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Introduction

This paper is an extension of the previous one (see [2]), where regulated functions

with values in Euclidean spaces were considered. Here, we deal with regulated func-

tions having values in a Banach space. We discuss some of the properties of the

space of such regulated functions, including compactness theorems.

Classic results of mathematical analysis are being used (see [4]) and some ideas

from previous works on the topic of regulated functions appear here (see [3], [5]).

1. Notation and definitions

(i) The symbol N will denote the set of all positive integers, N0 = N ∪ {0}; RN

(where N ∈ N) is the N -dimensional Euclidean space with the usual norm |·|N .

We write R and |·| instead of R1 and |·|1.

(ii) Throughout the paper, the symbol X will denote a Banach space with a norm

‖·‖X and C([a, b];X) is the set of all continuous functions f : [a, b] → X .
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(iii) We say that a function h : [a, b] → R is increasing if a 6 s < t 6 b implies

h(s) < h(t); the function h is non-decreasing if a 6 s < t 6 b implies h(s) 6 h(t).

(iv) We say that g : [a, b] → X is a finite step function, or shortly step function, if

it is piecewise constant; i.e., there is a division a = a0 < a1 < . . . < ak = b such

that the function g is constant on each of the intervals (ai−1, ai), i = 1, 2, . . . , k.

(v) We denote by Da,b the set of divisions {a0, . . . , ak} such that a = a0 <

a1 < . . . < ak = b.

(vi) For any function f : [a, b] → X , we write ‖f‖∞ = sup{‖f(t)‖X : t ∈ [a, b]}. If

‖f‖∞ <∞, we say that the function f is bounded; ‖·‖∞ is called the sup-norm.

(vii) We say that a sequence of functions fn : [a, b] → X , n ∈ N, is uniformly conver-

gent to a function f0 : [a, b] → X (or that f0 is the uniform limit of {fn}n∈N) if

‖fn − f0‖∞ → 0 with n→ ∞; we denote fn ⇒ f0.

2. Basic properties of a regulated function

Definition 2.1. We say that a function f : [a, b] → X is regulated if the limit

f(t−) = lim
τ→t−

f(τ) exists for every t ∈ (a, b], and the limit f(t+) = lim
τ→t+

f(τ) exists

for every t ∈ [a, b). We denote by G([a, b];X) the set of all regulated functions

f : [a, b] → X .

Obviously, any finite step function on [a, b] and any continuous function on [a, b]

are regulated on [a, b]. Moreover, any function with bounded variation on [a, b] and

any monotone real valued function are regulated on [a, b].

Proposition 2.2. Assume that fn : [a, b] → X , n ∈ N, are regulated functions

and f0 : [a, b] → X is a function such that fn ⇒ f0. Then the function f0 is regulated

and fn(t−) → f0(t−) for each t ∈ (a, b], fn(t+) → f0(t+) for each t ∈ [a, b).

P r o o f. The proof follows easily from the classical Moore-Osgood theorem on

exchanging the order of limits, cf. e.g. [4]. �

Theorem 2.3. The following properties of a function f : [a, b] → X are equiva-

lent:

(i) The function f is regulated.

(ii) The function f is the uniform limit of a sequence of step functions.

(iii) For every ε > 0 there is a step function g : [a, b] → X such that ‖f − g‖∞ < ε.

(iv) For every ε > 0 there is a division a = a0 < a1 < . . . < ak = b such that if

ai−1 < t′ < t′′ < ai for some i ∈ {1, 2, . . . , k} then ‖f(t′′)− f(t′)‖X < ε.
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P r o o f. (i) ⇒ (iv): Let ε > 0 be given. For every x ∈ (a, b], define

sx = inf
{

s ∈ (a, x) : if τ ′, τ ′′ ∈ (s, x) then ‖f(τ ′)− f(τ ′′)‖X <
ε

2

}

.

For every x ∈ [a, b), define

(2.1) tx = sup
{

t ∈ (x, b) : if τ ′, τ ′′ ∈ (x, t) then ‖f(τ ′)− f(τ ′′)‖X <
ε

2

}

.

It follows from the existence of the limits f(x−), f(x+) that sx < x and tx > x.

Obviously,

[a, ta) ∪
⋃

x∈(a,b)

(sx, tx) ∪ (sb, b] = [a, b]

and, since [a, b] is compact, there are k ∈ N and a finite set {a1, . . . , ak−1} of points

in (a, b) such that a1 < a2 < . . . < ak−1,

(2.2) [a, ta) ∪
k−1
⋃

i=1

(sai , tai) ∪ (sb, b] = [a, b].

We shall verify that sai < tai−1
for i ∈ {1, 2, . . . , k}. On the contrary, assume that

there is σ such that tai−1
6 σ 6 sai . Thanks to (2.2), there is j /∈ {i − 1, i} such

that σ ∈ (saj , taj ). If j < i − 1 then by (2.1) we have ‖f(τ ′) − f(τ ′′)‖X < 1
2ε for

all τ ′, τ ′′ ∈ (aj , taj ), which specifically holds also for all τ
′, τ ′′ ∈ (ai−1, taj ). Hence

taj 6 tai−1
6 σ < taj which is a contradiction. Similarly, if j > i we find that this

leads to a contradiction as well.

Consequently, for any i ∈ {1, 2, . . . , k}, the intersection (sai , tai−1
) ∩ (ai−1, ai) is

nonempty and we choose bi ∈ (sai , tai−1
) ∩ (ai−1, ai).

Now, if ai−1 < t′ < t′′ < ai for some i ∈ {1, . . . , k}, there are three possibilities:

either ai−1 < t′ < t′′ 6 bi or bi 6 t′ < t′′ < ai or ai−1 < t′ 6 bi 6 t′′ < ai. In the

first case, both t′, t′′ are in (ai−1, tai−1
), and thanks to (2.1)

‖f(t′′)− f(t′)‖X <
ε

2
.

Similarly, if bi 6 t′ < t′′ < ai for some i then t
′, t′′ ∈ (sai , ai) and

‖f(t′′)− f(t′)‖X <
ε

2
;

and, if ai−1 < t′ 6 bi 6 t′′ < ai for some i then t
′, bi ∈ (ai−1, tai−1

), and bi, t
′′ ∈

(sai , ai) and hence

‖f(t′′)− f(t′)‖X 6 ‖f(t′′)− f(bi)‖X + ‖f(bi)− f(t′)‖X < ε.

To summarize, (iv) is true.
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(iv) ⇒ (iii): Given ε > 0 we can find the described division a = a0 < a1 < . . . <

ak = b; choose points τi ∈ (ai−1, ai) and define g(τ) = f(τi) for τ ∈ (ai−1, ai),

i = 1, 2, . . . , k; g(ai) = f(ai), i = 0, 1, . . . , k. Then g is a step function and ‖g(τ) −

f(τ)‖X < ε for every τ ∈ [a, b].

(iii)⇒ (ii): For ε = 1/n, we can find a step function gn such that ‖f−gn‖∞ < 1/n.

Hence, gn ⇒ f .

(ii) ⇒ (i): This implication follows from Proposition 2.2. �

Let us notice that the equivalences contained in Theorem 2.3 have been already

proved in [3] in a slightly different way. The following result also can be found in [3],

but no detailed proof is provided therein.

Proposition 2.4. If a function f : [a, b] → X is regulated, then

(i) for any c > 0, the sets {t ∈ [a, b) : ‖f(t+) − f(t)‖X > c} and {t ∈ (a, b] :

‖f(t−)− f(t)‖X > c} are finite;

(ii) the sets J+ = {t ∈ [a, b) : f(t+) 6= f(t)} and J− = {t ∈ (a, b] : f(t−) 6= f(t)}

are at most countable.

P r o o f. (i) By Theorem 2.3 (iv), there is a division a = a0 < . . . < ak = b such

that

‖f(u)− f(t)‖X <
c

2
whenever u, t ∈ (ai−1, ai) for some i.

Passing to the limit u→ t+ we get

‖f(t+)− f(t)‖X 6
c

2
< c for all t ∈ [a, b] \ {a0, . . . , ak}.

(ii) It is evident that J+ =
⋃

n∈N

{t ∈ [a, b) : ‖f(t+) − f(t)‖X > 1/n}; this is a

countable union of finite sets, therefore at most countable. Similarly for the left-

sided limits. �

In the following theorem we are going to use the notion of total ϕ-variation which

appears in [1].

Definition 2.5. Let us denote by Φ the set of all increasing functions ϕ :

[0,∞) → [0,∞) such that ϕ(0) = ϕ(0+) = 0, ϕ(∞) = ∞. For f : [a, b] → X , given

ϕ ∈ Φ and a division d = {t0, t1, . . . , tm}; d ∈ Da,b, we define

Vϕd (f) =

m
∑

j=1

ϕ(‖f(tj)− f(tj−1)‖X),

and the total ϕ-variation of f by

ϕ-Var
[a,b]

(f) = sup
{

Vϕd (f) : d ∈ Da,b
}

.
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Theorem 2.6. The following properties of a function f : [a, b] → X are equiva-

lent:

(i) The function f is regulated.

(ii) There is a continuous function g : [c, d] → X and a non-decreasing function

h : [a, b] → [c, d] such that f(t) = g(h(t)) for every t ∈ [a, b].

(iii) There is a continuous increasing function ω : [0,∞) → [0,∞), ω(0+) = 0, and a

non-decreasing function h : [a, b] → R such that ‖f(t)−f(s)‖X 6 ω(|h(t)−h(s)|)

holds for every s, t ∈ [a, b].

(iv) There is a non-decreasing function ω : [0,∞) → [0,∞), ω(0+) = 0, and a non-

decreasing function h : [a, b] → R such that ‖f(t) − f(s)‖X 6 ω(|h(t) − h(s)|)

holds for every s, t ∈ [a, b].

(v) There is a continuous increasing function ϕ : [0,∞) → [0,∞), ϕ(0) = ϕ(0+) = 0,

ϕ(∞) = ∞, such that ϕ-Var[a,b](f) <∞.

(vi) There is an increasing function ϕ : [0,∞) → [0,∞), ϕ(0) = ϕ(0+) = 0,

ϕ(∞) = ∞, such that ϕ-Var[a,b](f) 6 1.

P r o o f. The scheme of the proof is (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (i); (iii) ⇒ (v)

⇒ (vi) ⇒ (iv).

(i)⇒ (ii): According to Proposition 2.4, for any n ∈ N the sets J−

n , J
+
n defined by

J−

n =
{

t ∈ (a, b] : ‖f(t−)− f(t)‖X >
1

n

}

,

J+
n =

{

t ∈ (a, b] : ‖f(t+)− f(t)‖X >
1

n

}

are finite. Obviously, we can find non-decreasing functions hn : [a, b] → R with left-

and right-hand discontinuity points in J−

n and J
+
n , respectively. Moreover, hn can

be chosen in such a way that all of them are bounded by 1. Then we can define

h(t) = t+

∞
∑

n=1

2−nhn(t)

for t ∈ [a, b]. Denote h(a) = c and h(b) = d. The function h is increasing, and it has

left-handed and right-handed discontinuities at all points of the sets J− =
⋃

n∈N

J−

n

and J+ =
⋃

n∈N

J+
n , respectively.

For every τ ∈ [c, d], we can find a unique point t ∈ [a, b] such that either τ = h(t)

or h(t−) 6 τ < h(t), or h(t) < τ 6 h(t+). If τ = h(t), we define g(τ) = f(t). If

h(t−) 6 τ < h(t), we define

g(τ) = f(t) +
h(t)− τ

h(t)− h(t−)
(f(t−)− f(t));
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if h(t) < τ 6 h(t+), we define

g(τ) = f(t) +
τ − h(t)

h(t+)− h(t)
(f(t+)− f(t)).

It is obvious that f(t) = g(h(t)) holds for each t ∈ [a, b]; we shall verify that the

function g is continuous. Certainly g is continuous at each interval of the form

[h(t−), h(t)] and [h(t), h(t+)]. We need to prove that g is left-continuous for every

τ = h(t−), and right-continuous for every τ = h(t+).

Assume that τ0 = h(t0−) for some t0 ∈ (a, b]. Let ε > 0 be given. There is δ > 0

such that

(t0 − δ, t0) ⊂ [a, b] and if t0 − δ < t < t0 then ‖f(t0−)− f(t)‖X <
ε

3
.

Obviously, if t0 − δ < t < t0 then

‖f(t0−)− f(t−)‖X 6
ε

3
and ‖f(t0−)− f(t+)‖X 6

ε

3
.

Choose a point σ ∈ (t0 − δ, t0) at which the function h is continuous. Let s ∈

(h(σ), h(t0−)) be an arbitrary point. We can find t ∈ (σ, t0) such that h(t−) 6 s 6

h(t+). If s = h(t), then

‖g(s)− g(h(t0−))‖X = ‖f(t)− f(t0−)‖X <
ε

3
;

if h(t−) 6 s < h(t), then

‖g(s)− g(h(t0−))‖X 6 ‖g(s)− g(h(t))‖X + ‖g(h(t))− g(h(t0−))‖X

=
h(t)− s

h(t)− h(t−)
‖f(t)− f(t−)‖X + ‖f(t)− f(t0−)‖X

6 ‖f(t)− f(t−)‖X + ‖f(t)− f(t0−)‖X

6 2‖f(t)− f(t0−)‖X + ‖f(t−)− f(t0−)‖X < ε.

Similarly, if h(t) < s 6 h(t+), then ‖g(s)− g(h(t0−))‖X < ε. We can conclude that

the function g is left-continuous at the point τ0 = h(t0−). Analogously, it can be

proved that g is right-continuous at every point τ0 = h(t0+) for t0 ∈ [a, b).

(ii) ⇒ (iii): The function ω can be defined by

ω(r) = r + sup{‖g(τ ′′)− g(τ ′)‖X ; τ ′, τ ′′ ∈ [a, b], |τ ′′ − τ ′| 6 r}, ω(0) = 0.
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Since a function continuous on a compact interval is uniformly continuous, for every

ε > 0 there is δ > 0 such that

if τ ′, τ ′′ ∈ [a, b] and |τ ′′ − τ ′| < δ then ‖g(τ ′′)− g(τ ′)‖X < ε.

It follows that lim
r→0+

ω(r) = 0.

It is obvious that the function ω is increasing, ω(∞) = ∞. If the function ω were

not continuous at a point r ∈ (0,∞), then ω(r+) > ω(r−) would hold.

(1) Assume that ω(r) > ω(r−). By definition of ω, there are points τ ′, τ ′′ ∈ [a, b]

such that

|τ ′ − τ ′′| 6 r and r + ‖g(τ ′′)− g(τ ′)‖X > ω(r−).

We can find r1 ∈ (0, r) such that

r1 + ‖g(τ ′′)− g(τ ′)‖X > ω(r−).

Since g is continuous, there are s′, s′′ ∈ [a, b] such that

|s′ − s′′| < r and r1 + ‖g(s′′)− g(s′)‖X > ω(r−).

Denote ̺ = max{r1, |s
′ − s′′|}. Then,

̺+ ‖g(s′′)− g(s′)‖X > r1 + ‖g(s′′)− g(s′)‖X > ω(r−) > ω(̺),

which is in contradiction with the definition of ω.

(2) Assume that ω(r+) > ω(r). We can fix a point c such that ω(r+) > c > ω(r).

For any n ∈ N, we have ω(r+1/n) > c. There are τ ′n, τ
′′

n ∈ [a, b] such that |τ ′′n−τ
′

n| 6

r + 1/n and

ω
(

r +
1

n

)

> r +
1

n
+ ‖g(τ ′′n )− g(τ ′n)‖X > c.

We can find convergent subsequences τ ′nk
→ τ ′, τ ′′nk

→ τ ′′; considering that the

function g is continuous, we obtain limits at both sides:

ω(r+) > r + ‖g(τ ′′)− g(τ ′)‖X > c > ω(r);

at the same time, r + ‖g(τ ′′) − g(τ ′)‖X 6 ω(r) because |τ ′ − τ ′′| 6 r, which is a

contradiction.

(iii) ⇒ (iv): This is obvious.
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(iv) ⇒ (i): For ε > 0 given, we can find r > 0 such that ω(r) < ε; considering

that the non-decreasing function h is regulated, we can find a division a = x0 <

x1 < . . . < xk = b such that if xi−1 < s < t < xi then |h(t) − h(s)| < r. Then we

have

‖f(t)− f(s)‖X 6 ω(|h(t)− h(s)|) 6 ω(r) < ε.

Using Theorem 2.3, we conclude that the function f is regulated.

(iii) ⇒ (v): We can assume that ω(∞) = ∞, otherwise ω(r) can be replaced by

ω(r) + r. Let us define ϕ = ω−1. Then ϕ ∈ Φ and for any division d ∈ Da,b,

d = {t0, t1, . . . , tk}, we have

Vϕd (f) =
k
∑

j=1

ϕ(‖f(tj)− f(tj−1)‖X) 6
k
∑

j=1

ϕ(ω(h(tj)− h(tj−1))

=

k
∑

j=1

[h(tj)− h(tj−1)] = h(b)− h(a).

Then ϕ-Var[a,b](f) 6 h(b)− h(a).

(v) ⇒ (vi): Denote α = ϕ-Var[a,b](f); if α = 0 then α 6 1 is satisfied; if α > 0,

we can define ψ(x) = ϕ(x)/α, x ∈ [0,∞); then for any division d ∈ D[a,b], d =

{t0, t1, . . . , tk}, we have

Vψd (f) =

k
∑

j=1

ψ(‖f(tj)− f(tj−1)‖X) =

k
∑

j=1

1

α
ϕ(‖f(tj)− f(tj−1)‖X) =

1

α
Vϕd (f),

consequently, ψ-Var[a,b](f) = 1.

(vi) ⇒ (iv): Define h(t) = ϕ-Var[a,t](f) for all t ∈ [a, b]; the function h is non-

decreasing. For any t′, t′′ such that a 6 t′ < t′′ 6 b, we have

h(t′′)− h(t′) > ϕ(‖f(t′′)− f(t′)‖X)

because d = {t′, t′′} is a division of the interval [t′, t′′].

Keeping in mind that the function ϕ is increasing and ϕ(0) = ϕ(0+) = 0,

ϕ(∞) = ∞, we can define a function ω : [0,∞) → [0,∞) so that

ω(0) = 0; ω(r) = x if r = ϕ(x) for some x ∈ (0,∞);

and

if r ∈ (ϕ(x−), ϕ(x+)) for some x ∈ [0,∞) then ω(r) = x.

Apparently ω(ϕ(x)) = x for every x ∈ [0,∞) and the function ω is non-decreasing,

ω(0+) = 0 (actually, ω is continuous, however that is not needed here).
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For any t′, t′′ such that a 6 t′ < t′′ 6 b, we have

‖f(t′′)− f(t′)‖X = ω(ϕ(‖f(t′′)− f(t′)‖X)) 6 ω
(

ϕ- Var
[t′,t′′]

(f)
)

= ω(h(t′′)− h(t′)).

�

The function g as defined in the proof is called the linear prolongation of the

function f along the increasing function h (see [2]).

Proposition 2.7. Assume that a function f : [a, b] → X is regulated. Then

(i) the function f is bounded,

(ii) the image Im(f) = {f(t) : t ∈ [a, b]} is a relatively compact subset of X ,

(iii) there is a sequence of step functions gn : [a, b] → X such that gn ⇒ f and

Im(gn) ⊂ Im(f) for every n ∈ N.

P r o o f. (i) According to Theorem 2.3, we can find a step function g : [a, b] → X

such that ‖f − g‖∞ < 1; then ‖f‖∞ < ‖g‖∞ + 1 and a step function is obviously

bounded.

(ii) For ε > 0, we can find a step function g : [a, b] → X such that ‖f − g‖∞ < ε.

The step function g has finitely many values, i.e., C = Im(g) ⊂ X is a finite set. For

any t ∈ [a, b], there is a point c ∈ C such that ‖c−f(t)‖X < ε (namely, c = g(t)). This

means that C is a finite ε-net for the set Im(f); consequently, Im(f) is a relatively

compact subset of X .

(iii) We can see in the proof of Theorem 2.3 that the step functions can be con-

structed with values from Im(f). �

3. Uniform convergence of regulated functions

Definition 3.1. We say that a set T ⊂ G([a, b]; X) is equiregulated if for every

t ∈ (a, b] and every ε > 0 there is δ > 0 such that (t−δ, t) ⊂ [a, b] and if τ ∈ (t−δ, t),

then ‖f(t−) − f(τ)‖X < ε holds for all f ∈ T ; moreover, for every t ∈ [a, b) and

every ε > 0 there is δ > 0 such that (t, t + δ) ⊂ [a, b] and if τ ∈ (t, t + δ), then

‖f(t+)− f(τ)‖X < ε holds for all f ∈ T .

Proposition 3.2. A set of functions T ⊂ G([a, b];X) is equiregulated if and only

if for every ε > 0 there is a division a = a0 < a1 < . . . < ak = b such that if

ai−1 < t′ < t′′ < ai for some i ∈ {1, 2, . . . , k} then ‖f(t′′)− f(t′)‖X < ε holds for all

f ∈ T .
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P r o o f. It can be obtained in the same way as the proof of Theorem 2.3 (i)⇔ (iv).

�

Theorem 3.3. Assume that a sequence of regulated functions fn : [a, b] → X ,

n ∈ N, is given, and there is a function f0 : [a, b] → X such that fn(t) → f0(t) for

every t ∈ [a, b]. Then the function f0 is the uniform limit of the sequence {fn}n∈N if

and only if the set {fn : n ∈ N} is equiregulated.

P r o o f. Assume that fn ⇒ f0. According to Proposition 2.2, the function f0 is

regulated. Let t ∈ (a, b] be given. For any given ε > 0, we can find n0 ∈ N such that

‖fn− f0‖∞ < 1
3ε for all n > n0. For every n = 0, 1, . . . , n0, there is δn > 0 such that

(t− δn, t) ⊂ [a, b] and if τ ∈ (t− δn, t), then ‖fn(t−)− fn(τ)‖X < 1
3ε.

Denote δ = min{δ0, δ1, . . . , δn0
}. If τ ∈ (t− δ, t), then ‖fn(t−)− fn(τ)‖X < 1

3ε for

n = 1, . . . , n0; and if n > n0 then

‖fn(t−)−fn(τ)‖X 6 ‖fn(t−)−f0(t−)‖X+‖f0(t−)−f0(τ)‖X+‖f0(τ)−fn(τ)‖X < ε.

The proof for right-sided limits is analogous.

Now, assume that the set {fn : n ∈ N} is equiregulated. Let ε > 0 be given.

By Proposition 3.2, there is a division a = a0 < a1 < . . . < ak = b such that if

ai−1 < t′ < t′′ < ai then ‖fn(t
′′)−fn(t

′)‖X < 1
4ε holds for all n ∈ N. Choose a point

bi ∈ (ai−1, ai) for each i = 1, 2, . . . , k. We have fn(ai) → f0(ai), fn(bi) → f0(bi); we

can find n0 ∈ N such that if n > n0 then

‖fn(ai)− f0(ai)‖X < ε for i = 0, 1, . . . , k,

‖fn(bi)− f0(bi)‖X <
ε

4
for i = 1, 2, . . . , k.

For any t ∈ [a, b] given, either t = ai for some i, then ‖fn(t) − f0(t)‖X < ε; or

t ∈ (ai−1, ai) for some i ∈ {1, 2, . . . , k}; since fn(t) → f0(t), there is a fixed m > n0

such that ‖fm(t)− f0(t)‖X < 1
4ε. For any n > n0 we have

‖fn(t)− f0(t)‖X 6 ‖fn(t)− fn(bi)‖X + ‖fn(bi)− f0(bi)‖X + ‖f0(bi)− fm(bi)‖X

+ ‖fm(bi)− fm(t)‖X + ‖fm(t)− f0(t)‖X < 2ε.

Consequently fn ⇒ f0. �

Proposition 3.4. Assume that a set T ⊂ G([a, b];X) is equiregulated. Then

(i) for any c > 0, the sets

J+
c = {t ∈ [a, b); there is f ∈ T such that ‖f(t+)− f(t)‖X > c},

J−

c = {t ∈ (a, b]; there is f ∈ T such that ‖f(t−)− f(t)‖X > c}

are finite;
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(ii) the sets defined by

(3.1) J+ = {t ∈ [a, b); there is f ∈ T such that f(t+) 6= f(t)},

J− = {t ∈ (a, b]; there is f ∈ T such that f(t−) 6= f(t)}

are at most countable.

P r o o f. The proof is analogous to the proof of Proposition 2.4. �

Lemma 3.5. Assume that sets J ⊂ G([a, b];X) and T ⊂ G([a, b];X) are equireg-

ulated. Then the set {f + g : f ∈ J , g ∈ T } is equiregulated.

P r o o f. Let t ∈ (a, b] be given. For any ε > 0 we can find δ1 > 0 such that

(t− δ1, t) ⊂ [a, b] and if τ ∈ (t− δ1, t) then

‖f(t−)− f(τ)‖X <
ε

2
holds for all f ∈ J ;

and we can find δ2 > 0 such that (t− δ2, t) ⊂ [a, b] and if τ ∈ (t− δ2, t) then

‖g(t−)− g(τ)‖X <
ε

2
holds for all g ∈ T .

Then we put δ = min{δ1, δ2} and if τ ∈ (t− δ, t) then

‖(f + g)(t−)− (f + g)(τ)‖X 6 ‖f(t−)− f(τ)‖X + ‖g(t−)− g(τ)‖X < ε.

Similarly for right-sided limits. �

Proposition 3.6. Assume that sequences of regulated functions fn : [a, b] → X ,

gn : [a, b] → X , n ∈ N, are given such that ‖gn − fn‖∞ → 0. If the set {fn : n ∈ N}

is equiregulated, then the set {gn : n ∈ N} is equiregulated.

P r o o f. Denote hn = gn − fn. We have a sequence of regulated functions

{hn}n∈N which is uniformly convergent to the zero function. According to Theo-

rem 3.3, the set {hn : n ∈ N} is equiregulated. Now we can use Lemma 3.5 to

conclude that the set {gn : n ∈ N} = {fn + hn : n ∈ N} is equiregulated. �

Definition 3.7. We say that a set of regulated functions T ⊂ G([a, b];X) has

bounded jumps if for each t ∈ (a, b] the set {f(t)− f(t−) : f ∈ T } is bounded, and

for each t ∈ [a, b) the set {f(t+)− f(t) : f ∈ T } is bounded.

For t ∈ (a, b] and s ∈ [a, b), we denote

(3.2) K−

t = sup{‖f(t)− f(t−)‖X : f ∈ T },

K+
s = sup{‖f(s)− f(s+)‖X : f ∈ T }.
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Proposition 3.8. Assume that a set T ⊂ G([a, b];X) is equiregulated and has

bounded jumps. Then there is K > 0 such that ‖f(t) − f(a)‖X 6 K holds for all

f ∈ T , t ∈ [a, b].

Moreover, if the set {f(a) : f ∈ T } is bounded, then the set T is bounded.

P r o o f. Using Proposition 3.2, we can find a division a = a0 < a1 < . . . < ak = b

such that ‖f(t′′)− f(t′)‖X < 1 holds for any f ∈ T , ai−1 < t′ < t′′ < ai.

Let K+
ai−1
, K−

ai
be given by (3.2). We have

‖f(ai)− f(ai−1)‖X

6 ‖f(ai)− f(ai−)‖X + ‖f(ai−)− f(ai−1+)‖X + ‖f(ai−1+)− f(ai−1)‖X

6 K−

ai
+ 1 +K+

ai−1
;

then ‖f(aj)− f(a)‖X 6
j
∑

i=1

‖f(ai)− f(ai−1)‖X 6 j +
j
∑

i=1

(K−

ai
+K+

ai−1
).

If t ∈ (aj , aj+1) then

‖f(t)− f(a)‖X 6 ‖f(t)− f(aj+)‖X +K+
aj

+ ‖f(aj)− f(a)‖X ;

we can conclude that

‖f(t)− f(a)‖X 6 K := k +

k−1
∑

i=0

K+
ai

+

k
∑

i=1

K−

ai

holds for all f ∈ T , t ∈ [a, b].

The latter part of the proposition is evident. �

Proposition 3.9. If the set T ⊂ G([a, b];X) is equiregulated and for every t ∈

[a, b] the set {f(t) : f ∈ T } is bounded, then the set T is bounded.

P r o o f. According to Proposition 3.2, we can find a division a = a0 < a1 <

. . . < ak = b such that if ai−1 < t′ < t′′ < ai then ‖f(t
′′)− f(t′)‖X < 1 holds for any

f ∈ T , i = 1, 2, . . . , k. For each i = 1, 2, . . . , k, choose a point bi ∈ (ai−1, ai). The set

{f(ai) : f ∈ T , i = 0, 1, . . . , k} ∪ {f(bi) : f ∈ T , i = 1, 2, . . . , k}

is bounded by a constant K.

Let any t ∈ [a, b] be given, and f ∈ T . Either t = ai for some i ∈ {0, 1, . . . , k},

then ‖f(t)‖X = ‖f(ai)‖X 6 K; or t ∈ (ai−1, ai) for some i ∈ {1, 2, . . . , k}, then

‖f(t)‖X 6 ‖f(t)− f(bi)‖X + ‖f(bi)‖X < 1 +K,

concluding the proof. �
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Theorem 3.10. For any set of regulated functions T ⊂ G([a, b];X), the following

properties are equivalent:

(i) T is equiregulated and has bounded jumps;

(ii) there is a non-decreasing function h : [a, b] → [c, d] and an equicontinuous set

B ⊂ C([c, d];X) such that for any f ∈ T there is a continuous function g ∈ B

satisfying f(t) = g(h(t)) for t ∈ [a, b];

(iii) there is a non-decreasing function ω : [0,∞) → [0,∞), ω(0+) = 0, and a non-

decreasing function h : [a, b] → R such that ‖f(t′′)−f(t′)‖X 6 ω(|h(t′′)−h(t′)|)

holds for all f ∈ T , a 6 t′ < t′′ 6 b.

P r o o f. (i) ⇒ (ii): It follows from Proposition 3.4 that the sets J+, J− are

at most countable. As was proved in Theorem 2.6, there exists a non-decreasing

function h : [a, b] → R such that

J− = {t ∈ (a, b] : h(t−) 6= h(t)},

J+ = {t ∈ [a, b) : h(t+) 6= h(t)}.

We can assume that the function h is increasing (if not, it can be replaced by

h̃(t) = h(t) + t).

For each f ∈ T , we can define its linear prolongation gf as in the proof of

Theorem 2.6:

If τ = h(t), we define

gf(τ) = f(t).

If h(t−) 6 τ < h(t), we define

(3.3) gf (τ) = f(t) +
h(t)− τ

h(t)− h(t−)
(f(t−)− f(t)).

If h(t) < τ 6 h(t+), we define

gf (τ) = f(t) +
τ − h(t)

h(t+)− h(t)
(f(t+)− f(t)).

Then gf (h(t)) = f(t); gf(h(t−)) = f(t−); gf(h(t+)) = f(t+). All these functions gf
are continuous and we denote B = {gf : f ∈ T }. We will prove that the set B is

equicontinuous.

Let t ∈ (a, b] be given such that h(t−) < h(t). It is assumed that

‖f(t)− f(t−)‖X 6 K−

t
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for all f ∈ T , where K−

t <∞ is given by (3.2). We have

‖gf(h(t))− gf (h(t−))‖X = ‖f(t)− f(t−)‖X 6 K−

t ,

hence for any τ ′, τ ′′ ∈ [h(t−), h(t)] we have

‖gf(h(τ
′′))− gf(h(τ

′))‖X 6
|τ ′′ − τ ′|K−

t

h(t)− h(t−)
;

the functions gf are equicontinuous on [h(t−), h(t)]. Analogously, they are equicon-

tinuous on each interval [h(t), h(t+)] where h(t) 6= h(t+).

Now assume that s0 = h(t0−) for some t0 ∈ (a, b] (regardless if h if left-continuous

at t0 or not); we will prove that the functions in B are equicontinuous from the left

at s0. For given ε > 0 we can find δ > 0 such that t0 − δ > a, and if t0 − δ < τ < t0

then ‖f(t0−)− f(τ)‖X < 1
3ε. It is evident that

‖f(t0−)− f(τ+)‖X 6
ε

3
, ‖f(t0−)− f(τ−)‖X 6

ε

3

holds for any τ ∈ (t0 − δ, t0). Fix a point τ ∈ (t0 − δ, t0) and denote η = h(t0−) −

h(τ). We have η > 0 because the function h is increasing. Let s ∈ (s0 − η, s0) =

(h(τ), h(t0−)) be an arbitrary point. Considering that h is an increasing function,

there is a unique point t ∈ (τ, t0) such that h(t−) 6 s 6 h(t+).

The first case is h(t−) 6 s 6 h(t); then for any f ∈ T we have

‖gf(s)− gf (s0)‖X 6 ‖gf(s)− gf (h(t))‖X + ‖gf(h(t))− gf (h(t0−))‖X

=
s− h(t)

h(t−)− h(t)
‖f(t−)− f(t)‖X + ‖f(t)− f(t0−)‖X

6 ‖f(t−)− f(t0−)‖X + 2‖f(t)− f(t0−)‖X < ε

or in the case h(t) 6 s 6 h(t+), again we obtain ‖gf(s) − gf (s0)‖ < ε. This proves

the equicontinuity at h(t0−) from the left; equicontinuity at h(t0+) from the right

can be proved similarly.

(ii) ⇒ (iii): Define

ω(r) = sup{‖g(s′′)− g(s′)‖X ; s′, s′′ ∈ [c, d], |s′′ − s′| 6 r; g ∈ B}, ω(0) = 0.

It is well-known that an equicontinuous set of functions is uniformly continuous;

therefore w(0+) = 0. We have

‖g(s′′)− g(s′)‖X 6 ω(|s′′ − s′|) for any g ∈ B, s′, s′′ ∈ [c, d].
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It follows that

‖f(t′′)− f(t′)‖X = ‖gf(h(t
′′))− gf (h(t

′))‖X 6 ω(|h(t′′)− h(t′)|)

for all f ∈ T , t′, t′′ ∈ [a, b].

(iii) ⇒ (i): It is well-known that any non-decreasing function is regulated. Let

ε > 0 be given; there is r > 0 such that ω(r) < ε. For any t ∈ [a, b) there is δ > 0

such that h(t+ δ)− h(t+) < r. If f ∈ T and τ ∈ (t, t+ δ), then

‖f(τ)− f(t+)‖X 6 ω(h(τ)− h(t+)) 6 ω(r) < ε;

similarly for the left-sided limits. Further, for any t ∈ [a, b) and f ∈ T we have

‖f(t+)− f(t)‖X 6 ω(h(t+)− h(t));

similarly, for any t ∈ (a, b] and f ∈ T we have

‖f(t)− f(t−)‖X 6 ω(h(t)− h(t−)).

Consequently, the set T has bounded jumps. �

Proposition 3.11. Assume that a sequence of regulated functions {fn}n∈N ⊂

G([a, b];X) is given such that:

⊲ there is a non-decreasing function ω : [0,∞) → [0,∞), ω(0+) = 0, and

⊲ there is a bounded sequence of non-decreasing functions hn : [a, b] → R, n ∈ N0

such that

‖fn(t
′′)− fn(t)‖X 6 ω(hn(t

′′)− hn(t
′))

for every n ∈ N, a 6 t′ < t′′ 6 b.

The following conditions are sufficient for the set {fn : n ∈ N} to be equiregulated:

(i) the set {hn : n ∈ N} is equiregulated;

(ii) lim sup
n→∞

[hn(t
′′)− hn(t

′)] 6 h0(t
′′)− h0(t

′) holds for any a < t′ < t′′ < b and the

function h0 is continuous;

(iii) lim
n→∞

hn(t) = h0(t) for every t ∈ [a, b] and the function h0 is continuous.

P r o o f. (i) Assume that the set {hn : n ∈ N} is equiregulated. According to

Theorem 3.10, we can find a non-decreasing function ϑ : [0,∞) → [0,∞), ϑ(0+) = 0

and a non-decreasing function h : [a, b] → R such that

|hn(t
′′)− hn(t

′)| 6 ϑ(|h(t′′)− h(t′)|)

holds for any n ∈ N, a 6 t′ < t′′ 6 b. Then

‖fn(t
′′)− fn(t

′)‖X 6 ω(|hn(t
′′)− hn(t

′)|) 6 ω(ϑ(h(t′′)− h(t′)));

using Theorem 3.10, we conclude that the set {fn : n ∈ N} is equiregulated.
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(ii) Let ε > 0 be given. The continuous function h0 is uniformly continuous

on [a, b]; then there is δ > 0 such that if a 6 t′ < t′′ 6 b and t′′ − t′ < δ then

h0(t
′′)− h0(t

′) < ε. We can find a division a = b0 < b1 < . . . < bk = b such that

h0(bj)− h0(bj−1) <
ε

2
for any i = 1, 2, . . . , k.

There is n0 ∈ N such that if n > n0 and j = 1, 2, . . . , k then

0 6 hn(bj)− hn(bj−1) <
ε

2
+ h0(bj)− h0(bj−1).

Considering that the functions hn are non-decreasing, we get

0 6 hn(t
′′)− hn(t

′) 6 hn(bj)− hn(bj−1) <
ε

2
+ h0(bj)− h0(bj−1) < ε

for any t′, t′′ such that bj−1 6 t′ < t′′ 6 bj , n > n0.

The functions h1, h2, . . . , hn0
are regulated, therefore, for each interval [bj−1, bj]

we can find a subdivision bj−1 = a0,j < a1,j < . . . < alj ,j = bj such that 0 6

hn(t
′′) − hn(t

′) < ε holds for n 6 n0, ai−1,j 6 t′ < t′′ 6 ai,j ; it follows that the

conditions of Proposition 3.2 are satisfied, and therefore, the set {hn : n ∈ N} is

equiregulated. Now, we can use part (i).

Finally, (iii) is a consequence of (ii). �

4. Sup-norm topology

Proposition 4.1. The linear space of regulated functions G([a, b];X) with the

norm ‖·‖∞ is a Banach space.

P r o o f. Obviously G([a, b];X) is a linear space and ‖·‖∞ is a norm. We shall

prove that it is a complete normed linear space.

Assume that {fn}n∈N is a Cauchy sequence of regulated functions. For any t ∈

[a, b], the sequence {fn(t)}n∈N has the Cauchy property, therefore its limit in the

Banach space X exists, and it can be denoted by f0(t). For each ε > 0 there is

n0 ∈ N such that

‖fn(t)− fm(t)‖X < ε for all t ∈ [a, b] and all m,n > n0.

Passing to the limit m→ ∞, we get

‖fn(t)− f0(t)‖X 6 ε for all t ∈ [a, b] and all n > n0.

We have fn ⇒ f0 and it follows from Proposition 2.2 that the function f0 is

regulated. �
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Theorem 4.2. A set of regulated functions T ⊂ G([a, b];X) is relatively compact

in the Banach space G([a, b];X) if and only if the set T is equiregulated and satisfies

the following condition:

(4.1) for every t ∈ [a, b], the set {f(t) : f ∈ T } is relatively compact in X .

P r o o f. (i) Assume that T is relatively compact. Then for every ε > 0 there

is a finite ε-net, i.e., a finite set P ⊂ G([a, b];X) such that for each f ∈ T there is

g ∈ P satisfying ‖f − g‖∞ < ε. For any fixed t ∈ [a, b], denote Pt = {g(t) : g ∈ P};

this is a finite subset of X and for any f ∈ T we can find p ∈ Pt (p = g(t)) such

that ‖f(t)− p‖X < ε; this means that Pt is a finite ε-net for the set {f(t) : f ∈ T }.

Consequently, this is a relatively compact subset of X .

Now, we shall prove that the functions in T have uniform one-sided limits. Let

τ ∈ [a, b] and ε > 0 be given. We can find a finite 1
3ε-net P ⊂ G([a, b];X) for T .

Let us denote the elements of P as {g1, g2, . . . , gn}. These are regulated functions,

therefore we can find δ > 0 such that if t ∈ (τ−δ, τ)∩ [a, b] then ‖gj(t)−gj(τ−)‖X <
1
3ε and if t ∈ (τ, τ + δ)∩ [a, b] then ‖gj(t)− gj(τ+)‖X < 1

3ε for any j ∈ {1, 2, . . . , n}.

Let f ∈ T be given, then we can find j such that ‖f − gj‖∞ < 1
3ε. For any

t ∈ (τ − δ, τ) ∩ [a, b] we have

‖f(t)− f(τ−)‖X 6 2‖f − gj‖∞ + ‖gj(t)− gj(τ−)‖X < ε;

and for any t ∈ (τ, τ + δ) ∩ [a, b] we have

‖f(t)− f(τ+)‖X 6 2‖f − gj‖∞ + ‖gj(t)− gj(τ+)‖X < ε.

(ii) Assume that the set T is equiregulated and satisfies condition (4.1). Let ε > 0

be given. According to Proposition 3.2, there is a division a = a0 < a1 < . . . < ak = b

such that if ai−1 < t′ < t′′ < ai for an index i ∈ {1, 2, . . . , k} and f ∈ T then

‖f(t′′)− f(t′)‖X < ε.

Let us choose a point bi ∈ (ai−1, ai) for each i ∈ {1, 2, . . . , k}. Due to (4.1) the

set Y = {f(ai), i = 0, 1, . . . , k; f ∈ T } ∪ {f(bi), i = 1, 2, . . . , k; f ∈ T } is relatively

compact in the Banach space X ; consequently, it has a finite 1
2ε-net Z ⊂ X .

Let us define a set Q of all step functions with values in Z which are constant on

each of the intervals (ai−1, ai), i = 1, 2, . . . , k. The set Q is finite. For a given f ∈ T ,

we have f(ai) ∈ Y , f(bi) ∈ Y , hence there are αi ∈ Z, βi ∈ Z such that

‖f(ai)− αi‖X <
ε

2
, i = 0, 1, . . . , k,

‖f(bi)− βi‖X <
ε

2
, i = 1, 2, . . . , k.
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Define g(ai) = αi, g(t) = βi for t ∈ (ai−1, ai); then g ∈ Q and we have

‖f(ai)− g(bi)‖X <
ε

2
, ‖f(t)− g(t)‖X 6 ‖f(t)− f(bi)‖X + ‖f(bi)− g(bi)‖X < ε

for all t ∈ (ai−1, ai). This means that for an arbitrary f ∈ T a function g ∈ Q was

found such that ‖f − g‖∞ < ε; the set Q is a finite ε-net for T .

We have found that the set T is totally bounded, and therefore it is relatively

compact in the Banach space G([a, b];X). �

Corollary 4.3. A set of regulated functions T ⊂ G([a, b];RN ) is relatively com-

pact in G([a, b];RN ) if and only if the set T is equiregulated and for every t ∈ [a, b]

the set {f(t); f ∈ T } is bounded.

Proposition 4.4. If a set T ⊂ G([a, b];X) is relatively compact, then its image

Im(T ) = {f(t) : f ∈ T , t ∈ [a, b]} is a relatively compact subset of X.

P r o o f. We are going to prove that the set Im(T ) is totally bounded; i.e., has

a finite ε-net for any ε > 0.

Let ε > 0 be given. The relatively compact set T has a finite 1
2ε-net Q ⊂

G([a, b];X), it means that for every f ∈ T there is g ∈ Q satisfying ‖f − g‖∞ < 1
2ε.

According to Theorem 2.3, for each g ∈ Q there is a step function ψg such that

‖g − ψg‖∞ < 1
2ε. The finite set of step functions {ψg : g ∈ Q} has a finite set of

values

Z = {ψg(t) : t ∈ [a, b], g ∈ Q}.

For any f ∈ T we can find g ∈ Q such that ‖f − g‖∞ < 1
2ε; then

‖f(t)− ψg(t)‖X 6 ‖f − g‖∞ + ‖g − ψg‖∞ < ε

and ψg(t) ∈ Z; this means that Z is a finite ε-net for Im(T ). �

Proposition 4.5. For an equiregulated set of functions T ⊂ G([a, b];X) its rela-

tive compactness is equivalent to relative compactness of its image.

P r o o f. (i) If the set T is equiregulated, then Im(T ) is relatively compact

according to Proposition 4.4.

(ii) If Im(T ) is relatively compact, then condition (4.1) holds and we can use

Theorem 4.2. �
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Theorem 4.6. For a set of regulated functions T ⊂ G([a, b];X), the following

properties are equivalent:

(i) The set T is a relatively compact subset of the Banach space (G([a, b];X ; ‖·‖∞).

(ii) There is a non-decreasing function h : [a, b] → [c, d] and a set B ⊂ C([c, d];X) of

continuous functions which is relatively compact in the sup-norm ‖·‖∞ so that

for every f ∈ T there is g ∈ B satisfying f(t) = g(h(t)), t ∈ [a, b].

(iii) For every t ∈ [a, b], the set {f(t) : f ∈ T } is relatively compact in X and

there is a non-decreasing function h : [a, b] → R and a non-decreasing function

ω : [0,∞) → [0,∞), w(0+) = 0 such that ‖f(t′′)− f(t′)‖X 6 ω(|h(t′′)− h(t′)|)

holds for every f ∈ T , t′, t′′ ∈ [a, b].

P r o o f. (i) ⇒ (ii): According to Theorem 4.2, the set T is equiregulated and

satisfies (4.1). Then T has bounded jumps; using Theorem 3.10, we can find a non-

decreasing function h : [a, b] → [c, d] where h(a) = c, h(b) = d and an equicontinuous

set B ⊂ C([c, d];X) defined by B = {gf : f ∈ T }, where the function gf is the linear

prolongation of f defined by the formula (3.3).

We are going to prove that the set B is totally bounded, therefore relatively com-

pact.

Given ε > 0, there is a finite ε-net Q ⊂ G([a, b];X) for T . Define gζ by the

formula (3.3) for every ζ ∈ Q. Then the set {gζ : ζ ∈ Q} is a finite ε-net for the set B.

(ii) ⇒ (iii): For each t ∈ [a, b] we have {f(t) : f ∈ T } ⊂ {g(h(t)) : g ∈ B}; hence

the set {f(t) : f ∈ T } is relatively compact in X . We can define

ω(r) = sup{‖g(s′)− g(s′′)‖X : |s′ − s′′| 6 r; g ∈ B}.

It follows from Arzelà-Ascoli theorem (version in Banach space) that the relatively

compact set B is equicontinuous, consequently w(0+) = 0. Obviously, the function ω

is non-decreasing.

For any f ∈ T we can find g ∈ B satisfying f(t) = g(h(t)), t ∈ [a, b]. Then, for any

t′, t′′ ∈ [a, b] we obtain the inequality ‖f(t′′) − f(t′)‖X = ‖g(h(t′′)) − g(h(t′))‖X 6

ω(|h(t′′)− h(t′)|).

(iii) ⇒ (i): Follows from Theorem 4.2. �

Proposition 4.7. Assume that a set T ⊂ G([a, b];X) is equiregulated. Denote

the sets J−, J+ as in (3.1). Then for any dense subsetM ⊂ [a, b] and any ε > 0 there

is a division a = c0 < c1 < . . . ck = b such that {c1, c2, . . . , ck−1} ⊂ M ∪ J− ∪ J+

and if ci−1 < t′ < t′′ < ci for some i ∈ {1, 2, . . . , k} then ‖f(t′′)− f(t′)‖X < ε holds

for all f ∈ T .
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P r o o f. We can find a division a = a0 < a1 < . . . ak = b as described in

Proposition 3.2. If ai ∈ M ∪ J− ∪ J+ ∪ {a, b}, we denote ci = ai. If ai /∈M ∪ J− ∪

J+ ∪ {a, b} then all functions f ∈ T are continuous at ai: there is δ > 0 such that

if |t − ai| < δ and f ∈ T then ‖f(t) − f(ai)‖X < ε. The set M is dense in [a, b],

therefore we can find ci ∈ (ai−1, ai)∩M such that |ci−ai| < δ. In both cases, we have

‖f(ci) − f(ai)‖X < ε for every f ∈ T , i ∈ {0, 1, 2, . . . k}. Now, if i ∈ {1, 2, . . . , k}

and ci−1 < t′ < t′′ < ci, there are several options and it is only a technical matter

to verify that ‖f(t′′)− f(t′)‖X < 2ε in all possible cases. �

Theorem 4.8. Assume that a set of functions T ⊂ G([a, b];X) is equiregulated.

Denote the sets J−, J+ as in (3.1). Assume that there is a dense subset M ⊂ [a, b]

such that for every t ∈M0 =M ∪J−∪J+∪{a, b} the set {f(t) : f ∈ T } is relatively

compact in X . Then the set T is relatively compact in the Banach space G([a, b];X).

P r o o f. The proof can be performed the same way as the second part of the

proof of Theorem 4.2, where the points bi ∈ (ai−1, ai) can be chosen so that bi ∈M0

for each i ∈ {1, 2, . . . , k}. �
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