CARDINALITIES OF DCCC NORMAL SPACES WITH A RANK 2-DIAGONAL

Wei-Feng Xuan, Wei-Xue Shi, Nanjing

Received June 6, 2015. First published August 8, 2016.
Communicated by Pavel Pyrih

Abstract. A topological space X has a rank 2-diagonal if there exists a diagonal sequence on X of rank 2 , that is, there is a countable family $\left\{\mathcal{U}_{n}: n \in \omega\right\}$ of open covers of X such that for each $x \in X,\{x\}=\bigcap\left\{\operatorname{St}^{2}\left(x, \mathcal{U}_{n}\right): n \in \omega\right\}$. We say that a space X satisfies the Discrete Countable Chain Condition (DCCC for short) if every discrete family of nonempty open subsets of X is countable. We mainly prove that if X is a DCCC normal space with a rank 2-diagonal, then the cardinality of X is at most \mathfrak{c}. Moreover, we prove that if X is a first countable DCCC normal space and has a G_{δ}-diagonal, then the cardinality of X is at most c .

Keywords: cardinality; Discrete Countable Chain Condition; normal space; rank 2diagonal; G_{δ}-diagonal

MSC 2010: 54D20, 54E35

1. Introduction

Diagonal properties are useful in estimating on the cardinality of a space. For example, Ginsburg and Woods in [4] proved that the cardinality of a space with countable extent and a G_{δ}-diagonal is at most \mathfrak{c}. Therefore, if X is Lindelöf and has a G_{δ}-diagonal, then the cardinality of X is at most \mathbf{c}. However, the cardinality of a regular space with the countable Souslin number and a G_{δ}-diagonal need not have an upper bound (see [7], [8]). Buzyakova in [2] proved that if a space X with the countable Souslin number has a regular G_{δ}-diagonal, then the cardinality of X does not exceed \mathbf{c}. Rank 3-diagonal is one type of diagonal property. Recently, we proved that if X is a DCCC space (defined below) with a rank 3-diagonal, then the cardinality of X is at most \mathfrak{c} (see [10]). The following question is also asked in [10]:

[^0]Question 1.1. Is the cardinality of a DCCC space with a rank 2-diagonal at most \mathbf{c} ?

In this paper, we prove that if X is a DCCC normal space with a rank 2-diagonal, then the cardinality of X is at most \mathfrak{c}. We also prove that if X is a first countable DCCC normal space and has a G_{δ}-diagonal, then the cardinality of X is at most \mathfrak{c}.

2. Notation and terminology

All spaces are assumed to be Hausdorff unless otherwise stated.
The cardinality of a set X is denoted by $|X|$, and $[X]^{2}$ denotes the set of twoelement subsets of X. We write ω for the first infinite cardinal and \mathfrak{c} for the cardinality of the continuum.

Definition 2.1 ([9]). We say that a space X satisfies the Discrete Countable Chain Condition (DCCC for short) if every discrete family of nonempty open subsets of X is countable.

If A is a subset of X and \mathcal{U} is a family of subsets of X, then $\operatorname{St}(A, \mathcal{U})=$ $\bigcup\{U \in \mathcal{U}: U \cap A \neq \emptyset\}$. We also put $\operatorname{St}^{0}(A, \mathcal{U})=A$ and for a nonnegative integer n, $\operatorname{St}^{n+1}(A, \mathcal{U})=\operatorname{St}\left(\operatorname{St}^{n}(A, \mathcal{U}), \mathcal{U}\right)$. If $A=\{x\}$ for some $x \in X$, then we write $\operatorname{St}^{n}(x, \mathcal{U})$ instead of $\operatorname{St}^{n}(\{x\}, \mathcal{U})$.

Definition 2.2 ([1]). A diagonal sequence of rank k on a space X, where $k \in \omega$, is a countable family $\left\{\mathcal{U}_{n}: n \in \omega\right\}$ of open coverings of X such that $\{x\}=$ $\bigcap\left\{\operatorname{St}^{k}\left(x, \mathcal{U}_{n}\right): n \in \omega\right\}$ for each $x \in X$.

Definition 2.3 ([1]). A space X has a rank k-diagonal, where $k \in \omega$, if there is a diagonal sequence $\left\{\mathcal{U}_{n}: n \in \omega\right\}$ on X of rank k.

Therefore, a space X has a rank 2-diagonal if there exists a diagonal sequence on X of rank 2 , that is, there is a countable family $\left\{\mathcal{U}_{n}: n \in \omega\right\}$ of open covers of X such that for each $x \in X,\{x\}=\bigcap\left\{\operatorname{St}^{2}\left(x, \mathcal{U}_{n}\right): n \in \omega\right\}$.

All notation and terminology not explained here is given in [3].

3. Results

We will use the following countable version of a set-theoretic theorem due to Erdős and Radó.

Lemma 3.1 ([5], Theorem 2.3). Let X be a set with $|X|>\mathfrak{c}$ and suppose $[X]^{2}=$ $\bigcup\left\{P_{n}: n \in \omega\right\}$. Then there exists $n_{0}<\omega$ and a subset S of X with $|S|>\omega$ such that $[S]^{2} \subset P_{n_{0}}$.

Lemma 3.2. Let $\left\{\mathcal{U}_{n}: n \in \omega\right\}$ be a diagonal sequence on X of rank k, where $k \geqslant 1$. If $|X|>\mathfrak{c}$, then there exists an uncountable closed discrete subset S of X such that for any two distinct points $x, y \in S$ there exists $n_{0} \in \omega$ such that $y \notin \operatorname{St}^{k}\left(x, \mathcal{U}_{n_{0}}\right)$.

Proof. Assume there exists a sequence $\left\{\mathcal{U}_{n}: n \in \omega\right\}$ of open covers of X such that $\{x\}=\bigcap\left\{\operatorname{St}^{k}\left(x, \mathcal{U}_{n}\right): n \in \omega\right\}$ for every $x \in X$. We may suppose $\mathrm{St}^{k}\left(x, \mathcal{U}_{n+1}\right) \subset$ $\mathrm{St}^{k}\left(x, \mathcal{U}_{n}\right)$ for any $n \in \omega$. For each $n \in \omega$ let

$$
\left.P_{n}=\left\{\{x, y\} \in[X]^{2}: x \notin \operatorname{St}^{k}\left(y, \mathcal{U}_{n}\right)\right\}\right\}
$$

Thus, $[X]^{2}=\bigcup\left\{P_{n}: n \in \omega\right\}$. Then by Lemma 3.1 there exists a subset S of X with $|S|>\omega$ and $[S]^{2} \subset P_{n_{0}}$ for some $n_{0} \in \omega$. It is evident that for any two distinct points $x, y \in S, y \notin \operatorname{St}^{k}\left(x, \mathcal{U}_{n_{0}}\right)$. Now we show that S is closed and discrete. If not, let $x \in X$ and suppose x were an accumulation point of S. Since X is T_{1}, each neighborhood $U \in \mathcal{U}_{n_{0}}$ of x meets infinitely many members of S. Therefore there exist distinct points y and z in $S \cap U$. Thus, $y \in U \subset \operatorname{St}\left(z, \mathcal{U}_{n_{0}}\right) \subset \operatorname{St}^{k}\left(z, \mathcal{U}_{n_{0}}\right)$. This is a contradiction. Thus, S has no accumulation points in X; equivalently, S is a closed and discrete subset of X. This completes the proof.

In Lemma 3.2, if the diagonal rank of X is at least 2, i.e., $k \geqslant 2$, then S has a disjoint open expansion $\left\{\operatorname{St}\left(x, \mathcal{U}_{n_{0}}\right): x \in S\right\}$. Indeed, if there exist distinct $x, y \in S$ such that $\operatorname{St}\left(x, \mathcal{U}_{n_{0}}\right) \cap \operatorname{St}\left(y, \mathcal{U}_{n_{0}}\right) \neq \emptyset$, then $y \in \operatorname{St}^{2}\left(x, \mathcal{U}_{n_{0}}\right) \subset \operatorname{St}^{k}\left(x, \mathcal{U}_{n_{0}}\right)$. This is impossible.

Lemma 3.3. If S is a closed discrete set in a normal space X and $\mathcal{U}=\{U(x)$: $x \in S\}$ is a disjoint open expansion of S, then there is a discrete open expansion $\mathcal{V}=\{V(x): x \in S\}$ of S with $x \in V(x) \subset U(x)$ for all $x \in S$.

Proof. By normality there exists an open set W in X such that $S \subset W \subset \bar{W} \subset$ $\cup \mathcal{U}$. For all $x \in S$ let $V(x)=U(x) \cap W$. It is easily verified that $\mathcal{V}=\{V(x): x \in S\}$ is a discrete open collection of cardinality $|S|$.

Theorem 3.4. If X is a DCCC normal space and if it has a rank 2-diagonal, then the cardinality of X does not exceed \mathfrak{c}.

Proof. Assume the contrary. It follows from Lemma 3.2 that $\left\{\operatorname{St}\left(x, \mathcal{U}_{n_{0}}\right)\right.$: $x \in S\}$ is an uncountable pairwise disjoint family of nonempty open sets of X. Since X is normal, by Lemma 3.3 there is a discrete open expansion $\mathcal{V}=\{V(x): x \in S\}$ of S with $x \in V(x) \subset \operatorname{St}\left(x, \mathcal{U}_{n_{0}}\right)$, for all $x \in S$. This contradicts the fact that X is DCCC. This proves that $|X| \leqslant \mathfrak{c}$.

Recall that a space X is star countable if whenever \mathcal{U} is an open cover of X, there is a countable subset A of X such that $\operatorname{St}(A, \mathcal{U})=X$. In [10], the authors have proved that every star countable space is DCCC. Moreover, the cardinality of every star countable space with a rank 2-diagonal is at most \mathfrak{c} (see [11]). Therefore, by the above observations, it is natural to ask whether a DCCC normal space is star countable. However, the answer is negative (see [6], page 99).

We say that a topological space X has a G_{δ}-diagonal if there exists a sequence $\left\{G_{n}: n \in \omega\right\}$ of open sets in X^{2} such that $\Delta_{X}=\bigcap\left\{G_{n}: n<\omega\right\}$, where $\Delta_{X}=$ $\{(x, x): x \in X\}$. A space X has a G_{δ}-diagonal if and only if X has a rank 1-diagonal.

Theorem 3.5. If X is a first countable $D C C C$ normal space and if it has a $G_{\delta^{-}}$ diagonal, then the cardinality of X does not exceed \mathbf{c}.

Proof. By the assumption, there exists a sequence $\left\{\mathcal{U}_{n}: n \in \omega\right\}$ of open covers of X such that $\{x\}=\bigcap\left\{\operatorname{St}\left(x, \mathcal{U}_{n}\right): n \in \omega\right\}$ for every $x \in X$. We may suppose $\operatorname{St}\left(x, \mathcal{U}_{n+1}\right) \subset \operatorname{St}\left(x, \mathcal{U}_{n}\right)$ for any $n \in \omega$. Let $\mathcal{B}(x)=\left\{B_{m}(x): m \in \omega\right\}$ be a local base for x. Assume $B_{m+1}(x) \subset B_{m}(x)$ for any $m \in \omega$. For each $n \in \omega$ let

$$
\left.P_{n}=\left\{\{x, y\} \in[X]^{2}: x \notin \operatorname{St}\left(y, \mathcal{U}_{n}\right) ; B_{n}(x) \cap B_{n}(y)=\emptyset\right\}\right\} .
$$

Thus, $[X]^{2}=\bigcup\left\{P_{n}: n \in \omega\right\}$. Suppose that $|X|>\mathfrak{c}$. Then by Lemma 3.1 there exists a subset S of X with $|S|>\omega$ and $[S]^{2} \subset P_{n_{0}}$ for some $n_{0} \in \omega$. As in the proof of Lemma 3.2, one easily sees that S is closed and discrete. Besides, it is evident that for any two distinct points $x, y \in S, B_{n_{0}}(x) \cap B_{n_{0}}(y)=\emptyset$.

Since X is normal, by Lemma 3.3 there is a discrete open expansion $\mathcal{V}=\{V(x)$: $x \in S\}$ of S with $x \in V(x) \subset B_{n_{0}}(x)$, for all $x \in S$. This contradicts the fact that X is DCCC. This proves that $|X| \leqslant \mathfrak{c}$.

Theorem 3.5 suggests the following question.
Question 3.6. Let X be a DCCC normal space with a G_{δ}-diagonal. Is X CCC?
It is well known that the cardinality of a first countable CCC space is at most \mathfrak{c}. Therefore, a positive answer to Question 3.6 would imply a trivial proof of Theorem 3.5.

Acknowledgments. The authors are grateful to the referee, because he made valuable suggestions and helped them to improve the writing of this paper.

References

[1] A. V. Arhangel'skii, R. Z. Buzyakova: The rank of the diagonal and submetrizability. Commentat. Math. Univ. Carol. 47 (2006), 585-597.
zbl MR
[2] R. Z. Buzyakova: Cardinalities of ccc-spaces with regular G_{δ}-diagonals. Topology Appl. 153 (2006), 1696-1698.
zbl MR doi
[3] R.Engelking: General Topology. Sigma Series in Pure Mathematics 6, Heldermann, Berlin, 1989.
[4] J. Ginsburg, R. G. Woods: A cardinal inequality for topological spaces involving closed discrete sets. Proc. Am. Math. Soc. 64 (1977), 357-360.
[5] R. Hodel: Cardinal functions I. Handbook of Set-Theoretic Topology (K. Kunen et al., eds.). North-Holland, Amsterdam, 1984, pp. 1-61.
[6] M. Matveev: A survey on star covering properties. Topology Atlas (1998). http://at. yorku.ca/v/a/a/a/19.htm.
[7] D. B. Shakhmatov: No upper bound for cardinalities of Tychonoff C.C.C. spaces with a G_{δ}-diagonal exists. Commentat. Math. Univ. Carol. 25 (1984), 731-746.
zbl MR
[8] V. V. Uspenskij: A large F_{σ}-discrete Frechet space having the Souslin property. Commentat. Math. Univ. Carol. 25 (1984), 257-260.
zbl MR
[9] M. R. Wiscamb: The discrete countable chain condition. Proc. Am. Math. Soc. 23 (1969), 608-612.
zbl MR doi
[10] W. F. Xuan, W. X. Shi: A note on spaces with a rank 3 -diagonal. Bull. Aust. Math. Soc. 90 (2014), 521-524.
[11] W. F. Xuan, W. X. Shi: A note on spaces with a rank 2-diagonal. Bull. Aust. Math. Soc. 90 (2014), 141-143.

Authors' addresses: Wei-Feng Xuan, College of Science, Nanjing Audit University, 86 YuShan West Road, Nanjing, China, 211815, e-mail: wfxuan@nau.edu.cn; Wei-Xue Shi, Department of Mathematics, Nanjing University, 22 Hankou Road, Nanjing, China, 210093, e-mail: wxshi@nju.edu.cn.

[^0]: The research has been supported by NSFC, project 11271178.

