + T is an A-self-adjoint operator, hence

ψ((S + T )2) = (ψ(S) + ψ(T ))2,

so

ψ(ST + TS) = ψ(S)ψ(T ) + ψ(T )ψ(S),

and consequently,

ψ(B2) = ψ((S + iT )2) = ψ(S2 − T 2 + i(ST + TS))

= ψ(S2)− ψ(T 2) + iψ(ST + TS)

= ψ(S)2 − ψ(T )2 + iψ(S)ψ(T ) + ψ(T )ψ(S) = ψ(S + iT )2 = ψ(B)2.
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Then we get ψ(B2) = ψ(B)2 for every operator B in BA(H). It follows that ψ is

a Jordan homomorphism. Note that H = R(A)⊕N(A). Under this decomposition,

P = A+A = AA+

(
I 0

0 0

)

and

ψ(T ) =

(
(ψ(T ))11 0

0 0

)

where (ψ(T ))11 ∈ BA(R(A)), T ∈ BA(H). Since R(A) with 〈, 〉A is a Hilbert space,

this implies that BA(R(A)) is a prime algebra. As ψ is a Jordan homomorphism, so

(ψ)11 is a Jordan homomorphism in the prime algebra BA(R(A)). Since it is known

that a Jordan homomorphism in a prime algebra is a homomorphism or an anti-

homomorphism, ψ is a homomorphism or an anti-homomorphism. �

Corollary 3.2. LetH be a complex Hilbert space and let ϕ : BA(H) → BA(H) be

a linear continuous subjective map. If ϕ preserves A-unitary operators, then ϕ(I)♯ψ

is a homomorphism or an anti-homomorphism.

P r o o f. If I is an A-unitary operator, then ϕ(I) is an A-unitary operator. Now

we consider ϕ1 such that ϕ1(B) = (ϕ(I)♯)ϕ(B). We can show that ϕ1 is a linear con-

tinuous map that preserves A-unitary operators and ϕ1(I) = P . From Theorem 3.1

we get that ψ1 = (ϕ(I)♯)ψ is a homomorphism or an anti-homomorphism. �

Corollary 3.3. Let ϕ : BA(H) → BA(H) be a linear continuous map. If ϕ(U ♯)

is an A-unitary operator if U is an A-unitary operator, then ψ is a homomorphism

or an anti-homomorphism and ψ(T ♯) = ψ(T )♯ for all T ∈ BA(H).

P r o o f. If U is an A-unitary operator in BA(H), so U ♯ is an A-unitary operator,

and so ϕ((U ♯)♯) = ϕ(PUP ) = ϕ(PU) is an A-unitary operator. Consequently ψ(U)

is an A-unitary operator provided U is an A-unitary operator in BA(H). Now

from Theorem 3.1 we get that ψ is a homomorphism or an anti-homomorphism and

ψ(T ♯) = ψ(T )♯ for all T ∈ BA(H). �

4. Linear maps preserving A-quasi-unitary operators

Theorem 4.1. Let ϕ : BA(H) → BA(H) be a linear continuous map such

that there exists an operator T satisfying Pϕ(T ) = P . Suppose that ϕ preserves

A-quasi-unitary operators in both directions. Then ψ is a homomorphism or an anti-

homomorphism where ψ is defined by ψ(T ) = Pϕ(PT ) for all T ∈ BA(H).

We prove some elementary results which are useful in the proofs of this theorem.
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Lemma 4.2. Pϕ preserve A-projection in both directions.

P r o o f. Let q be an A-projection. We consider a scalar λ ∈ C such that |λ|2 =

λ + λ. It is easy to see that λq is an A-quasi-unitary operator, since ϕ preserves

A-quasi-unitary operators in both directions. Hence λϕ(q) is also an A-quasi-unitary

operator and we get

(4.1) |λ|2ϕ(q)♯ϕ(q) = |λ|2(ϕ(q)♯)♯ϕ(q)♯ = λ(ϕ(q)♯)♯ + λϕ(q)♯ = λPϕ(q) + λϕ(q)♯.

If we replace λ by 2 in (4.1) we obtain

(4.2) 2ϕ(q)♯Pϕ(q) = 2(ϕ(q)♯)♯ϕ(q)♯ = Pϕ(q) + ϕ(q)♯.

In view of (4.1) and (4.2) we get

(4.3)
λ+ λ

2
(Pϕ(q) + ϕ(q)♯) = λϕ(q)♯ + λPϕ(q),

which gives after an easy computation that

λ− λ

2
Pϕ(q) =

λ− λ

2
ϕ(q)♯.

Now if we take λ ∈ C−R we have Pϕ(q) = ϕ(q)♯. Recall the result obtained in (4.2).

We get ϕ(q)♯ = (ϕ(q)♯)2 = Pϕ(q) and consequently Pϕ(q) is anA-projection. Now, if

Pϕ(q) is anA-projection, then ϕ(q) is anA-projection. Repeating the same argument

with ϕ(q) being an A-projection we obtain that q is an A-projection, hence the proof

is complete. �

Lemma 4.3. Pϕ(I) = P .

P r o o f. Let B ∈ H be such that ϕ(I) = B. We have Pϕ(T ) = P . From

Lemma 4.2 and since P is an A-projection, we get that T is an A-projection. It

follows that I − T is an A-projection, since Pϕ preserves A-projections in both

directions, thus PB−P is an A-projection, consequently ABP = APB = AP , hence

AB = A and multiplying this equality by A+ we get PB = P , which completes the

proof. �

We will prove now Theorem 4.1.

P r o o f. By Lemmas 4.2 and 4.3 we have Pϕ(I) = P , so U is an A-unitary

operator; this implies that I − U is A-quasi-unitary. Since ϕ preserves A-quasi-

unitary operators, Pϕ(I − U) = P (I − ϕ(U)) is an A-quasi-unitary operator, so

I − ϕ(U) is an A-quasi-unitary operator, and so ϕ(U) is an A-unitary operator. It

follows that Pϕ(U) is an A-unitary operator. Consequently Pϕ preserves A-unitary

operators and Pϕ(I) = P . From Theorem 3.1 the result follows. �
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A c k n ow l e d g em e n t. We are greatly indebted to the referee for valuable sug-

gestions that led to an overall improvement of the paper.
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