CARDINALITIES OF DCCC NORMAL SPACES WITH A RANK 2-DIAGONAL

WEI-FENG XUAN, WEI-XUE SHI, Nanjing

Received June 6, 2015. First published August 8, 2016. Communicated by Pavel Pyrih

Abstract. A topological space X has a rank 2-diagonal if there exists a diagonal sequence on X of rank 2, that is, there is a countable family $\{\mathcal{U}_n : n \in \omega\}$ of open covers of X such that for each $x \in X$, $\{x\} = \bigcap \{\operatorname{St}^2(x, \mathcal{U}_n) : n \in \omega\}$. We say that a space X satisfies the Discrete Countable Chain Condition (DCCC for short) if every discrete family of nonempty open subsets of X is countable. We mainly prove that if X is a DCCC normal space with a rank 2-diagonal, then the cardinality of X is at most \mathfrak{c} . Moreover, we prove that if X is a first countable DCCC normal space and has a G_{δ} -diagonal, then the cardinality of X is at most \mathfrak{c} .

 $\mathit{Keywords}:$ cardinality; Discrete Countable Chain Condition; normal space; rank 2-diagonal; $G_{\delta}\text{-diagonal}$

MSC 2010: 54D20, 54E35

1. INTRODUCTION

Diagonal properties are useful in estimating on the cardinality of a space. For example, Ginsburg and Woods in [4] proved that the cardinality of a space with countable extent and a G_{δ} -diagonal is at most \mathfrak{c} . Therefore, if X is Lindelöf and has a G_{δ} -diagonal, then the cardinality of X is at most \mathfrak{c} . However, the cardinality of a regular space with the countable Souslin number and a G_{δ} -diagonal need not have an upper bound (see [7], [8]). Buzyakova in [2] proved that if a space X with the countable Souslin number has a regular G_{δ} -diagonal, then the cardinality of X does not exceed \mathfrak{c} . Rank 3-diagonal is one type of diagonal property. Recently, we proved that if X is a DCCC space (defined below) with a rank 3-diagonal, then the cardinality of X is at most \mathfrak{c} (see [10]). The following question is also asked in [10]:

The research has been supported by NSFC, project 11271178.

Question 1.1. Is the cardinality of a DCCC space with a rank 2-diagonal at most \mathfrak{c} ?

In this paper, we prove that if X is a DCCC normal space with a rank 2-diagonal, then the cardinality of X is at most \mathfrak{c} . We also prove that if X is a first countable DCCC normal space and has a G_{δ} -diagonal, then the cardinality of X is at most \mathfrak{c} .

2. NOTATION AND TERMINOLOGY

All spaces are assumed to be Hausdorff unless otherwise stated.

The cardinality of a set X is denoted by |X|, and $[X]^2$ denotes the set of twoelement subsets of X. We write ω for the first infinite cardinal and \mathfrak{c} for the cardinality of the continuum.

Definition 2.1 ([9]). We say that a space X satisfies the Discrete Countable Chain Condition (DCCC for short) if every discrete family of nonempty open subsets of X is countable.

If A is a subset of X and \mathcal{U} is a family of subsets of X, then $\operatorname{St}(A,\mathcal{U}) = \bigcup \{ U \in \mathcal{U} \colon U \cap A \neq \emptyset \}$. We also put $\operatorname{St}^0(A,\mathcal{U}) = A$ and for a nonnegative integer n, $\operatorname{St}^{n+1}(A,\mathcal{U}) = \operatorname{St}(\operatorname{St}^n(A,\mathcal{U}),\mathcal{U})$. If $A = \{x\}$ for some $x \in X$, then we write $\operatorname{St}^n(x,\mathcal{U})$ instead of $\operatorname{St}^n(\{x\},\mathcal{U})$.

Definition 2.2 ([1]). A diagonal sequence of rank k on a space X, where $k \in \omega$, is a countable family $\{\mathcal{U}_n: n \in \omega\}$ of open coverings of X such that $\{x\} = \bigcap \{\operatorname{St}^k(x, \mathcal{U}_n): n \in \omega\}$ for each $x \in X$.

Definition 2.3 ([1]). A space X has a rank k-diagonal, where $k \in \omega$, if there is a diagonal sequence $\{\mathcal{U}_n : n \in \omega\}$ on X of rank k.

Therefore, a space X has a rank 2-diagonal if there exists a diagonal sequence on X of rank 2, that is, there is a countable family $\{\mathcal{U}_n: n \in \omega\}$ of open covers of X such that for each $x \in X$, $\{x\} = \bigcap \{\operatorname{St}^2(x, \mathcal{U}_n): n \in \omega\}$.

All notation and terminology not explained here is given in [3].

3. Results

We will use the following countable version of a set-theoretic theorem due to Erdős and Radó.

Lemma 3.1 ([5], Theorem 2.3). Let X be a set with $|X| > \mathfrak{c}$ and suppose $[X]^2 = \bigcup \{P_n: n \in \omega\}$. Then there exists $n_0 < \omega$ and a subset S of X with $|S| > \omega$ such that $[S]^2 \subset P_{n_0}$.

Lemma 3.2. Let $\{\mathcal{U}_n : n \in \omega\}$ be a diagonal sequence on X of rank k, where $k \ge 1$. If $|X| > \mathfrak{c}$, then there exists an uncountable closed discrete subset S of X such that for any two distinct points $x, y \in S$ there exists $n_0 \in \omega$ such that $y \notin \mathrm{St}^k(x, \mathcal{U}_{n_0})$.

Proof. Assume there exists a sequence $\{\mathcal{U}_n \colon n \in \omega\}$ of open covers of X such that $\{x\} = \bigcap \{\operatorname{St}^k(x, \mathcal{U}_n) \colon n \in \omega\}$ for every $x \in X$. We may suppose $\operatorname{St}^k(x, \mathcal{U}_{n+1}) \subset \operatorname{St}^k(x, \mathcal{U}_n)$ for any $n \in \omega$. For each $n \in \omega$ let

$$P_n = \{\{x, y\} \in [X]^2 \colon x \notin \operatorname{St}^k(y, \mathcal{U}_n)\}\}.$$

Thus, $[X]^2 = \bigcup \{P_n : n \in \omega\}$. Then by Lemma 3.1 there exists a subset S of X with $|S| > \omega$ and $[S]^2 \subset P_{n_0}$ for some $n_0 \in \omega$. It is evident that for any two distinct points $x, y \in S, y \notin \operatorname{St}^k(x, \mathcal{U}_{n_0})$. Now we show that S is closed and discrete. If not, let $x \in X$ and suppose x were an accumulation point of S. Since X is T_1 , each neighborhood $U \in \mathcal{U}_{n_0}$ of x meets infinitely many members of S. Therefore there exist distinct points y and z in $S \cap U$. Thus, $y \in U \subset \operatorname{St}(z, \mathcal{U}_{n_0}) \subset \operatorname{St}^k(z, \mathcal{U}_{n_0})$. This is a contradiction. Thus, S has no accumulation points in X; equivalently, S is a closed and discrete subset of X. This completes the proof.

In Lemma 3.2, if the diagonal rank of X is at least 2, i.e., $k \ge 2$, then S has a disjoint open expansion {St (x, \mathcal{U}_{n_0}) : $x \in S$ }. Indeed, if there exist distinct $x, y \in S$ such that $\operatorname{St}(x, \mathcal{U}_{n_0}) \cap \operatorname{St}(y, \mathcal{U}_{n_0}) \neq \emptyset$, then $y \in \operatorname{St}^2(x, \mathcal{U}_{n_0}) \subset \operatorname{St}^k(x, \mathcal{U}_{n_0})$. This is impossible.

Lemma 3.3. If S is a closed discrete set in a normal space X and $\mathcal{U} = \{U(x): x \in S\}$ is a disjoint open expansion of S, then there is a discrete open expansion $\mathcal{V} = \{V(x): x \in S\}$ of S with $x \in V(x) \subset U(x)$ for all $x \in S$.

Proof. By normality there exists an open set W in X such that $S \subset W \subset \overline{W} \subset \bigcup \mathcal{U}$. For all $x \in S$ let $V(x) = U(x) \cap W$. It is easily verified that $\mathcal{V} = \{V(x) : x \in S\}$ is a discrete open collection of cardinality |S|.

Theorem 3.4. If X is a DCCC normal space and if it has a rank 2-diagonal, then the cardinality of X does not exceed \mathfrak{c} .

Proof. Assume the contrary. It follows from Lemma 3.2 that $\{\operatorname{St}(x, \mathcal{U}_{n_0}): x \in S\}$ is an uncountable pairwise disjoint family of nonempty open sets of X. Since X is normal, by Lemma 3.3 there is a discrete open expansion $\mathcal{V} = \{V(x): x \in S\}$ of S with $x \in V(x) \subset \operatorname{St}(x, \mathcal{U}_{n_0})$, for all $x \in S$. This contradicts the fact that X is DCCC. This proves that $|X| \leq \mathfrak{c}$.

459

Recall that a space X is star countable if whenever \mathcal{U} is an open cover of X, there is a countable subset A of X such that $St(A,\mathcal{U}) = X$. In [10], the authors have proved that every star countable space is DCCC. Moreover, the cardinality of every star countable space with a rank 2-diagonal is at most \mathfrak{c} (see [11]). Therefore, by the above observations, it is natural to ask whether a DCCC normal space is star countable. However, the answer is negative (see [6], page 99).

We say that a topological space X has a G_{δ} -diagonal if there exists a sequence $\{G_n: n \in \omega\}$ of open sets in X^2 such that $\Delta_X = \bigcap \{G_n: n < \omega\}$, where $\Delta_X = \{(x, x): x \in X\}$. A space X has a G_{δ} -diagonal if and only if X has a rank 1-diagonal.

Theorem 3.5. If X is a first countable DCCC normal space and if it has a G_{δ} -diagonal, then the cardinality of X does not exceed \mathfrak{c} .

Proof. By the assumption, there exists a sequence $\{\mathcal{U}_n \colon n \in \omega\}$ of open covers of X such that $\{x\} = \bigcap \{\operatorname{St}(x,\mathcal{U}_n) \colon n \in \omega\}$ for every $x \in X$. We may suppose $\operatorname{St}(x,\mathcal{U}_{n+1}) \subset \operatorname{St}(x,\mathcal{U}_n)$ for any $n \in \omega$. Let $\mathcal{B}(x) = \{B_m(x) \colon m \in \omega\}$ be a local base for x. Assume $B_{m+1}(x) \subset B_m(x)$ for any $m \in \omega$. For each $n \in \omega$ let

$$P_n = \{\{x, y\} \in [X]^2 \colon x \notin \operatorname{St}(y, \mathcal{U}_n); B_n(x) \cap B_n(y) = \emptyset\}\}.$$

Thus, $[X]^2 = \bigcup \{P_n : n \in \omega\}$. Suppose that $|X| > \mathfrak{c}$. Then by Lemma 3.1 there exists a subset S of X with $|S| > \omega$ and $[S]^2 \subset P_{n_0}$ for some $n_0 \in \omega$. As in the proof of Lemma 3.2, one easily sees that S is closed and discrete. Besides, it is evident that for any two distinct points $x, y \in S$, $B_{n_0}(x) \cap B_{n_0}(y) = \emptyset$.

Since X is normal, by Lemma 3.3 there is a discrete open expansion $\mathcal{V} = \{V(x) : x \in S\}$ of S with $x \in V(x) \subset B_{n_0}(x)$, for all $x \in S$. This contradicts the fact that X is DCCC. This proves that $|X| \leq \mathfrak{c}$.

Theorem 3.5 suggests the following question.

Question 3.6. Let X be a DCCC normal space with a G_{δ} -diagonal. Is X CCC? It is well known that the cardinality of a first countable CCC space is at most c. Therefore, a positive answer to Question 3.6 would imply a trivial proof of Theorem 3.5.

A c k n o w l e d g m e n t s. The authors are grateful to the referee, because he made valuable suggestions and helped them to improve the writing of this paper.

References

[1]	A. V. Arhangel'skii, R. Z. Buzyakova: The rank of the diagonal and submetrizability.
	Commentat. Math. Univ. Carol. 47 (2006), 585–597. zbl MR
[2]	<i>R. Z. Buzyakova</i> : Cardinalities of ccc-spaces with regular G_{δ} -diagonals. Topology Appl.
	153 (2006), 1696–1698. zbl MR doi
[3]	R. Engelking: General Topology. Sigma Series in Pure Mathematics 6, Heldermann,
	Berlin, 1989. zbl MR
[4]	J. Ginsburg, R. G. Woods: A cardinal inequality for topological spaces involving closed
	discrete sets. Proc. Am. Math. Soc. 64 (1977), 357–360. zbl MR doi
[5]	R. Hodel: Cardinal functions I. Handbook of Set-Theoretic Topology (K. Kunen et al.,
	eds.). North-Holland, Amsterdam, 1984, pp. 1-61. zbl MR
[6]	M. Matveev: A survey on star covering properties. Topology Atlas (1998). http://at.
	yorku.ca/v/a/a/19.htm.
[7]	D. B. Shakhmatov: No upper bound for cardinalities of Tychonoff C.C.C. spaces with a
	G_{δ} -diagonal exists. Commentat. Math. Univ. Carol. 25 (1984), 731–746. zbl MR
[8]	V. V. Uspenskij: A large F_{σ} -discrete Frechet space having the Souslin property. Com-
	mentat. Math. Univ. Carol. 25 (1984), 257–260. zbl MR
[9]	M. R. Wiscamb: The discrete countable chain condition. Proc. Am. Math. Soc. 23 (1969),
	608–612. zbl MR doi
[10]	W. F. Xuan, W. X. Shi: A note on spaces with a rank 3-diagonal. Bull. Aust. Math. Soc.
	<i>90</i> (2014), 521–524. zbl MR doi
[11]	W. F. Xuan, W. X. Shi: A note on spaces with a rank 2-diagonal. Bull. Aust. Math. Soc.
	<i>90</i> (2014), 141–143. zbl MR doi

Authors' addresses: Wei-Feng Xuan, College of Science, Nanjing Audit University, 86 YuShan West Road, Nanjing, China, 211815, e-mail: wfxuan@nau.edu.cn; Wei-Xue Shi, Department of Mathematics, Nanjing University, 22 Hankou Road, Nanjing, China, 210093, e-mail: wxshi@nju.edu.cn.