NONLINEAR FRACTIONAL DIFFERENTIAL INCLUSION WITH NONLOCAL FRACTIONAL INTEGRO-DIFFERENTIAL BOUNDARY CONDITIONS IN BANACH SPACES

DJAMILA SEBA, Boumerdes

Received March 14, 2016. First published January 5, 2017.
Communicated by Alexandr Lomtatidze

Abstract. We consider a nonlinear fractional differential inclusion with nonlocal fractional integro-differential boundary conditions in a Banach space. The existence of at least one solution is proved by using the set-valued analog of Mönch fixed point theorem associated with the technique of measures of noncompactness.

Keywords: differential inclusion; Caputo fractional derivative; nonlocal boundary conditions; Banach space; existence; fixed point; measure of noncompactness

MSC 2010: 26A33, 34A60, 34B15

1. Introduction

The literature on fractional calculus is now vast and a variety of new results have been found. In the past several years, fractional differential and integral equations and inclusions and applications have been addressed extensively by several researchers. For example, we refer the reader to [1], [6], [7], [8], [11], [24] and the references cited therein.

Boundary value problems constitute a very interesting and important class of problems since they have applications in various disciplines of science and engineering such as mechanics, electricity, chemistry, biology, economics, control theory, signal and image processing, polymer rheology, biophysics, aerodynamics, viscoelasticity and damping, wave propagation, see [17], [18], [25], [26]. Many researchers have studied the existence theory for nonlinear fractional differential equations with a variety of boundary conditions, for instance, see the papers by Ahmad et al. [4], Cui et al. [13], Han et al. [15], Ntouyas et al. [21], [22], Xu et al. [28] and the references therein.

DOI: 10.21136/MB.2017.0041-16
In this paper, we consider the following problem of fractional differential inclusion with nonlocal fractional integro-differential boundary conditions of the form

\[
\begin{cases}
 cD^r x(t) \in F(x, x(t)), & t \in J = [0, 1], \ 1 < r \leq 2, \\
 \alpha_1 x(0) + \beta_1 (cD^r x(0)) = \gamma_1 \int_0^\eta \frac{(\eta - s)^{r-2}}{\Gamma(r-1)} x(s) \, ds, & 0 < r < 1, \\
 \alpha_2 x(1) + \beta_2 (cD^r x(1)) = \gamma_2 \int_0^\sigma \frac{(\sigma - s)^{r-2}}{\Gamma(r-1)} x(s) \, ds, & 0 < \eta, \sigma < 1,
\end{cases}
\]

where cD^r is the Caputo fractional derivative of order r, $F: J \times E \to \mathcal{P}(E)$ is a multivalued map, $\mathcal{P}(E)$ is the family of all subsets of E, $\alpha_i, \beta_i, \gamma_i, i = 1, 2$ are suitably chosen constants in \mathbb{R}, and E is a Banach space with norm $|\cdot|$.

The present work is motivated by a recent paper of Ahmad et al. [3] where problem (1.1) was considered for a single-valued case, and the existence of solutions was shown by means of a variety of fixed point theorems such as Banach’s contraction principle, Krasnoselskii’s fixed point theorem, and Leray-Schauder nonlinear alternative.

The existence of solutions for the given multivalued problem is established by using the set-valued analog of the fixed point theorem of Mönch associated with the technique of measure of noncompactness. This last has proved to be one of the most powerful tool in studying the existence of solutions for differential and integral equations and inclusions, see Banaš and Goebel [9], Agarwal et al. [2], Akhmerov et al. [5], Benchohra et al. [10], [12], Guo et al. [14], Mönch [20], and Szulga [27] and the references cited therein.

2. Preliminaries

We use the following notations: 2^E is the collection of all subsets of E and $\mathcal{P}(E) = 2^E \setminus \emptyset$.

\[
\begin{align*}
\mathcal{P}_c(E) &= \{ A \subset E : A \text{ is nonempty, convex} \}, \\
\mathcal{P}_{kc}(E) &= \{ A \subset E : A \text{ is nonempty, compact, convex} \}.
\end{align*}
\]

Let X, Y be two sets, $\mathcal{G}: X \to 2^Y$ a set-valued map, and $A \subset Y$. We define

\[
\text{graph}(\mathcal{G}) = \{ (x, y) : x \in X, \ y \in \mathcal{G}(X) \} \quad \text{(the graph of } \mathcal{G}).
\]

Let $R > 0$ and let

\[
B = \{ x \in E : |x| \leq R \}
\]
and

\[U = \{ u \in C(J, E) : \| u \|_C < R \} . \]

Clearly \(\overline{U} = C(J, B) \).

Definition 2.1. A multivalued map \(F: J \times E \to \mathcal{P}(E) \) is said to be Carathéodory if

(i) \(t \to F(t, u) \) is measurable for each \(u \in E \),

(ii) \(u \to F(t, u) \) is upper semicontinuous for almost all \(t \in J \).

For each \(y \in C(J, E) \) define the set of selections of \(F \) by

\[S_{F, y} = \{ f \in L^1(J, E) : f(t) \in F(t, y(t)) \text{ for a.e. } t \in J \} . \]

Theorem 2.2 ([16]). Let \(E \) be a Banach space and \(C \subset L^1(J, E) \) countable with

\[|u(t)| \leq h(t) \text{ for a.e. } t \in J, \text{ and every } u \in C \text{ where } h \in L^1(J, \mathbb{R}_+) . \]

Then the function \(\varphi(t) = \alpha(C(t)) \) belongs to \(L^1(J, \mathbb{R}_+) \) and satisfies

\[\alpha\left(\left\{ \int_0^1 u(s) \, ds : u \in C \right\} \right) \leq 2 \int_0^1 \alpha(C(s)) \, ds . \]

Theorem 2.3 ([23]). Let \(K \) be a closed, convex subset of a Banach space \(E \), \(U \) a relatively open subset of \(K \), and \(\mathfrak{G}: \overline{U} \to \mathcal{P}(K) \). Assume that graph(\(\mathfrak{G} \)) is closed, \(\mathfrak{G} \) maps compact sets into relatively compact sets, and that for some \(x_0 \in U \) the following two conditions are satisfied:

\[\begin{cases}
M \subset \overline{U}, \quad M \subset \text{conv}(x_0 \cup \mathfrak{G}(M)) \\
\overline{M} = \overline{C} \text{ with } C \subset M \text{ countable}
\end{cases} \implies \overline{M} \text{ compact,} \]

\[x \notin (1 - \lambda)x_0 + \lambda \mathfrak{G}(x) \quad \forall x \in \overline{U} \setminus U, \; \lambda \in (0, 1) . \]

Then there exists \(x \in \overline{U} \) with \(x \in \mathfrak{G}(x) \).

Lemma 2.4 ([14]). Let \(V \subset C(J, E) \) be bounded and the elements of \(V \) be equicontinuous on each \(J_k, k = 1, \ldots, m \). Then the map \(t \mapsto \alpha(V(t)) \) is continuous on \(J_k, k = 1, \ldots, m \) and

\[\alpha\left(\int_J V(t) \, dt \right) \leq \int_J \alpha(V(t)) \, dt , \]

where \(V(t) = \{ u(t) : u \in V \} \).
Lemma 2.5 ([3]). For any $y \in C[0, 1]$ the unique solution of the linear fractional boundary value problem

\[\begin{align*}
\text{c}D^r x(t) &= y(t), \quad t \in J = [0, 1], \quad 1 < r \leq 2, \\
\alpha_1 x(0) + \beta_1 (\text{c}D^q x(0)) &= \gamma_1 \int_0^\eta (\eta - s)^{r-2} \frac{x(s)}{r - 1} ds, \quad 0 < q < 1, \\
\alpha_2 x(1) + \beta_2 (\text{c}D^q x(1)) &= \gamma_2 \int_0^\sigma (\sigma - s)^{r-2} \frac{x(s)}{r - 1} ds, \quad 0 < \eta, \ \sigma < 1,
\end{align*}\]

is

\[x(t) = \int_0^t \left(\frac{(t-s)^{r-1}}{\Gamma(r)} y(s) ds + \mu_1(t) \int_0^\eta \frac{(\eta-s)^{2r-2}}{r(2r-1)} y(s) ds \right. \]

\[+ \mu_2 \left[\gamma_2 \int_0^\sigma \frac{(\sigma-s)^{2r-2}}{r(2r-1)} y(s) ds - \beta_2 \int_0^1 \frac{(1-s)^{r-2}}{r(2r-1)} y(s) ds - \alpha_2 \int_0^1 \frac{(1-s)^{r-1}}{r(2r-1)} y(s) ds \right],\]

where

\[\mu_1(t) = \gamma_1 (\Delta_1 - \Delta_2 t) \in E, \quad \mu_2(t) = \gamma_1 \Delta_3 + \Delta_4 t \in E,\]

\[\Delta_1 = \frac{1}{\Delta} \left(\alpha_2 - \frac{\gamma_2 \sigma^r}{\Gamma(r+1)} + \frac{\beta_2}{\Gamma(2-q)} \right), \quad \Delta_2 = \frac{1}{\Delta} \left(\alpha_2 - \frac{\gamma_2 \sigma^{-1}}{\Gamma(r)} \right),\]

\[\Delta_3 = \frac{\gamma_1 \eta^r}{\Delta \Gamma(r+1)}, \quad \Delta_4 = \frac{1}{\Delta} \left(\alpha_1 - \frac{\gamma_1 \eta^{-1}}{\Gamma(r)} \right),\]

\[\Delta = \left(\alpha_1 - \frac{\gamma_1 \eta^{-1}}{\Gamma(r)} \right) \left(\alpha_2 - \frac{\gamma_2 \sigma^r}{\Gamma(r+1)} + \frac{\beta_2}{\Gamma(2-q)} + \frac{\gamma_1 \eta^r}{\Gamma(r+1)} \right) \neq 0.\]

Now we recall the definition of the Kuratowski measure of noncompactness. Let $M \subseteq E$ be bounded. Then

\[\alpha(M) = \inf \left\{ \varepsilon > 0 : M \subseteq \bigcup_{i=1}^n M_i \text{ and } \operatorname{diam}(M_i) \leq \varepsilon \right\}.\]

Properties: The Kuratowski measure of noncompactness satisfies some properties (for more details see [9]):

(a) $\alpha(B) = 0 \iff B$ is compact (B is relatively compact),
(b) $\alpha(B) = \alpha(\overline{B})$,
(c) $A \subseteq B \Rightarrow \alpha(A) \leq \alpha(B)$,
(d) $\alpha(A + B) \leq \alpha(A) + \alpha(B)$,
(e) $\alpha(cB) = |c|\alpha(B); \ c \in \mathbb{R},$
(f) $\alpha(\operatorname{conv}B) = \alpha(B)$.
3. Main results

Let us list the following hypotheses:

1. **H1** \(F: J \times E \to \mathcal{P}_{kc}(E) \) is a Carathéodory multi-valued map.
2. **H2** For each \(R > 0 \) there exists a function \(p \in L^1(J, \mathbb{R}^+) \) such that
 \[
 \|F(t, y)\|_{\mathcal{P}} = \sup \{|v| : v(t) \in F(t, y)\} \leq p(t)
 \]
 for each \((t, y) \in J \times E\) with \(|y| \leq R\), and
 \[
 \lim_{R \to \infty} \frac{\omega}{R} \int_0^1 p(s) \, ds < \infty,
 \]
 where
 \[
 \omega = \max_{t \in [0, 1]} \left\{ \frac{t^r}{\Gamma(r+1)} + |\mu_1(t)| \frac{\eta^{2r-1}}{\Gamma(2r)} + |\mu_2(t)| \left(|\gamma_2| \frac{\sigma^{2r-1}}{\Gamma(2r)} + |\beta_2| \frac{r-q+1}{\Gamma(r-q+1)} + |\alpha_2| \frac{r+1}{\Gamma(r+1)} \right) \right\}.
 \]
3. **H3** There exists a Carathéodory function \(\psi: J \times [0, 2R] \to \mathbb{R}^+ \) such that
 \[
 \alpha(F(t, M(t))) \leq \psi(t, \alpha(M(t))), \quad \text{a.e. } t \in J, \quad \text{and each } M \subset B,
 \]
 and the unique solution \(\varphi \in C(J, [0, 2R]) \) of the inequality
 \[
 \varphi(t) \leq \frac{1}{\Gamma(r)} \int_0^t (t-s)^{r-1} \psi(s, \alpha(M(s))) \, ds
 \]
 \[
 + \frac{|\mu_1(t)|}{\Gamma(2r-1)} \int_0^{\eta} (\eta-s)^{2r-2} \psi(s, \alpha(M(s))) \, ds
 \]
 \[
 + |\mu_2(t)| \left[\frac{|\gamma_2|}{\Gamma(2r-1)} \int_0^{\sigma} (\sigma-s)^{2r-2} \psi(s, \alpha(M(s))) \, ds
 \]
 \[
 + \frac{|\beta_2|}{\Gamma(r-q+1)} \int_0^1 (1-s)^{r-q-1} \psi(s, \alpha(M(s))) \, ds
 \]
 \[
 + \frac{|\alpha_2|}{\Gamma(r)} \int_0^1 (1-s)^{r-1} \psi(s, \alpha(M(s))) \, ds \right], \quad t \in J,
 \]
 is \(\varphi \equiv 0 \).

Lemma 3.1 ([19]). Let \(J \) be a compact real interval. Let \(F \) be a multivalued map satisfying (H1) and let \(\Theta \) be a linear continuous map from \(L^1(J, E) \to C(J, E) \). Then the operator
\[
\Theta \circ S_{F, y}: C(J, E) \to \mathcal{P}_{kc}(C(J, E)), \quad y \mapsto (\Theta \circ S_{F, y})(y) = \Theta(S_{F, y})
\]
is a closed graph operator in \(C(J, E) \times C(J, E) \).
Theorem 3.2. Suppose that (H1)–(H3) are satisfied. Then problem (1.1) has at least one solution on \(C(J,B)\), provided that

\[
\frac{\omega}{R} \int_0^1 p(s) \, ds \leq 1.
\]

Proof. Consider the multi-valued map \(\mathcal{G} : C(J,E) \to \mathcal{P}(C(J,E))\) defined by

\[
\mathcal{G}(y) = \left\{ h \in C(J,E) : h(t) = \left\{ \int_0^t \frac{(t-s)^{r-1}}{\Gamma(r)} f(s, x(s)) \, ds \\
+ \mu_1(t) \int_0^\eta \frac{(\eta-s)^{2r-2}}{\Gamma(2r-1)} f(s, x(s)) \, ds \\
+ \mu_2(t) \left[\gamma_2 \int_0^\sigma \frac{(\sigma-s)^{2r-2}}{\Gamma(2r-1)} f_i(s) \, ds - \beta_2 \int_0^1 \frac{(1-s)^{r-q-1}}{\Gamma(r-q)} f_i(s) \, ds \\
- \alpha_2 \int_0^1 \frac{(1-s)^{r-1}}{\Gamma(r)} f_i(s) \, ds \right] ; \ f \in S_{F,y} \right\} \right.
\]

The fixed points of \(\mathcal{G}\) are solutions to (1.1). We show that \(\mathcal{G}\) satisfies the assumptions of Theorem 2.3. This is achieved in several steps.

First we show that \(\mathcal{G}(y)\) is convex for each \(y \in C(J,E)\). If \(h_1, h_2\) belong to \(\mathcal{G}(y)\), then there exist \(f_1, f_2 \in S_{F,y}\) such that for a.e. \(t \in J\) we have

\[
h_i(t) = \int_0^t \frac{(t-s)^{r-1}}{\Gamma(r)} f_i(s) \, ds + \mu_1(t) \int_0^\eta \frac{(\eta-s)^{2r-2}}{\Gamma(2r-1)} f_i(s) \, ds \\
+ \mu_2(t) \left[\gamma_2 \int_0^\sigma \frac{(\sigma-s)^{2r-2}}{\Gamma(2r-1)} f_i(s) \, ds - \beta_2 \int_0^1 \frac{(1-s)^{r-q-1}}{\Gamma(r-q)} f_i(s) \, ds \\
- \alpha_2 \int_0^1 \frac{(1-s)^{r-1}}{\Gamma(r)} f_i(s) \, ds \right], \ i = 1, 2.
\]

Let \(0 \leq \lambda \leq 1\), for each \(t \in J\) we have

\[
(\lambda h_1 + (1 - \lambda) h_2)(t) = \int_0^t \frac{(t-s)^{r-1}}{\Gamma(r)} (\lambda f_1 + (1 - \lambda) f_2)(s) \, ds \\
+ \mu_1(t) \int_0^\eta \frac{(\eta-s)^{2r-2}}{\Gamma(2r-1)} (\lambda f_1 + (1 - \lambda) f_2)(s) \, ds \\
+ \mu_2(t) \left[\gamma_2 \int_0^\sigma \frac{(\sigma-s)^{2r-2}}{\Gamma(2r-1)} (\lambda f_1 + (1 - \lambda) f_2)(s) \, ds \\
- \beta_2 \int_0^1 \frac{(1-s)^{r-q-1}}{\Gamma(r-q)} (\lambda f_1 + (1 - \lambda) f_2)(s) \, ds \\
- \alpha_2 \int_0^1 \frac{(1-s)^{r-1}}{\Gamma(r)} (\lambda f_1 + (1 - \lambda) f_2)(s) \, ds \right].
\]

314
Since $S_{F,y}$ is convex (because F has convex values), we have

$$\lambda h_1 + (1 - \lambda)h_2 \in \mathcal{G}(y).$$

As the second step we show that $\mathcal{G}(M)$ is relatively compact for each compact $M \subset \overline{U}$. Let $M \subset \overline{U}$ be a compact set and let (h_n) be any sequence of elements of $\mathcal{G}(M)$. We show that (h_n) has a convergent subsequence by using the Arzèla-Ascoli criterion of noncompactness in $C(J, E)$. Since $(h_n) \in \mathcal{G}(M)$, there exist $(y_n) \in M$ and $(f_n) \in S_{F,y_n}$ such that

$$h_n(t) = \int_0^t \frac{(t-s)^{r-1}}{\Gamma(r)} f_n(s) \, ds + \mu_1(t) \int_0^n \frac{(\eta - s)^{2r-2}}{\Gamma(2r - 1)} f_n(s) \, ds$$

$$+ \mu_2(t) \left[\gamma_2 \int_0^\sigma \frac{((\sigma - s)^{2r-2}}{\Gamma(2r - 1)} f_n(s) \, ds - \beta_2 \int_0^1 \frac{(1 - s)^{r-1}}{\Gamma(r-q)} f_n(s) \, ds \right]$$

Using Theorem 2.2 and the properties of the measure of Kuratowski α, we obtain that

$$(3.2) \quad \alpha(\{h_n(t)\}) \leq \frac{1}{\Gamma(r)} \int_0^t \alpha(\{(t-s)^{r-1} f_n(s)\}) \, ds$$

$$+ \frac{\mu_1(t)}{\Gamma(2r - 1)} \int_0^n \alpha(\{(\eta - s)^{2r-2} f_n(s)\}) \, ds$$

$$+ \frac{\mu_2(t)}{\Gamma(2r - 1)} \left[\frac{\gamma_2}{\Gamma(2r - 1)} \int_0^\sigma \alpha(\{(\sigma - s)^{2r-2} f_n(s)\}) \, ds \right]$$

$$+ \frac{\beta_2}{\Gamma(r-q)} \int_0^1 \alpha(\{(1 - s)^{r-1} f_n(s)\}) \, ds$$

$$+ \frac{\alpha_2}{\Gamma(r)} \int_0^1 \alpha(\{(1 - s)^{r-1} f_n(s)\}) \, ds \right].$$

On the other hand, since $M(s)$ is compact in E, the set $\{f_n(s): n \geq 1\}$ is compact. Consequently, $\alpha(\{f_n(s): n \geq 1\}) = 0$ for a.e. $s \in J$. Furthermore,

$$\alpha(\{(t-s)^{r-1} f_n(s): n \geq 1\}) = (t-s)^{r-1} \alpha(\{f_n(s): n \geq 1\}) = 0,$$

$$\alpha(\{(k-s)^{r-1} f_n(s): n \geq 1\}) = (k-s)^{r-1} \alpha(\{f_n(s): n \geq 1\}) = 0; \quad k = \eta, \sigma,$$

$$\alpha(\{(1-s)^{r-j} f_n(s): n \geq 1\}) = (1-s)^{r-j} \alpha(\{f_n(s): n \geq 1\}) = 0; \quad j = 1, q + 1$$

for a.e. $t, s \in J$. Now (3.2) implies that $\{h_n(t): n \geq 1\}$ is relatively compact in E for each $t \in J$. 315
In addition, for each \(t_1 \) and \(t_2 \) from \(J \), \(t_1 < t_2 \) we have

(3.3) \[|h_n(t_2) - h_n(t_1)| \]
\[= \left| \frac{1}{\Gamma(r)} \int_0^{t_1} [(t_2 - s)^{r-1} - (t_1 - s)^{r-1}]f_n(s) \, ds \right| \]
\[+ \frac{1}{\Gamma(r)} \int_{t_1}^{t_2} (t_2 - s)^{r-1}f_n(s) \, ds \]
\[+ (\mu_1(t_2) - \mu_1(t_1)) \int_0^{\eta} \frac{(\eta - s)^{2r-2}}{\Gamma(2r-1)}f_n(s) \, ds \]
\[+ (\mu_2(t_2) - \mu_2(t_1)) \left[\gamma_2 \int_0^{\sigma} \frac{\sigma - s)^{2r-2}}{\Gamma(2r-1)}f_n(s) \, ds - \beta_2 \int_0^{1} \frac{(1 - s)^{r-1}}{\Gamma(r)}f_n(s) \, ds \right] \]
\[\leq \frac{1}{\Gamma(r)} \int_0^{t_1} |(t_2 - s)^{r-1} - (t_1 - s)^{r-1}|p(s) \, ds \]
\[+ \frac{1}{\Gamma(r)} \int_{t_1}^{t_2} (t_2 - s)^{r-1}p(s) \, ds \]
\[+ |\gamma_1\Delta_2|(t_2 - t_1) \int_0^{\eta} \frac{(\eta - s)^{2r-2}}{\Gamma(2r-1)} \, ds \]
\[+ |\Delta_4|(t_2 - t_1) \left[|\gamma_2| \int_0^{\sigma} \frac{\sigma - s)^{2r-2}}{\Gamma(2r-1)}p(s) \, ds \right] \]
\[+ |\beta_2| \int_0^{1} \frac{(1 - s)^{r-1}}{\Gamma(r - q)} \, ds + |\alpha_2| \int_0^{1} \frac{(1 - s)^{r-1}}{\Gamma(r)} \, ds \].

As \(t_1 \to t_2 \), the right hand side of the above inequality tends to zero. This shows that \(\{h_n: n \geq 1\} \) is equicontinuous. Consequently, \(\{h_n: n \geq 1\} \) is relatively compact in \(C(J, E) \).

Now we show that \(\mathcal{G} \) has a closed graph. Let \((y_n, h_n) \in \text{graph}(\mathcal{G}) \), \(n \geq 1 \), with \(\|y_n - y\|_\mathcal{C}, \|h_n - h\|_\mathcal{C} \to 0 \) as \(n \to \infty \). We must show that \((y, h) \in \text{graph}(\mathcal{G}) \).

The fact that \((y_n, h_n) \in \text{graph}(\mathcal{G}) \) means that \(h_n \in \mathcal{G}(y_n) \), which means that there exists \(f_n \in S_{F, y_n} \), such that for each \(t \in J \)

\[h_n(t) = \int_0^t \frac{(t - s)^{r-1}}{\Gamma(r)}f_n(s) \, ds + \mu_1(t) \int_0^{\eta} \frac{(\eta - s)^{2r-2}}{\Gamma(2r-1)}f_n(s) \, ds \]
\[+ \mu_2(t) \left[\gamma_2 \int_0^{\sigma} \frac{\sigma - s)^{2r-2}}{\Gamma(2r-1)}f_n(s) \, ds - \beta_2 \int_0^{1} \frac{(1 - s)^{r-1}}{\Gamma(r - q)}f_n(s) \, ds \right] \]
\[- \alpha_2 \int_0^{1} \frac{(1 - s)^{r-1}}{\Gamma(r)}f_n(s) \, ds \].

316
Consider the continuous linear operator

\[\Theta: L^1(J, E) \to C(J, E) \]

for some \(\eta \). Moreover, we have

\[
\int_0^t \frac{(t-s)^{r-1}}{\Gamma(r)} f(s) \, ds + \mu_1(t) \int_0^\eta \frac{(\eta-s)^{2r-2}}{\Gamma(2r-1)} f(s) \, ds
\]

\[
+ \mu_2(t) \left[\gamma_2 \int_0^\sigma \frac{(\sigma-s)^{2r-2}}{\Gamma(2r-1)} f(s) \, ds \right]
\]

\[
- \beta_2 \int_0^1 \frac{(1-s)^{r-q-1}}{\Gamma(r-q)} f(s) \, ds
\]

\[
- \alpha_2 \int_0^1 \frac{(1-s)^{r-1}}{\Gamma(r)} f(s) \, ds
\]

Clearly

\[
|h_n(t) - h(t)| = \left| \int_0^t \frac{(t-s)^{r-1}}{\Gamma(r)} (f_n(s) - f(s)) \, ds \right|
\]

\[
+ \mu_1(t) \int_0^\eta \frac{(\eta-s)^{2r-2}}{\Gamma(2r-1)} (f_n(s) - f(s)) \, ds
\]

\[
+ \mu_2(t) \left[\gamma_2 \int_0^\sigma \frac{(\sigma-s)^{2r-2}}{\Gamma(2r-1)} (f_n(s) - f(s)) \, ds \right]
\]

\[
- \beta_2 \int_0^1 \frac{(1-s)^{r-q-1}}{\Gamma(r-q)} (f_n(s) - f(s)) \, ds
\]

\[
- \alpha_2 \int_0^1 \frac{(1-s)^{r-1}}{\Gamma(r)} (f_n(s) - f(s)) \, ds \right| \to 0 \quad \text{as} \ n \to \infty.
\]

Consequently, from Lemma 3.1 it follows that \(\Theta \circ S_F \) is a closed graph operator. Moreover, we have

\[h_n(t) \in \Theta(S_F, y_n). \]

Since \(y_n \to y \), we get

\[h(t) = \int_0^t \frac{(t-s)^{r-1}}{\Gamma(r)} f(s) \, ds + \mu_1(t) \int_0^\eta \frac{(\eta-s)^{2r-2}}{\Gamma(2r-1)} f(s) \, ds \]

\[
+ \mu_2(t) \left[\gamma_2 \int_0^\sigma \frac{(\sigma-s)^{2r-2}}{\Gamma(2r-1)} f(s) \, ds - \beta_2 \int_0^1 \frac{(1-s)^{r-q-1}}{\Gamma(r-q)} f(s) \, ds \right]
\]

\[
- \alpha_2 \int_0^1 \frac{(1-s)^{r-1}}{\Gamma(r)} f(s) \, ds
\]

for some \(f \in S_F, y \).

In our next step we show that (2.1) is satisfied. Suppose \(M \subset \overline{U}, M \subset \text{conv}(\{0\} \cup \mathfrak{G}(M)), \) and \(\overline{M} = \overline{C} \) for some countable set \(C \subset M \). Using an estimation
of type (3.3), we see that \(\mathfrak{G}(M) \) is equicontinuous. Then from \(M \subset \text{conv} \{0\} \cup \mathfrak{G}(M) \) we deduce that \(M \) is equicontinuous too. In order to apply the Arzela-Ascoli theorem, it remains to show that \(M(t) \) is relatively compact in \(E \) for each \(t \in J \). Since

\[
C \subset M \subset \text{conv} \{0\} \cup \mathfrak{G}(M) \quad \text{and} \quad C \text{ is countable,}
\]

we can find a countable set \(H = \{h_n: n \geq 1\} \subset \mathfrak{G}(M) \) with \(C \subset \text{conv} \{0\} \cup H \). Then there exist \(y_n \in M \) and \(f_n \in S_{F,y_n} \) such that

\[
h_n(t) = \int_0^t \frac{(t-s)^{r-1}}{\Gamma(r)} f_n(s) \, ds + \mu_1(t) \int_0^\eta \frac{(\eta-s)^{2r-2}}{\Gamma(2r-1)} f_n(s) \, ds
\]

\[
+ \mu_2(t) \left[\frac{\gamma_2}{\Gamma(2r-1)} \int_0^\sigma (\sigma-s)^{2r-2} f_n(s) \, ds - \beta_2 \frac{1}{\Gamma(r-q)} \int_0^1 (1-s)^{r-q-1} f_n(s) \, ds \right]
\]

\[
- \alpha_2 \int_0^1 \frac{(1-s)^{r-1}}{\Gamma(r)} f_n(s) \, ds
\].

From \(M \subset \overline{C} \subset \text{conv} \{0\} \cup H \) and the properties of the measure of noncompactness we have

\[
\alpha(M(t)) \leq (\alpha(\overline{C}(t)) \leq \alpha(H(t)) = \alpha(\{h_n: n \geq 1\}).
\]

Using Theorem 2.2 and inequality (3.2), we obtain

\[
\alpha(M(t)) \leq \frac{1}{\Gamma(r)} \int_0^t \alpha(\{(t-s)^{r-1} f_n(s): n \geq 1\}) \, ds
\]

\[
+ \frac{\mu_1(t)}{\Gamma(2r-1)} \int_0^\eta \alpha(\{(\eta-s)^{2r-2} f_n(s): n \geq 1\}) \, ds
\]

\[
+ \frac{\mu_2(t)}{\Gamma(2r-1)} \int_0^\sigma \alpha(\{(\sigma-s)^{2r-2} f_n(s): n \geq 1\}) \, ds
\]

\[
+ \frac{\beta_2}{\Gamma(r-q)} \int_0^1 \alpha(\{(1-s)^{r-q-1} f_n(s): n \geq 1\}) \, ds
\]

\[
+ \frac{\alpha_2}{\Gamma(r)} \int_0^1 \alpha(\{(1-s)^{r-1} f_n(s): n \geq 1\}) \, ds
\].

Now, since \(f_n(s) \in F(s,y_n(s)) \) and \(y_n \in M \), (H3) guarantees

\[
\alpha(\{(t-s)^{r-1} f_n(s): n \geq 1\}) \leq (t-s)^{r-1} \alpha(F(s,M(s)))
\]

\[
\leq (t-s)^{r-1} \psi(s,\alpha(M(s)));
\]

\[
\alpha(\{(k-s)^{2r-2} f_n(s): n \geq 1\}) \leq (k-s)^{2r-2} \alpha(F(s,M(s)))
\]

\[
\leq (k-s)^{2r-2} \psi(s,\alpha(M(s)));
\]

\(k = \eta, \sigma \)
and
\[
\alpha((1-s)^{r-j} f_n(s) : n \geq 1)) \leq (1-s)^{r-1} \alpha(F(s, M(s)))
\leq (1-s)^{r-j} \psi(s, \alpha(M(s))); \quad j = 1, q + 1.
\]

It follows that
\[
\alpha(M(t)) \leq \frac{1}{\Gamma(r)} \int_0^t (t-s)^{r-1} \psi(s, \alpha(M(s))) \, ds
+ \frac{|\mu_1(t)|}{\Gamma(2r-1)} \int_0^{\eta} (\eta-s)^{2r-2} \psi(s, \alpha(M(s))) \, ds
+ \frac{|\mu_2(t)|}{\Gamma(2r-1)} \int_0^\alpha (\sigma-s)^{2r-2} \psi(s, \alpha(M(s))) \, ds
+ \frac{|\beta_2|}{\Gamma(r-q)} \int_0^1 (1-s)^{r-q-1} \psi(s, \alpha(M(s))) \, ds
+ \frac{|\alpha_2|}{\Gamma(r)} \int_0^1 (1-s)^{r-1} \psi(s, \alpha(M(s))) \, ds.
\]

Also, the function \(\varphi \) given by \(\varphi(t) = \alpha(M(t)) \) belongs to \(C(J, [0, 2R]) \). Consequently, by (H3), \(\varphi \equiv 0 \), that is \(\alpha(M(t)) = 0 \) for all \(t \in J \).

Now, by the Arzèla-Ascoli theorem, \(M \) is relatively compact in \(C(J, E) \).

Finally, let \(h \in \mathcal{G}(y) \) with \(y \in \overline{U} \). Since \(|y(s)| \leq R \) and (H2) holds, we have \(\mathcal{G}(U) \subseteq \overline{U} \). If it was not true, there would exist a function \(y \in \overline{U} \), but \(\|\mathcal{G}(y)\|_P > R \) and
\[
h(t) = \int_0^t \frac{(t-s)^{r-1}}{\Gamma(r)} f(s) \, ds + \mu_1(t) \int_0^\eta (\eta-s)^{2r-2} f(s) \, ds
+ \mu_2(t) \left[\frac{\gamma_2}{\Gamma(2r-1)} \int_0^\alpha (\sigma-s)^{2r-2} f(s) \, ds - \beta_2 \int_0^1 (1-s)^{r-q-1} f(s) \, ds \right]
- \alpha_2 \int_0^1 \frac{(1-s)^{r-1}}{\Gamma(r)} f(s) \, ds
\]
for some \(f \in S_{F,y} \). On the other hand we have
\[
R < \|\mathcal{G}(y)\|_P
\leq \frac{1}{\Gamma(r)} \int_0^t (t-s)^{r-1} |f(s)| \, ds + \frac{|\mu_1(t)|}{\Gamma(2r-1)} \int_0^\eta (\eta-s)^{2r-2} |f(s)| \, ds
+ \frac{|\mu_2(t)|}{\Gamma(2r-1)} \int_0^\alpha (\sigma-s)^{2r-2} |f(s)| \, ds
+ \frac{|\beta_2|}{\Gamma(r-q)} \int_0^1 (1-s)^{r-q-1} |f(s)| \, ds + \frac{|\alpha_2|}{\Gamma(r)} \int_0^1 (1-s)^{r-1} |f(s)| \, ds
\]
\[< \frac{t^r}{\Gamma(r+1)} \int_0^1 p(s) \, ds + \frac{\mu_1(t) |\eta|^{2r-1}}{\Gamma(2r)} \int_0^1 p(s) \, ds + \frac{\mu_2(t) |\gamma_2|^{2r-1}}{\Gamma(2r)} \int_0^1 p(s) \, ds \\
+ \frac{\beta_2}{\Gamma(r-q+1)} \int_0^1 p(s) \, ds + \frac{\alpha_2}{\Gamma(r+1)} \int_0^1 p(s) \, ds \]
\[< \omega \int_0^1 p(s) \, ds. \]

Dividing both sides by \(R \) and taking the lower limit as \(R \to \infty \), we conclude that
\[\liminf_{R \to \infty} \frac{\omega}{R} \int_0^1 p(s) \, ds > 1 \]
which contradicts (3.1). Hence \(\mathfrak{G}(\overline{U}) \subseteq \overline{U} \).

As a consequence of all steps above together with Theorem 2.3, we can conclude that \(\mathfrak{G} \) has a fixed point \(y \in C(J,B) \), which is a solution of problem (1.1).

\[\square \]

References

Author’s address: Djamila Seba, Department of Mathematics, Faculty of Sciences, University M’Hamed Bougara, Route de la Gare Ferroviaire, 35000 Boumerdès, Algérie, e-mail: djam_seba@yahoo.fr.