CARDINALITIES OF DCCC NORMAL SPACES WITH
A RANK 2-DIAGONAL

WEI-FENG XUAN, WEI-XUE SHI, Nanjing

Received June 6, 2015. First published August 8, 2016.
Communicated by Pavel Pyrih

Abstract. A topological space X has a rank 2-diagonal if there exists a diagonal sequence on X of rank 2, that is, there is a countable family $\{U_n : n \in \omega\}$ of open covers of X such that for each $x \in X$, $\{x\} = \bigcap\{\text{St}^2(x, U_n) : n \in \omega\}$. We say that a space X satisfies the Discrete Countable Chain Condition (DCCC for short) if every discrete family of nonempty open subsets of X is countable. We mainly prove that if X is a DCCC normal space with a rank 2-diagonal, then the cardinality of X is at most \mathfrak{c}. Moreover, we prove that if X is a first countable DCCC normal space and has a G_δ-diagonal, then the cardinality of X is at most \mathfrak{c}.

Keywords: cardinality; Discrete Countable Chain Condition; normal space; rank 2-diagonal; G_δ-diagonal

MSC 2010: 54D20, 54E35

1. Introduction

Diagonal properties are useful in estimating on the cardinality of a space. For example, Ginsburg and Woods in [4] proved that the cardinality of a space with countable extent and a G_δ-diagonal is at most \mathfrak{c}. Therefore, if X is Lindelöf and has a G_δ-diagonal, then the cardinality of X is at most \mathfrak{c}. However, the cardinality of a regular space with the countable Souslin number and a G_δ-diagonal need not have an upper bound (see [7], [8]). Buzyakova in [2] proved that if a space X with the countable Souslin number has a regular G_δ-diagonal, then the cardinality of X does not exceed \mathfrak{c}. Rank 3-diagonal is one type of diagonal property. Recently, we proved that if X is a DCCC space (defined below) with a rank 3-diagonal, then the cardinality of X is at most \mathfrak{c} (see [10]). The following question is also asked in [10]:

The research has been supported by NSFC, project 11271178.

DOI: 10.21136/MB.2016.0027-15

457
Question 1.1. Is the cardinality of a DCCC space with a rank 2-diagonal at most \(c\)?

In this paper, we prove that if \(X\) is a DCCC normal space with a rank 2-diagonal, then the cardinality of \(X\) is at most \(c\). We also prove that if \(X\) is a first countable DCCC normal space and has a \(G_\delta\)-diagonal, then the cardinality of \(X\) is at most \(c\).

2. Notation and terminology

All spaces are assumed to be Hausdorff unless otherwise stated.

The cardinality of a set \(X\) is denoted by \(|X|\), and \([X]^2\) denotes the set of two-element subsets of \(X\). We write \(\omega\) for the first infinite cardinal and \(c\) for the cardinality of the continuum.

Definition 2.1 ([9]). We say that a space \(X\) satisfies the Discrete Countable Chain Condition (DCCC for short) if every discrete family of nonempty open subsets of \(X\) is countable.

If \(A\) is a subset of \(X\) and \(\mathcal{U}\) is a family of subsets of \(X\), then \(\text{St}(A, \mathcal{U}) = \bigcup\{U \in \mathcal{U} : U \cap A \neq \emptyset\}\). We also put \(\text{St}^0(A, \mathcal{U}) = A\) and for a nonnegative integer \(n\), \(\text{St}^{n+1}(A, \mathcal{U}) = \text{St}(\text{St}^n(A, \mathcal{U}), \mathcal{U})\). If \(A = \{x\}\) for some \(x \in X\), then we write \(\text{St}^n(x, \mathcal{U})\) instead of \(\text{St}^n(\{x\}, \mathcal{U})\).

Definition 2.2 ([1]). A diagonal sequence of rank \(k\) on a space \(X\), where \(k \in \omega\), is a countable family \(\{\mathcal{U}_n : n \in \omega\}\) of open coverings of \(X\) such that \(\{x\} = \bigcap\{\text{St}^k(x, \mathcal{U}_n) : n \in \omega\}\) for each \(x \in X\).

Definition 2.3 ([1]). A space \(X\) has a rank \(k\)-diagonal, where \(k \in \omega\), if there is a diagonal sequence \(\{\mathcal{U}_n : n \in \omega\}\) on \(X\) of rank \(k\).

Therefore, a space \(X\) has a rank 2-diagonal if there exists a diagonal sequence on \(X\) of rank 2, that is, there is a countable family \(\{\mathcal{U}_n : n \in \omega\}\) of open covers of \(X\) such that for each \(x \in X\), \(\{x\} = \bigcap\{\text{St}^2(x, \mathcal{U}_n) : n \in \omega\}\).

All notation and terminology not explained here is given in [3].

3. Results

We will use the following countable version of a set-theoretic theorem due to Erdős and Radó.

Lemma 3.1 ([5], Theorem 2.3). Let \(X\) be a set with \(|X| > c\) and suppose \([X]^2 = \bigcup\{P_n : n \in \omega\}\). Then there exists \(n_0 < \omega\) and a subset \(S\) of \(X\) with \(|S| > \omega\) such that \([S]^2 \subset P_{n_0}\).
Lemma 3.2. Let \(\{U_n : n \in \omega \} \) be a diagonal sequence on \(X \) of rank \(k \), where \(k \geq 1 \). If \(|X| > \omega \), then there exists an uncountable closed discrete subset \(S \) of \(X \) such that for any two distinct points \(x, y \in S \) there exists \(n_0 \in \omega \) such that \(y \notin \text{St}^k(x, U_{n_0}) \).

Proof. Assume there exists a sequence \(\{U_n : n \in \omega \} \) of open covers of \(X \) such that \(\{x\} = \bigcap\{\text{St}^k(x, U_n) : n \in \omega \} \) for every \(x \in X \). We may suppose \(\text{St}^k(x, U_{n+1}) \subset \text{St}^k(x, U_n) \) for any \(n \in \omega \). For each \(n \in \omega \) let

\[
P_n = \{\{x, y\} \in [X]^2 : x \notin \text{St}^k(y, U_n)\}.
\]

Thus, \([X]^2 = \bigcup \{P_n : n \in \omega \} \). Then by Lemma 3.1 there exists a subset \(S \) of \(X \) with \(|S| > \omega \) and \(|S|^2 \subset P_{n_0} \) for some \(n_0 \in \omega \). It is evident that for any two distinct points \(x, y \in S \), \(y \notin \text{St}^k(x, U_{n_0}) \). Now we show that \(S \) is closed and discrete. If not, let \(x \in X \) and suppose \(x \) was an accumulation point of \(S \). Since \(X \) is \(T_1 \), each neighborhood \(U \in U_{n_0} \) of \(x \) meets infinitely many members of \(S \). Therefore there exist distinct points \(y \) and \(z \) in \(S \cap U \). Thus, \(y \in U \subset \text{St}(z, U_{n_0}) \subset \text{St}^k(z, U_{n_0}) \). This is a contradiction. Thus, \(S \) has no accumulation points in \(X \); equivalently, \(S \) is a closed and discrete subset of \(X \). This completes the proof. \(\square \)

In Lemma 3.2, if the diagonal rank of \(X \) is at least 2, i.e., \(k \geq 2 \), then \(S \) has a disjoint open expansion \(\{\text{St}(x, U_n) : x \in S \} \). Indeed, if there exist distinct \(x, y \in S \) such that \(\text{St}(x, U_{n_0}) \cap \text{St}(y, U_{n_0}) \neq \emptyset \), then \(y \in \text{St}^2(x, U_{n_0}) \subset \text{St}^k(x, U_{n_0}) \). This is impossible.

Lemma 3.3. If \(S \) is a closed discrete set in a normal space \(X \) and \(U = \{U(x) : x \in S \} \) is a disjoint open expansion of \(S \), then there is a discrete open expansion \(\mathcal{V} = \{V(x) : x \in S\} \) of \(S \) such that \(x \in V(x) \subset U(x) \) for all \(x \in S \).

Proof. By normality there exists an open set \(W \) in \(X \) such that \(S \subset W \subset \overline{W} \subset \bigcup U \). For all \(x \in S \) let \(V(x) = U(x) \cap W \). It is easily verified that \(\mathcal{V} = \{V(x) : x \in S\} \) is a discrete open collection of cardinality \(|S| \). \(\square \)

Theorem 3.4. If \(X \) is a DCCC normal space and if it has a rank 2-diagonal, then the cardinality of \(X \) does not exceed \(\omega \).

Proof. Assume the contrary. It follows from Lemma 3.2 that \(\{\text{St}(x, U_{n_0}) : x \in S\} \) is an uncountable pairwise disjoint family of nonempty open sets of \(X \). Since \(X \) is normal, by Lemma 3.3 there is a discrete open expansion \(\mathcal{V} = \{V(x) : x \in S\} \) of \(S \) with \(x \in V(x) \subset \text{St}(x, U_{n_0}) \), for all \(x \in S \). This contradicts the fact that \(X \) is DCCC. This proves that \(|X| \leq \omega \). \(\square \)
Recall that a space X is star countable if whenever \mathcal{U} is an open cover of X, there is a countable subset A of X such that $\text{St}(A, \mathcal{U}) = X$. In [10], the authors have proved that every star countable space is DCCC. Moreover, the cardinality of every star countable space with a rank 2-diagonal is at most c (see [11]). Therefore, by the above observations, it is natural to ask whether a DCCC normal space is star countable. However, the answer is negative (see [6], page 99).

We say that a topological space X has a G_δ-diagonal if there exists a sequence $\{G_n: n \in \omega\}$ of open sets in X^2 such that $\Delta_X = \bigcap\{G_n: n < \omega\}$, where $\Delta_X = \{ (x, x): x \in X\}$. A space X has a G_δ-diagonal if and only if X has a rank 1-diagonal.

Theorem 3.5. If X is a first countable DCCC normal space and if it has a G_δ-diagonal, then the cardinality of X does not exceed c.

Proof. By the assumption, there exists a sequence $\{\mathcal{U}_n: n \in \omega\}$ of open covers of X such that $\{x\} = \bigcap\{\text{St}(x, \mathcal{U}_n): n \in \omega\}$ for every $x \in X$. We may suppose $\text{St}(x, \mathcal{U}_{n+1}) \subset \text{St}(x, \mathcal{U}_n)$ for any $n \in \omega$. Let $\mathcal{B}(x) = \{B_m(x): m \in \omega\}$ be a local base for x. Assume $B_{m+1}(x) \subset B_m(x)$ for any $m \in \omega$. For each $n \in \omega$ let

$$P_n = \{ \{x, y\} \in [X]^2: x \notin \text{St}(y, \mathcal{U}_n); B_n(x) \cap B_n(y) = \emptyset\}.$$

Thus, $[X]^2 = \bigcup\{P_n: n \in \omega\}$. Suppose that $|X| > c$. Then by Lemma 3.1 there exists a subset S of X with $|S| > \omega$ and $|S|^2 \subset P_{n_0}$ for some $n_0 \in \omega$. As in the proof of Lemma 3.2, one easily sees that S is closed and discrete. Besides, it is evident that for any two distinct points $x, y \in S$, $B_{n_0}(x) \cap B_{n_0}(y) = \emptyset$.

Since X is normal, by Lemma 3.3 there is a discrete open expansion $\mathcal{V} = \{V(x): x \in S\}$ of S with $x \in V(x) \subset B_{n_0}(x)$, for all $x \in S$. This contradicts the fact that X is DCCC. This proves that $|X| \leq c$. \hfill \square

Theorem 3.5 suggests the following question.

Question 3.6. Let X be a DCCC normal space with a G_δ-diagonal. Is X CCC?

It is well known that the cardinality of a first countable CCC space is at most c. Therefore, a positive answer to Question 3.6 would imply a trivial proof of Theorem 3.5.

Acknowledgments. The authors are grateful to the referee, because he made valuable suggestions and helped them to improve the writing of this paper.
References

Authors’ addresses: Wei-Feng Xuan, College of Science, Nanjing Audit University, 86 YuShan West Road, Nanjing, China, 211815, e-mail: wfxuan@nau.edu.cn; Wei-Xue Shi, Department of Mathematics, Nanjing University, 22 Hankou Road, Nanjing, China, 210093, e-mail: wxshi@nju.edu.cn.