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Abstract. In Chajda’s paper (2014), to an arbitrary BCI-algebra the author assigned
an ordered structure with one binary operation which possesses certain antitone mappings.
In the present paper, we show that a similar construction can be done also for pseudo-
BCI-algebras, but the resulting structure should have two binary operations and a set of
couples of antitone mappings which are in a certain sense mutually inverse. The motivation
for this approach is the well-known fact that every commutative BCK-algebra is in fact
a join-semilattice and we try to obtain a similar result also for the non-commutative case
and for pseudo-BCI-algebras which generalize BCK-algebras, see e.g. Imai and Iséki (1966)
and Iséki (1966).
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1. Introduction

The concept of a BCI-algebra was introduced by Iséki [9] in order to study im-

plication fragments of non-classical logics. Pseudo-BCI-algebras were introduced by

Dudek and Jun [5] as a reasonable generalization of BCI-algebras which enables

an algebraic axiomatization of a larger class of logics including also fuzzy logics.

Hence, the structure of BCI-algebras and of pseudo-BCI-algebras plays an impor-

tant role in the study of these logics. The structure of BCI-algebras was already

treated by the first author in [1]. However, as pointed out in [4], [6] and [7], also

pseudo-BCI-algebras form an important tool for an algebraic axiomatization of im-

plicational fragments of non-classical logics and hence we are motivated to reveal

their structure. Moreover, the class of pseudo-BCI-algebras contains as a subclass
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the class of pseudo-BCK-algebras; thus we can follow the ideas of our paper [2]. In

fact, we try an approach for going from BCI-algebras to pseudo-BCI-algebras similar

to that used in [2] for going from BCK-algebras to pseudo-BCK-algebras, see [1]

and [4].

Our goal is to convert every pseudo-BCI-algebra into a structure containing two

binary operations each of them being similar to that of a directoid, see e.g. [3]. This

was suggested by the fact that every commutative BCK-algebra is in fact a join-

semilattice and directoids are the best approximation of semilattices in directed or-

dered sets where the existence of suprema is not necessarily assumed. Of course,

our pseudo-BCI-algebras need not be commutative and are considerably weaker

than BCK-algebras, thus one cannot expect that the corresponding structure will

be a semilattice or a directoid.

Moreover, contrary to the case of pseudo-BCK-algebras, see [2], these binary opa-

rations do not constitute common upper bounds of their operands. However, we

were successful in finding a structure with two binary operations similar to that of

a directoid and with a set of couples of unary operations, in fact antitone map-

pings, which are mutually inverse in a certain sense explained below. We show that

there is a one-to-one correspondence between a pseudo-BCI-algebra and the derived

structure in the sense that the given pseudo-BCI-algebra can be recovered from that

structure.

2. Main results

We start with the definition of a pseudo-BCI-algebra.

Definition 2.1 (see e.g. [7]). A pseudo-BCI-algebra is an algebra A = (A,→,

 , 1) of type (2, 2, 0) satisfying the following axioms:

(P1) (x → y) ((y → z) (x → z)) = 1,

(P2) (x y) → ((y  z) → (x z)) = 1,

(P3) 1 → x = x,

(P4) 1 x = x,

(P5) x → y = y → x = 1 implies x = y.

We next show that x → y = 1 if and only if x y = 1.

Lemma 2.1. Let A = (A,→, , 1) be a pseudo-BCI-algebra and a, b ∈ A. Then

a → b = 1 if and only if a b = 1.

P r o o f. a → b = 1 implies a b=a (1 b)=(1→a) ((a→ b) (1→ b))=1

according to (P1), (P3) and (P4), and a  b = 1 implies a → b = a → (1 → b) =

(1 a) → ((a b) → (1 b)) = 1 according to (P2), (P3) and (P4). �
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R em a r k 2.1. Lemma 2.1 implies that all the axioms of a pseudo-BCI-algebra

are self-dual, i.e. the following axiom also holds:

(P5′) x y = y  x = 1 implies x = y.

This is the reason for the following duality principle holding for these algebras:

Theorem 2.1 (Duality principle for pseudo-BCI-algebras). If an assertion holds

for some expression in a pseudo-BCI-algebraA = (A,→, , 1) then the dual sentence

obtained by interchanging → and  holds, as well.

In every pseudo-BCI-algebra one can define a partial order relation in a natural

way.

Definition 2.2. Let A = (A,→, , 1) be a pseudo-BCI-algebra. Define a binary

relation 6 on A by x 6 y if and only if x → y = 1, x, y ∈ A.

Lemma 2.2. Let A = (A,→, , 1) be a pseudo-BCI-algebra. Then (A,6) is

a poset.

P r o o f. Let a, b, c ∈ A. Then a → a = 1 → (a → a) = (1  1) → ((1  a) →

(1  a)) = 1 according to (P2), (P3) and (P4) and hence 6 is reflexive. Because

of (P5), 6 is antisymmetric. If a 6 b 6 c then a → b = b → c = 1 and hence

a → c = 1  (a → c) = 1  (1  (a → c)) = (a → b) ((b → c)  (a → c)) = 1

according to (P1) and (P4), which implies a 6 c showing transitivity of 6. �

Due to Theorem 2.1 we have also x 6 y if and only if x y = 1, x, y ∈ A.

Next we define two binary operations on any pseudo-BCI-algebra.

Definition 2.3. Let A = (A,→, , 1) be a pseudo-BCI-algebra. Define binary

operations ⊔ and ∪ on A by x ⊔ y := (x → y)  y and x ∪ y := (x  y) → y,

x, y ∈ A.

That these two operations need not coincide can be seen from the following

E x am p l e 2.1. On the four-element set A := {0, a, b, 1} define two binary oper-

ations → and  as follows:

→ 0 a b 1

0 1 1 1 1

a b 1 b 1

b 0 a 1 1

1 0 a b 1

and

 0 a b 1

0 1 1 1 1

a 0 1 b 1

b a a 1 1

1 0 a b 1

93



It can be easily checked that A = (A,→, , 1) is a pseudo-BCI-algebra, but

a ⊔ 0 = (a → 0) 0 = b 0 = a 6= 1 = 0 → 0 = (a 0) → 0 = a ∪ 0.

Now we list some properties of pseudo-BCI-algebras.

Lemma 2.3. LetA = (A,→, , 1) be a pseudo-BCI-algebra and a, b, c ∈ A. Then

the following assertions (and their dual statements obtained by interchanging →

and  as well as ⊔ and ∪) hold:

(i) a 6 a ⊔ b,

(ii) a 6 b if and only if a ⊔ b = b,

(iii) a 6 b implies b → c 6 a → c and c → a 6 c → b,

(iv) a 6 b implies a ⊔ c 6 b ⊔ c,

(v) ((a → b) b) → b = a → b,

(vi) a → (b c) = b (a → c).

P r o o f. Properties (iii), (v) and (vi) are proved in [5], Proposition 3.2.

(i) a  (a ⊔ b) = a  ((a → b)  b) = (1 → a)  ((a → b)  (1 → b)) = 1

according to (P1) and (P3).

(ii) If a 6 b then a → b = 1 and hence a⊔ b = (a → b) b = 1 b = b according

to (P4). If, conversely, a ⊔ b = b then a 6 a ⊔ b = b according to (i).

(iv) a 6 b implies b → c 6 a → c according to (iii) and hence a ⊔ c = (a → c)  

c 6 (b → c) c = b ⊔ c according to (iii) and Theorem 2.1. �

Next we list some properties of ⊔. We remark that the dual statements obtained

by replacing ⊔ by ∪ hold, as well.

Lemma 2.4. Let A = (A,→, , 1) be a pseudo-BCI-algebra and a, b, c ∈ A.

Then the following assertions hold:

(i) a ⊔ a = a,

(ii) a ⊔ b = b and b ⊔ a = a together imply a = b,

(iii) (a ⊔ b) ⊔ b = a ⊔ (a ⊔ b) = a ⊔ b,

(iv) (a ⊔ c) ⊔ ((a ⊔ b) ⊔ c) = (a ⊔ b) ⊔ c,

(v) 1 ⊔ a = 1.

P r o o f. (i) a⊔ a = (a → a) a = 1 a = a according to Lemma 2.2 and (P4).

(ii) Follows from Lemma 2.2 and from (ii) of Lemma 2.3.

(iii) According to (v) of Lemma 2.3 we have (a ⊔ b) ⊔ b = (((a → b) b) → b) 

b = (a → b) b = a ⊔ b. The rest follows from (i) and (ii) of Lemma 2.3.
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(iv) We have a 6 a⊔b according to (i) of Lemma 2.3. This implies a⊔c 6 (a⊔b)⊔c

according to (iv) of Lemma 2.3. The rest follows from (ii) of Lemma 2.3.

(v) 1 ⊔ a = (1 → a)  a = a  a = 1 according to (P3), Lemma 2.2 and

Theorem 2.1. �

R em a r k 2.2. Let us note that for a pseudo-BCI-algebra A = (A,→, , 1) the

derived structure (A,⊔) is not a directoid in general because it need not satisfy the

identity y ⊔ (x ⊔ y) = x ⊔ y, see [3] for details. Moreover, 1 need not be the greatest

element in the derived ordered set (A,6) since x⊔ 1 need not be equal to 1. In fact,

this is just the case when A is a pseudo-BCK-algebra.

E x am p l e 2.2 (cf. [6]). Define binary operations → and  on R
2 by

(x, y) → (z, u) := (z − x, (u − y)e−x) and (x, y) (z, u) := (z − x, u− yez−x)

((x, y), (z, u) ∈ R
2). Then it can be easily checked that A := (R2,→, , (0, 0)) is

a pseudo-BCI-algebra which is obviously not a BCI-algebra. Let (a, b), (c, d) ∈ R
2.

The algebra A is not a pseudo-BCK-algebra since

(a, b) → (0, 0) = (−a, (−b)e−a) 6= (0, 0)

in case (a, b) 6= (0, 0). Moreover, it can be easily checked that (a, b) ⊔ (c, d) = (a, b).

This shows

(a, b) ⊔ ((c, d) ⊔ (a, b)) = (a, b) 6= (c, d) = (c, d) ⊔ (a, b)

in case (a, b) 6= (c, d).

On each pseudo-BCI-algebra we define two unary operations as follows:

Definition 2.4. LetA = (A,→, , 1) be a pseudo-BCI-algebra. For every x ∈ A

define unary operations fx and gx on A by fx(y) := y → x and gx(y) := y  x for

all y ∈ A.

R em a r k 2.3. Because of (iii) of Lemma 2.3 and Theorem 2.1, fx and gx are

antitone. Moreover, gx(fx(y ⊔ x)) = y ⊔ x and fx(gx(y ∪ x)) = y ∪ x for all x, y ∈ A

according to (v) of Lemma 2.3. If x 6 y then, by (i) of Lemma 2.4 and (iv) of

Lemma 2.3, we have x = x ⊔ x 6 y ⊔ x. Hence, fx and gx are mutually inverse with

respect to those elements of [x) := {z ∈ A ; x 6 z} which are of the form y ⊔ x or

y ∪ x.

We list some properties of the unary operations just defined.
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Lemma 2.5. LetA = (A,→, , 1) be a pseudo-BCI-algebra and a, b, c ∈ A. Then

the following assertions (and their dual statements obtained by interchanging →

and  as well as ⊔ and ∪ as well as fx and gx) hold:

(i) fa(a) = 1 and fa(1) = a,

(ii) fb(a ⊔ b) = a → b,

(iii) gb(fb(a ⊔ b) ∪ b) = gb(fb(a ⊔ b)) = a ⊔ b,

(iv) fb(a ⊔ b) ∪ fb⊔c((a ⊔ c) ⊔ (b ⊔ c)) = fb⊔c((a ⊔ c) ⊔ (b ⊔ c)),

(v) fgc(b∪c)(a ⊔ gc(b ∪ c)) = gfc(a⊔c)(b ∪ fc(a ⊔ c)),

(vi) fb((a ⊔ b) ⊔ b) = fb(a ⊔ b),

(vii) fa((a ⊔ b) ⊔ a) = fa(a ⊔ b).

P r o o f. (i) fa(a) = a → a = 1 according to Lemma 2.2 and fa(1) = 1 → a = a

according to (P3).

(ii) fb(a ⊔ b) = ((a → b) b) → b = a → b according to (v) of Lemma 2.3.

(iii) gb(fb(a ⊔ b) ∪ b) = gb(fb(a ⊔ b)) = (a → b)  b = a ⊔ b according to (v) of

Lemma 2.3 and (ii) of Lemma 2.5.

(iv) fb⊔c((a ⊔ c) ⊔ (b ⊔ c)) = (a ⊔ c) → (b ⊔ c) = ((a → c) c) → ((b → c) c) =

(b → c)  (((a → c)  c) → c) = (b → c)  (a → c) according to (v) and (vi) of

Lemma 2.3 and (ii) of Lemma 2.5. Now (iv) follows from (ii) of Lemma 2.3, (P1),

(ii) of Lemma 2.5 and from Theorem 2.1.

(v) fgc(b∪c)(a ⊔ gc(b ∪ c)) = a → (b  c) = b  (a → c) = gfc(a⊔c)(b ∪ fc(a ⊔ c))

according to (vi) of Lemma 2.3, Theorem 2.1 and (ii) of Lemma 2.5.

(vi) fb((a ⊔ b) ⊔ b) = (a ⊔ b) → b = fb(a ⊔ b) according to (ii).

(vii) fa((a ⊔ b) ⊔ a) = (a ⊔ b) → a = fa(a ⊔ b) according to (ii). �

Now we define the notion of a pseudo-BCI-structure which is similar to a semilat-

tice equipped with antitone mutually inverse mappings.

Definition 2.5. A pseudo-BCI-structure is an ordered sixtuple (A,⊔,∪,

(fx;x ∈ A), (gx;x ∈ A), 1) where (A,⊔,∪, 1) is an algebra of type (2, 2, 0) and

for any x ∈ A, fx and gx are unary operations on A such that the following axioms

(and their dual formulations obtained by interchanging ⊔ and ∪ as well as fx and gx)

are satisfied:

(S1) x ⊔ y = y and y ⊔ x = x together imply x = y,

(S2) 1 ⊔ x = 1,

(S3) fx(x) = 1 and fx(1) = x,

(S4) gy(fy(x ⊔ y) ∪ y) = gy(fy(x ⊔ y)) = x ⊔ y,

(S5) fy(x ⊔ y) ∪ fy⊔z((x ⊔ z) ⊔ (y ⊔ z)) = fy⊔z((x ⊔ z) ⊔ (y ⊔ z)),

(S6) fgz(y∪z)(x ⊔ gz(y ∪ z)) = gfz(x⊔z)(y ∪ fz(x ⊔ z)),

(S7) fy((x ⊔ y) ⊔ y) = fy(x ⊔ y).
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To every pseudo-BCI-algebra we can assign a pseudo-BCI-structure.

Theorem 2.2. Let A = (A,→, , 1) be a pseudo-BCI-algebra. Then S(A) :=

(A,⊔,∪, (fx;x ∈ A), (gx;x ∈ A), 1) is a pseudo-BCI-structure.

P r o o f. Axioms (S1) and (S2) follow from Lemma 2.4 and (S3)–(S7) from

Lemma 2.5. �

Conversely, to every pseudo-BCI-structure we can assign a pseudo-BCI-algebra.

Theorem 2.3. Let S := (S,⊔,∪, (fx;x ∈ S), (gx;x ∈ S), 1) be a pseudo-BCI-

structure. Define

x → y := fy(x ⊔ y) and x y := gy(x ∪ y)

for all x, y ∈ S. Then A(S) := (S,→, , 1) is a pseudo-BCI-algebra.

P r o o f. Let a, b, c ∈ S. If a → b = 1 then fb(a ⊔ b) = 1 and hence a ⊔ b =

gb(fb(a ⊔ b)) = gb(1) = b according to (S3) and (S4). If, conversely, a ⊔ b = b then

a → b = fb(a ⊔ b) = fb(b) = 1 according to (S3). Hence a → b = 1 if and only if

a ⊔ b = b.

(P1) We have (a → b) b = gb(fb(a ⊔ b) ∪ b) = a ⊔ b according to (S4),

((a → b) b) → b = (a⊔b) → b = fb((a⊔b)⊔b) = fb(a⊔b) = a → b according

to (S7) and

a → (b  c) = fgc(b∪c)(a ⊔ gc(b ∪ c)) = gfc(a⊔c)(b ∪ fc(a ⊔ c)) = b  (a → c)

according to (S6).

Now (a ⊔ c) → (b ⊔ c) = ((a → c)  c) → ((b → c)  c) = (b → c)  

(((a → c) c) → c) = (b → c) (a → c).

From (S5) we conclude (a → b) ∪ ((a ⊔ c) → (b ⊔ c)) = (a ⊔ c) → (b ⊔ c) which

implies (a → b) ∪ ((b → c) (a → c)) = (b → c) (a → c), i.e., (P1) follows

by Theorem 2.1.

(P2) Follows by duality.

(P3) 1 → a = fa(1 ⊔ a) = fa(1) = a according to (S2) and (S3).

(P4) Follows by duality.

(P5) If a → b = b → a = 1 then a ⊔ b = b and b ⊔ a = a and hence a = b according

to (S1). �

Finally, we show that if we start with a pseudo-BCI-algebra, construct its cor-

responding pseudo-BCI-structure and then assign to this its corresponding pseudo-

BCI-algebra then we obtain the original one.
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Theorem 2.4. Let A=(A,→, ,1) be a pseudo-BCI-algebra. Then A(S(A))=A.

P r o o f. Put S(A) = (A,⊔,∪, (fx;x ∈ A), (gx;x ∈ A), 1) and A(S(A)) = (A,→′,

 ′, 1) and let a, b ∈ A. Then

a →′ b = fb(a ⊔ b) = ((a → b) b) → b = a → b

according to (v) of Lemma 2.3. The equality a ′ b = a b follows by duality. �
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