REGULATED FUNCTIONS WITH VALUES IN BANACH SPACE

Dana Fraňková, Zájezd

Received September 2, 2019. Published online November 22, 2019.
Communicated by Jiří Šremr

Cordially dedicated to the memory of Stefan Schwabik

Abstract. This paper deals with regulated functions having values in a Banach space. In particular, families of equiregulated functions are considered and criteria for relative compactness in the space of regulated functions are given.

Keywords: regulated function; bounded variation; function with values in a Banach space; φ-variation; relative compactness; equiregulated function

MSC 2010: 26A45, 46E40

InTRODUCTION

This paper is an extension of the previous one (see [2]), where regulated functions with values in Euclidean spaces were considered. Here, we deal with regulated functions having values in a Banach space. We discuss some of the properties of the space of such regulated functions, including compactness theorems.

Classic results of mathematical analysis are being used (see [4]) and some ideas from previous works on the topic of regulated functions appear here (see [3], [5]).

1. Notation and definitions

(i) The symbol \mathbb{N} will denote the set of all positive integers, $\mathbb{N}_{0}=\mathbb{N} \cup\{0\} ; \mathbb{R}^{N}$ (where $N \in \mathbb{N}$) is the N-dimensional Euclidean space with the usual norm $|\cdot|_{N}$. We write \mathbb{R} and $|\cdot|$ instead of \mathbb{R}^{1} and $|\cdot|_{1}$.
(ii) Throughout the paper, the symbol X will denote a Banach space with a norm $\|\cdot\|_{X}$ and $\mathcal{C}([a, b] ; X)$ is the set of all continuous functions $f:[a, b] \rightarrow X$.
(iii) We say that a function $h:[a, b] \rightarrow \mathbb{R}$ is increasing if $a \leqslant s<t \leqslant b$ implies $h(s)<h(t)$; the function h is non-decreasing if $a \leqslant s<t \leqslant b$ implies $h(s) \leqslant h(t)$.
(iv) We say that $g:[a, b] \rightarrow X$ is a finite step function, or shortly step function, if it is piecewise constant; i.e., there is a division $a=a_{0}<a_{1}<\ldots<a_{k}=b$ such that the function g is constant on each of the intervals $\left(a_{i-1}, a_{i}\right), i=1,2, \ldots, k$.
(v) We denote by $\mathcal{D}_{a, b}$ the set of divisions $\left\{a_{0}, \ldots, a_{k}\right\}$ such that $a=a_{0}<$ $a_{1}<\ldots<a_{k}=b$.
(vi) For any function $f:[a, b] \rightarrow X$, we write $\|f\|_{\infty}=\sup \left\{\|f(t)\|_{X}: t \in[a, b]\right\}$. If $\|f\|_{\infty}<\infty$, we say that the function f is bounded; $\|\cdot\|_{\infty}$ is called the sup-norm.
(vii) We say that a sequence of functions $f_{n}:[a, b] \rightarrow X, n \in \mathbb{N}$, is uniformly convergent to a function $f_{0}:[a, b] \rightarrow X$ (or that f_{0} is the uniform limit of $\left\{f_{n}\right\}_{n \in \mathbb{N}}$) if $\left\|f_{n}-f_{0}\right\|_{\infty} \rightarrow 0$ with $n \rightarrow \infty$; we denote $f_{n} \rightrightarrows f_{0}$.

2. Basic properties of a regulated function

Definition 2.1. We say that a function $f:[a, b] \rightarrow X$ is regulated if the limit $f(t-)=\lim _{\tau \rightarrow t-} f(\tau)$ exists for every $t \in(a, b]$, and the limit $f(t+)=\lim _{\tau \rightarrow t+} f(\tau)$ exists for every $t \in[a, b)$. We denote by $G([a, b] ; X)$ the set of all regulated functions $f:[a, b] \rightarrow X$.

Obviously, any finite step function on $[a, b]$ and any continuous function on $[a, b]$ are regulated on $[a, b]$. Moreover, any function with bounded variation on $[a, b]$ and any monotone real valued function are regulated on $[a, b]$.

Proposition 2.2. Assume that $f_{n}:[a, b] \rightarrow X, n \in \mathbb{N}$, are regulated functions and $f_{0}:[a, b] \rightarrow X$ is a function such that $f_{n} \rightrightarrows f_{0}$. Then the function f_{0} is regulated and $f_{n}(t-) \rightarrow f_{0}(t-)$ for each $t \in(a, b], f_{n}(t+) \rightarrow f_{0}(t+)$ for each $t \in[a, b)$.

Proof. The proof follows easily from the classical Moore-Osgood theorem on exchanging the order of limits, cf. e.g. [4].

Theorem 2.3. The following properties of a function $f:[a, b] \rightarrow X$ are equivalent:
(i) The function f is regulated.
(ii) The function f is the uniform limit of a sequence of step functions.
(iii) For every $\varepsilon>0$ there is a step function $g:[a, b] \rightarrow X$ such that $\|f-g\|_{\infty}<\varepsilon$.
(iv) For every $\varepsilon>0$ there is a division $a=a_{0}<a_{1}<\ldots<a_{k}=b$ such that if $a_{i-1}<t^{\prime}<t^{\prime \prime}<a_{i}$ for some $i \in\{1,2, \ldots, k\}$ then $\left\|f\left(t^{\prime \prime}\right)-f\left(t^{\prime}\right)\right\|_{X}<\varepsilon$.

Proof. (i) \Rightarrow (iv): Let $\varepsilon>0$ be given. For every $x \in(a, b]$, define

$$
s_{x}=\inf \left\{s \in(a, x): \text { if } \tau^{\prime}, \tau^{\prime \prime} \in(s, x) \text { then }\left\|f\left(\tau^{\prime}\right)-f\left(\tau^{\prime \prime}\right)\right\|_{X}<\frac{\varepsilon}{2}\right\} .
$$

For every $x \in[a, b)$, define

$$
\begin{equation*}
t_{x}=\sup \left\{t \in(x, b): \text { if } \tau^{\prime}, \tau^{\prime \prime} \in(x, t) \text { then }\left\|f\left(\tau^{\prime}\right)-f\left(\tau^{\prime \prime}\right)\right\|_{X}<\frac{\varepsilon}{2}\right\} \tag{2.1}
\end{equation*}
$$

It follows from the existence of the limits $f(x-), f(x+)$ that $s_{x}<x$ and $t_{x}>x$.
Obviously,

$$
\left[a, t_{a}\right) \cup \bigcup_{x \in(a, b)}\left(s_{x}, t_{x}\right) \cup\left(s_{b}, b\right]=[a, b]
$$

and, since $[a, b]$ is compact, there are $k \in \mathbb{N}$ and a finite set $\left\{a_{1}, \ldots, a_{k-1}\right\}$ of points in (a, b) such that $a_{1}<a_{2}<\ldots<a_{k-1}$,

$$
\begin{equation*}
\left[a, t_{a}\right) \cup \bigcup_{i=1}^{k-1}\left(s_{a_{i}}, t_{a_{i}}\right) \cup\left(s_{b}, b\right]=[a, b] \tag{2.2}
\end{equation*}
$$

We shall verify that $s_{a_{i}}<t_{a_{i-1}}$ for $i \in\{1,2, \ldots, k\}$. On the contrary, assume that there is σ such that $t_{a_{i-1}} \leqslant \sigma \leqslant s_{a_{i}}$. Thanks to (2.2), there is $j \notin\{i-1, i\}$ such that $\sigma \in\left(s_{a_{j}}, t_{a_{j}}\right)$. If $j<i-1$ then by (2.1) we have $\left\|f\left(\tau^{\prime}\right)-f\left(\tau^{\prime \prime}\right)\right\|_{X}<\frac{1}{2} \varepsilon$ for all $\tau^{\prime}, \tau^{\prime \prime} \in\left(a_{j}, t_{a_{j}}\right)$, which specifically holds also for all $\tau^{\prime}, \tau^{\prime \prime} \in\left(a_{i-1}, t_{a_{j}}\right)$. Hence $t_{a_{j}} \leqslant t_{a_{i-1}} \leqslant \sigma<t_{a_{j}}$ which is a contradiction. Similarly, if $j>i$ we find that this leads to a contradiction as well.

Consequently, for any $i \in\{1,2, \ldots, k\}$, the intersection $\left(s_{a_{i}}, t_{a_{i-1}}\right) \cap\left(a_{i-1}, a_{i}\right)$ is nonempty and we choose $b_{i} \in\left(s_{a_{i}}, t_{a_{i-1}}\right) \cap\left(a_{i-1}, a_{i}\right)$.

Now, if $a_{i-1}<t^{\prime}<t^{\prime \prime}<a_{i}$ for some $i \in\{1, \ldots, k\}$, there are three possibilities: either $a_{i-1}<t^{\prime}<t^{\prime \prime} \leqslant b_{i}$ or $b_{i} \leqslant t^{\prime}<t^{\prime \prime}<a_{i}$ or $a_{i-1}<t^{\prime} \leqslant b_{i} \leqslant t^{\prime \prime}<a_{i}$. In the first case, both $t^{\prime}, t^{\prime \prime}$ are in ($a_{i-1}, t_{a_{i-1}}$), and thanks to (2.1)

$$
\left\|f\left(t^{\prime \prime}\right)-f\left(t^{\prime}\right)\right\|_{X}<\frac{\varepsilon}{2}
$$

Similarly, if $b_{i} \leqslant t^{\prime}<t^{\prime \prime}<a_{i}$ for some i then $t^{\prime}, t^{\prime \prime} \in\left(s_{a_{i}}, a_{i}\right)$ and

$$
\left\|f\left(t^{\prime \prime}\right)-f\left(t^{\prime}\right)\right\|_{X}<\frac{\varepsilon}{2}
$$

and, if $a_{i-1}<t^{\prime} \leqslant b_{i} \leqslant t^{\prime \prime}<a_{i}$ for some i then $t^{\prime}, b_{i} \in\left(a_{i-1}, t_{a_{i-1}}\right)$, and $b_{i}, t^{\prime \prime} \in$ ($s_{a_{i}}, a_{i}$) and hence

$$
\left\|f\left(t^{\prime \prime}\right)-f\left(t^{\prime}\right)\right\|_{X} \leqslant\left\|f\left(t^{\prime \prime}\right)-f\left(b_{i}\right)\right\|_{X}+\left\|f\left(b_{i}\right)-f\left(t^{\prime}\right)\right\|_{X}<\varepsilon
$$

To summarize, (iv) is true.
(iv) \Rightarrow (iii): Given $\varepsilon>0$ we can find the described division $a=a_{0}<a_{1}<\ldots<$ $a_{k}=b$; choose points $\tau_{i} \in\left(a_{i-1}, a_{i}\right)$ and define $g(\tau)=f\left(\tau_{i}\right)$ for $\tau \in\left(a_{i-1}, a_{i}\right)$, $i=1,2, \ldots, k ; g\left(a_{i}\right)=f\left(a_{i}\right), i=0,1, \ldots, k$. Then g is a step function and $\| g(\tau)-$ $f(\tau) \|_{X}<\varepsilon$ for every $\tau \in[a, b]$.
(iii) \Rightarrow (ii): For $\varepsilon=1 / n$, we can find a step function g_{n} such that $\left\|f-g_{n}\right\|_{\infty}<1 / n$. Hence, $g_{n} \rightrightarrows f$.
(ii) \Rightarrow (i): This implication follows from Proposition 2.2.

Let us notice that the equivalences contained in Theorem 2.3 have been already proved in [3] in a slightly different way. The following result also can be found in [3], but no detailed proof is provided therein.

Proposition 2.4. If a function $f:[a, b] \rightarrow X$ is regulated, then
(i) for any $c>0$, the sets $\left\{t \in[a, b):\|f(t+)-f(t)\|_{X} \geqslant c\right\}$ and $\{t \in(a, b]$: $\left.\|f(t-)-f(t)\|_{X} \geqslant c\right\}$ are finite;
(ii) the sets $J^{+}=\{t \in[a, b): f(t+) \neq f(t)\}$ and $J^{-}=\{t \in(a, b]: f(t-) \neq f(t)\}$ are at most countable.

Proof. (i) By Theorem 2.3 (iv), there is a division $a=a_{0}<\ldots<a_{k}=b$ such that

$$
\|f(u)-f(t)\|_{X}<\frac{c}{2} \quad \text { whenever } u, t \in\left(a_{i-1}, a_{i}\right) \text { for some } i
$$

Passing to the limit $u \rightarrow t+$ we get

$$
\|f(t+)-f(t)\|_{X} \leqslant \frac{c}{2}<c \quad \text { for all } t \in[a, b] \backslash\left\{a_{0}, \ldots, a_{k}\right\} .
$$

(ii) It is evident that $J^{+}=\bigcup_{n \in \mathbb{N}}\left\{t \in[a, b):\|f(t+)-f(t)\|_{X} \geqslant 1 / n\right\}$; this is a countable union of finite sets, therefore at most countable. Similarly for the leftsided limits.

In the following theorem we are going to use the notion of total φ-variation which appears in [1].

Definition 2.5. Let us denote by Φ the set of all increasing functions φ : $[0, \infty) \rightarrow[0, \infty)$ such that $\varphi(0)=\varphi(0+)=0, \varphi(\infty)=\infty$. For $f:[a, b] \rightarrow X$, given $\varphi \in \Phi$ and a division $d=\left\{t_{0}, t_{1}, \ldots, t_{m}\right\} ; d \in \mathcal{D}_{a, b}$, we define

$$
\mathcal{V}_{d}^{\varphi}(f)=\sum_{j=1}^{m} \varphi\left(\left\|f\left(t_{j}\right)-f\left(t_{j-1}\right)\right\|_{X}\right)
$$

and the total φ-variation of f by

$$
\varphi-\operatorname{Var}_{[a, b]}(f)=\sup \left\{\mathcal{V}_{d}^{\varphi}(f): d \in \mathcal{D}_{a, b}\right\}
$$

Theorem 2.6. The following properties of a function $f:[a, b] \rightarrow X$ are equivalent:
(i) The function f is regulated.
(ii) There is a continuous function $g:[c, d] \rightarrow X$ and a non-decreasing function $h:[a, b] \rightarrow[c, d]$ such that $f(t)=g(h(t))$ for every $t \in[a, b]$.
(iii) There is a continuous increasing function ω : $[0, \infty) \rightarrow[0, \infty), \omega(0+)=0$, and a non-decreasing function $h:[a, b] \rightarrow \mathbb{R}$ such that $\|f(t)-f(s)\|_{X} \leqslant \omega(|h(t)-h(s)|)$ holds for every $s, t \in[a, b]$.
(iv) There is a non-decreasing function $\omega:[0, \infty) \rightarrow[0, \infty), \omega(0+)=0$, and a nondecreasing function $h:[a, b] \rightarrow \mathbb{R}$ such that $\|f(t)-f(s)\|_{X} \leqslant \omega(|h(t)-h(s)|)$ holds for every $s, t \in[a, b]$.
(v) There is a continuous increasing function $\varphi:[0, \infty) \rightarrow[0, \infty), \varphi(0)=\varphi(0+)=0$, $\varphi(\infty)=\infty$, such that $\varphi-\operatorname{Var}_{[a, b]}(f)<\infty$.
(vi) There is an increasing function $\varphi:[0, \infty) \rightarrow[0, \infty), \varphi(0)=\varphi(0+)=0$, $\varphi(\infty)=\infty$, such that $\varphi-\operatorname{Var}_{[a, b]}(f) \leqslant 1$.

Proof. The scheme of the proof is (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (i); (iii) \Rightarrow (v) $\Rightarrow(\mathrm{vi}) \Rightarrow$ (iv).
(i) \Rightarrow (ii): According to Proposition 2.4, for any $n \in \mathbb{N}$ the sets J_{n}^{-}, J_{n}^{+}defined by

$$
\begin{aligned}
J_{n}^{-} & =\left\{t \in(a, b]:\|f(t-)-f(t)\|_{X} \geqslant \frac{1}{n}\right\}, \\
J_{n}^{+} & =\left\{t \in(a, b]:\|f(t+)-f(t)\|_{X} \geqslant \frac{1}{n}\right\}
\end{aligned}
$$

are finite. Obviously, we can find non-decreasing functions $h_{n}:[a, b] \rightarrow \mathbb{R}$ with leftand right-hand discontinuity points in J_{n}^{-}and J_{n}^{+}, respectively. Moreover, h_{n} can be chosen in such a way that all of them are bounded by 1 . Then we can define

$$
h(t)=t+\sum_{n=1}^{\infty} 2^{-n} h_{n}(t)
$$

for $t \in[a, b]$. Denote $h(a)=c$ and $h(b)=d$. The function h is increasing, and it has left-handed and right-handed discontinuities at all points of the sets $J^{-}=\bigcup_{n \in \mathbb{N}} J_{n}^{-}$ and $J^{+}=\bigcup_{n \in \mathbb{N}} J_{n}^{+}$, respectively.

For every $\tau \in[c, d]$, we can find a unique point $t \in[a, b]$ such that either $\tau=h(t)$ or $h(t-) \leqslant \tau<h(t)$, or $h(t)<\tau \leqslant h(t+)$. If $\tau=h(t)$, we define $g(\tau)=f(t)$. If $h(t-) \leqslant \tau<h(t)$, we define

$$
g(\tau)=f(t)+\frac{h(t)-\tau}{h(t)-h(t-)}(f(t-)-f(t)) ;
$$

if $h(t)<\tau \leqslant h(t+)$, we define

$$
g(\tau)=f(t)+\frac{\tau-h(t)}{h(t+)-h(t)}(f(t+)-f(t))
$$

It is obvious that $f(t)=g(h(t))$ holds for each $t \in[a, b]$; we shall verify that the function g is continuous. Certainly g is continuous at each interval of the form $[h(t-), h(t)]$ and $[h(t), h(t+)]$. We need to prove that g is left-continuous for every $\tau=h(t-)$, and right-continuous for every $\tau=h(t+)$.

Assume that $\tau_{0}=h\left(t_{0}-\right)$ for some $t_{0} \in(a, b]$. Let $\varepsilon>0$ be given. There is $\delta>0$ such that

$$
\left(t_{0}-\delta, t_{0}\right) \subset[a, b] \quad \text { and } \quad \text { if } t_{0}-\delta<t<t_{0} \text { then }\left\|f\left(t_{0}-\right)-f(t)\right\|_{X}<\frac{\varepsilon}{3} .
$$

Obviously, if $t_{0}-\delta<t<t_{0}$ then

$$
\left\|f\left(t_{0}-\right)-f(t-)\right\|_{X} \leqslant \frac{\varepsilon}{3} \quad \text { and } \quad\left\|f\left(t_{0}-\right)-f(t+)\right\|_{X} \leqslant \frac{\varepsilon}{3}
$$

Choose a point $\sigma \in\left(t_{0}-\delta, t_{0}\right)$ at which the function h is continuous. Let $s \in$ $\left(h(\sigma), h\left(t_{0}-\right)\right)$ be an arbitrary point. We can find $t \in\left(\sigma, t_{0}\right)$ such that $h(t-) \leqslant s \leqslant$ $h(t+)$. If $s=h(t)$, then

$$
\left\|g(s)-g\left(h\left(t_{0}-\right)\right)\right\|_{X}=\left\|f(t)-f\left(t_{0}-\right)\right\|_{X}<\frac{\varepsilon}{3}
$$

if $h(t-) \leqslant s<h(t)$, then

$$
\begin{aligned}
\left\|g(s)-g\left(h\left(t_{0}-\right)\right)\right\|_{X} & \leqslant\|g(s)-g(h(t))\|_{X}+\left\|g(h(t))-g\left(h\left(t_{0}-\right)\right)\right\|_{X} \\
& =\frac{h(t)-s}{h(t)-h(t-)}\|f(t)-f(t-)\|_{X}+\left\|f(t)-f\left(t_{0}-\right)\right\|_{X} \\
& \leqslant\|f(t)-f(t-)\|_{X}+\left\|f(t)-f\left(t_{0}-\right)\right\|_{X} \\
& \leqslant 2\left\|f(t)-f\left(t_{0}-\right)\right\|_{X}+\left\|f(t-)-f\left(t_{0}-\right)\right\|_{X}<\varepsilon
\end{aligned}
$$

Similarly, if $h(t)<s \leqslant h(t+)$, then $\left\|g(s)-g\left(h\left(t_{0}-\right)\right)\right\|_{X}<\varepsilon$. We can conclude that the function g is left-continuous at the point $\tau_{0}=h\left(t_{0}-\right)$. Analogously, it can be proved that g is right-continuous at every point $\tau_{0}=h\left(t_{0}+\right)$ for $t_{0} \in[a, b)$.
(ii) \Rightarrow (iii): The function ω can be defined by

$$
\omega(r)=r+\sup \left\{\left\|g\left(\tau^{\prime \prime}\right)-g\left(\tau^{\prime}\right)\right\|_{X} ; \tau^{\prime}, \tau^{\prime \prime} \in[a, b],\left|\tau^{\prime \prime}-\tau^{\prime}\right| \leqslant r\right\}, \quad \omega(0)=0
$$

Since a function continuous on a compact interval is uniformly continuous, for every $\varepsilon>0$ there is $\delta>0$ such that

$$
\text { if } \tau^{\prime}, \tau^{\prime \prime} \in[a, b] \text { and }\left|\tau^{\prime \prime}-\tau^{\prime}\right|<\delta \text { then }\left\|g\left(\tau^{\prime \prime}\right)-g\left(\tau^{\prime}\right)\right\|_{X}<\varepsilon
$$

It follows that $\lim _{r \rightarrow 0+} \omega(r)=0$.
It is obvious that the function ω is increasing, $\omega(\infty)=\infty$. If the function ω were not continuous at a point $r \in(0, \infty)$, then $\omega(r+)>\omega(r-)$ would hold.
(1) Assume that $\omega(r)>\omega(r-)$. By definition of ω, there are points $\tau^{\prime}, \tau^{\prime \prime} \in[a, b]$ such that

$$
\left|\tau^{\prime}-\tau^{\prime \prime}\right| \leqslant r \text { and } r+\left\|g\left(\tau^{\prime \prime}\right)-g\left(\tau^{\prime}\right)\right\|_{X}>\omega(r-)
$$

We can find $r_{1} \in(0, r)$ such that

$$
r_{1}+\left\|g\left(\tau^{\prime \prime}\right)-g\left(\tau^{\prime}\right)\right\|_{X}>\omega(r-) .
$$

Since g is continuous, there are $s^{\prime}, s^{\prime \prime} \in[a, b]$ such that

$$
\left|s^{\prime}-s^{\prime \prime}\right|<r \text { and } r_{1}+\left\|g\left(s^{\prime \prime}\right)-g\left(s^{\prime}\right)\right\|_{X}>\omega(r-) .
$$

Denote $\varrho=\max \left\{r_{1},\left|s^{\prime}-s^{\prime \prime}\right|\right\}$. Then,

$$
\varrho+\left\|g\left(s^{\prime \prime}\right)-g\left(s^{\prime}\right)\right\|_{X} \geqslant r_{1}+\left\|g\left(s^{\prime \prime}\right)-g\left(s^{\prime}\right)\right\|_{X}>\omega(r-) \geqslant \omega(\varrho),
$$

which is in contradiction with the definition of ω.
(2) Assume that $\omega(r+)>\omega(r)$. We can fix a point c such that $\omega(r+)>c>\omega(r)$. For any $n \in \mathbb{N}$, we have $\omega(r+1 / n)>c$. There are $\tau_{n}^{\prime}, \tau_{n}^{\prime \prime} \in[a, b]$ such that $\left|\tau_{n}^{\prime \prime}-\tau_{n}^{\prime}\right| \leqslant$ $r+1 / n$ and

$$
\omega\left(r+\frac{1}{n}\right) \geqslant r+\frac{1}{n}+\left\|g\left(\tau_{n}^{\prime \prime}\right)-g\left(\tau_{n}^{\prime}\right)\right\|_{X}>c
$$

We can find convergent subsequences $\tau_{n_{k}}^{\prime} \rightarrow \tau^{\prime}, \tau_{n_{k}}^{\prime \prime} \rightarrow \tau^{\prime \prime}$; considering that the function g is continuous, we obtain limits at both sides:

$$
\omega(r+) \geqslant r+\left\|g\left(\tau^{\prime \prime}\right)-g\left(\tau^{\prime}\right)\right\|_{X} \geqslant c>\omega(r)
$$

at the same time, $r+\left\|g\left(\tau^{\prime \prime}\right)-g\left(\tau^{\prime}\right)\right\|_{X} \leqslant \omega(r)$ because $\left|\tau^{\prime}-\tau^{\prime \prime}\right| \leqslant r$, which is a contradiction.
(iii) \Rightarrow (iv): This is obvious.
(iv) \Rightarrow (i): For $\varepsilon>0$ given, we can find $r>0$ such that $\omega(r)<\varepsilon$; considering that the non-decreasing function h is regulated, we can find a division $a=x_{0}<$ $x_{1}<\ldots<x_{k}=b$ such that if $x_{i-1}<s<t<x_{i}$ then $|h(t)-h(s)|<r$. Then we have

$$
\|f(t)-f(s)\|_{X} \leqslant \omega(|h(t)-h(s)|) \leqslant \omega(r)<\varepsilon
$$

Using Theorem 2.3, we conclude that the function f is regulated.
(iii) $\Rightarrow(\mathrm{v})$: We can assume that $\omega(\infty)=\infty$, otherwise $\omega(r)$ can be replaced by $\omega(r)+r$. Let us define $\varphi=\omega^{-1}$. Then $\varphi \in \Phi$ and for any division $d \in \mathcal{D}_{a, b}$, $d=\left\{t_{0}, t_{1}, \ldots, t_{k}\right\}$, we have

$$
\begin{aligned}
\mathcal{V}_{d}^{\varphi}(f) & =\sum_{j=1}^{k} \varphi\left(\left\|f\left(t_{j}\right)-f\left(t_{j-1}\right)\right\|_{X}\right) \leqslant \sum_{j=1}^{k} \varphi\left(\omega\left(h\left(t_{j}\right)-h\left(t_{j-1}\right)\right)\right. \\
& =\sum_{j=1}^{k}\left[h\left(t_{j}\right)-h\left(t_{j-1}\right)\right]=h(b)-h(a)
\end{aligned}
$$

Then $\varphi-\operatorname{Var}_{[a, b]}(f) \leqslant h(b)-h(a)$.
(v) $\Rightarrow(\mathrm{vi})$: Denote $\alpha=\varphi-\operatorname{Var}_{[a, b]}(f)$; if $\alpha=0$ then $\alpha \leqslant 1$ is satisfied; if $\alpha>0$, we can define $\psi(x)=\varphi(x) / \alpha, x \in[0, \infty)$; then for any division $d \in \mathcal{D}_{[a, b]}, d=$ $\left\{t_{0}, t_{1}, \ldots, t_{k}\right\}$, we have

$$
\mathcal{V}_{d}^{\psi}(f)=\sum_{j=1}^{k} \psi\left(\left\|f\left(t_{j}\right)-f\left(t_{j-1}\right)\right\|_{X}\right)=\sum_{j=1}^{k} \frac{1}{\alpha} \varphi\left(\left\|f\left(t_{j}\right)-f\left(t_{j-1}\right)\right\|_{X}\right)=\frac{1}{\alpha} \mathcal{V}_{d}^{\varphi}(f)
$$

consequently, $\psi-\operatorname{Var}_{[a, b]}(f)=1$.
(vi) \Rightarrow (iv): Define $h(t)=\varphi-\operatorname{Var}_{[a, t]}(f)$ for all $t \in[a, b]$; the function h is nondecreasing. For any $t^{\prime}, t^{\prime \prime}$ such that $a \leqslant t^{\prime}<t^{\prime \prime} \leqslant b$, we have

$$
h\left(t^{\prime \prime}\right)-h\left(t^{\prime}\right) \geqslant \varphi\left(\left\|f\left(t^{\prime \prime}\right)-f\left(t^{\prime}\right)\right\|_{X}\right)
$$

because $d=\left\{t^{\prime}, t^{\prime \prime}\right\}$ is a division of the interval $\left[t^{\prime}, t^{\prime \prime}\right]$.
Keeping in mind that the function φ is increasing and $\varphi(0)=\varphi(0+)=0$, $\varphi(\infty)=\infty$, we can define a function $\omega:[0, \infty) \rightarrow[0, \infty)$ so that

$$
\omega(0)=0 ; \quad \omega(r)=x \quad \text { if } r=\varphi(x) \text { for some } x \in(0, \infty)
$$

and

$$
\text { if } r \in(\varphi(x-), \varphi(x+)) \text { for some } x \in[0, \infty) \text { then } \omega(r)=x
$$

Apparently $\omega(\varphi(x))=x$ for every $x \in[0, \infty)$ and the function ω is non-decreasing, $\omega(0+)=0$ (actually, ω is continuous, however that is not needed here).

For any $t^{\prime}, t^{\prime \prime}$ such that $a \leqslant t^{\prime}<t^{\prime \prime} \leqslant b$, we have

$$
\left\|f\left(t^{\prime \prime}\right)-f\left(t^{\prime}\right)\right\|_{X}=\omega\left(\varphi\left(\left\|f\left(t^{\prime \prime}\right)-f\left(t^{\prime}\right)\right\|_{X}\right)\right) \leqslant \omega\left(\varphi-\operatorname{Var}_{\left[t^{\prime}, t^{\prime \prime}\right]}(f)\right)=\omega\left(h\left(t^{\prime \prime}\right)-h\left(t^{\prime}\right)\right)
$$

The function g as defined in the proof is called the linear prolongation of the function f along the increasing function h (see [2]).

Proposition 2.7. Assume that a function $f:[a, b] \rightarrow X$ is regulated. Then
(i) the function f is bounded,
(ii) the image $\operatorname{Im}(f)=\{f(t): t \in[a, b]\}$ is a relatively compact subset of X,
(iii) there is a sequence of step functions $g_{n}:[a, b] \rightarrow X$ such that $g_{n} \rightrightarrows f$ and $\operatorname{Im}\left(g_{n}\right) \subset \operatorname{Im}(f)$ for every $n \in \mathbb{N}$.

Proof. (i) According to Theorem 2.3, we can find a step function $g:[a, b] \rightarrow X$ such that $\|f-g\|_{\infty}<1$; then $\|f\|_{\infty}<\|g\|_{\infty}+1$ and a step function is obviously bounded.
(ii) For $\varepsilon>0$, we can find a step function $g:[a, b] \rightarrow X$ such that $\|f-g\|_{\infty}<\varepsilon$. The step function g has finitely many values, i.e., $C=\operatorname{Im}(g) \subset X$ is a finite set. For any $t \in[a, b]$, there is a point $c \in C$ such that $\|c-f(t)\|_{X}<\varepsilon($ namely, $c=g(t))$. This means that C is a finite ε-net for the set $\operatorname{Im}(f)$; consequently, $\operatorname{Im}(f)$ is a relatively compact subset of X.
(iii) We can see in the proof of Theorem 2.3 that the step functions can be constructed with values from $\operatorname{Im}(f)$.

3. Uniform convergence of regulated functions

Definition 3.1. We say that a set $\mathcal{T} \subset G([a, b] ; X)$ is equiregulated if for every $t \in(a, b]$ and every $\varepsilon>0$ there is $\delta>0$ such that $(t-\delta, t) \subset[a, b]$ and if $\tau \in(t-\delta, t)$, then $\|f(t-)-f(\tau)\|_{X}<\varepsilon$ holds for all $f \in \mathcal{T}$; moreover, for every $t \in[a, b)$ and every $\varepsilon>0$ there is $\delta>0$ such that $(t, t+\delta) \subset[a, b]$ and if $\tau \in(t, t+\delta)$, then $\|f(t+)-f(\tau)\|_{X}<\varepsilon$ holds for all $f \in \mathcal{T}$.

Proposition 3.2. A set of functions $\mathcal{T} \subset G([a, b] ; X)$ is equiregulated if and only if for every $\varepsilon>0$ there is a division $a=a_{0}<a_{1}<\ldots<a_{k}=b$ such that if $a_{i-1}<t^{\prime}<t^{\prime \prime}<a_{i}$ for some $i \in\{1,2, \ldots, k\}$ then $\left\|f\left(t^{\prime \prime}\right)-f\left(t^{\prime}\right)\right\|_{X}<\varepsilon$ holds for all $f \in \mathcal{T}$.

Proof. It can be obtained in the same way as the proof of Theorem 2.3 (i) \Leftrightarrow (iv).

Theorem 3.3. Assume that a sequence of regulated functions $f_{n}:[a, b] \rightarrow X$, $n \in \mathbb{N}$, is given, and there is a function $f_{0}:[a, b] \rightarrow X$ such that $f_{n}(t) \rightarrow f_{0}(t)$ for every $t \in[a, b]$. Then the function f_{0} is the uniform limit of the sequence $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ if and only if the set $\left\{f_{n}: n \in \mathbb{N}\right\}$ is equiregulated.

Proof. Assume that $f_{n} \rightrightarrows f_{0}$. According to Proposition 2.2, the function f_{0} is regulated. Let $t \in(a, b]$ be given. For any given $\varepsilon>0$, we can find $n_{0} \in \mathbb{N}$ such that $\left\|f_{n}-f_{0}\right\|_{\infty}<\frac{1}{3} \varepsilon$ for all $n \geqslant n_{0}$. For every $n=0,1, \ldots, n_{0}$, there is $\delta_{n}>0$ such that $\left(t-\delta_{n}, t\right) \subset[a, b]$ and if $\tau \in\left(t-\delta_{n}, t\right)$, then $\left\|f_{n}(t-)-f_{n}(\tau)\right\|_{X}<\frac{1}{3} \varepsilon$.

Denote $\delta=\min \left\{\delta_{0}, \delta_{1}, \ldots, \delta_{n_{0}}\right\}$. If $\tau \in(t-\delta, t)$, then $\left\|f_{n}(t-)-f_{n}(\tau)\right\|_{X}<\frac{1}{3} \varepsilon$ for $n=1, \ldots, n_{0}$; and if $n \geqslant n_{0}$ then

$$
\left\|f_{n}(t-)-f_{n}(\tau)\right\|_{X} \leqslant\left\|f_{n}(t-)-f_{0}(t-)\right\|_{X}+\left\|f_{0}(t-)-f_{0}(\tau)\right\|_{X}+\left\|f_{0}(\tau)-f_{n}(\tau)\right\|_{X}<\varepsilon
$$

The proof for right-sided limits is analogous.
Now, assume that the set $\left\{f_{n}: n \in \mathbb{N}\right\}$ is equiregulated. Let $\varepsilon>0$ be given. By Proposition 3.2, there is a division $a=a_{0}<a_{1}<\ldots<a_{k}=b$ such that if $a_{i-1}<t^{\prime}<t^{\prime \prime}<a_{i}$ then $\left\|f_{n}\left(t^{\prime \prime}\right)-f_{n}\left(t^{\prime}\right)\right\|_{X}<\frac{1}{4} \varepsilon$ holds for all $n \in \mathbb{N}$. Choose a point $b_{i} \in\left(a_{i-1}, a_{i}\right)$ for each $i=1,2, \ldots, k$. We have $f_{n}\left(a_{i}\right) \rightarrow f_{0}\left(a_{i}\right), f_{n}\left(b_{i}\right) \rightarrow f_{0}\left(b_{i}\right)$; we can find $n_{0} \in \mathbb{N}$ such that if $n \geqslant n_{0}$ then

$$
\begin{aligned}
\left\|f_{n}\left(a_{i}\right)-f_{0}\left(a_{i}\right)\right\|_{X}<\varepsilon & \text { for } i=0,1, \ldots, k, \\
\left\|f_{n}\left(b_{i}\right)-f_{0}\left(b_{i}\right)\right\|_{X}<\frac{\varepsilon}{4} & \text { for } i=1,2, \ldots, k .
\end{aligned}
$$

For any $t \in[a, b]$ given, either $t=a_{i}$ for some i, then $\left\|f_{n}(t)-f_{0}(t)\right\|_{X}<\varepsilon$; or $t \in\left(a_{i-1}, a_{i}\right)$ for some $i \in\{1,2, \ldots, k\}$; since $f_{n}(t) \rightarrow f_{0}(t)$, there is a fixed $m \geqslant n_{0}$ such that $\left\|f_{m}(t)-f_{0}(t)\right\|_{X}<\frac{1}{4} \varepsilon$. For any $n \geqslant n_{0}$ we have

$$
\begin{aligned}
\left\|f_{n}(t)-f_{0}(t)\right\|_{X} \leqslant & \left\|f_{n}(t)-f_{n}\left(b_{i}\right)\right\|_{X}+\left\|f_{n}\left(b_{i}\right)-f_{0}\left(b_{i}\right)\right\|_{X}+\left\|f_{0}\left(b_{i}\right)-f_{m}\left(b_{i}\right)\right\|_{X} \\
& +\left\|f_{m}\left(b_{i}\right)-f_{m}(t)\right\|_{X}+\left\|f_{m}(t)-f_{0}(t)\right\|_{X}<2 \varepsilon
\end{aligned}
$$

Consequently $f_{n} \rightrightarrows f_{0}$.
Proposition 3.4. Assume that a set $\mathcal{T} \subset G([a, b] ; X)$ is equiregulated. Then
(i) for any $c>0$, the sets

$$
\begin{aligned}
& J_{c}^{+}=\left\{t \in[a, b) ; \text { there is } f \in \mathcal{T} \text { such that }\|f(t+)-f(t)\|_{X} \geqslant c\right\}, \\
& J_{c}^{-}=\left\{t \in(a, b] ; \text { there is } f \in \mathcal{T} \text { such that }\|f(t-)-f(t)\|_{X} \geqslant c\right\}
\end{aligned}
$$

are finite;
(ii) the sets defined by

$$
\begin{align*}
& J^{+}=\{t \in[a, b) ; \text { there is } f \in \mathcal{T} \text { such that } f(t+) \neq f(t)\} \tag{3.1}\\
& J^{-}=\{t \in(a, b] ; \text { there is } f \in \mathcal{T} \text { such that } f(t-) \neq f(t)\}
\end{align*}
$$

are at most countable.
Proof. The proof is analogous to the proof of Proposition 2.4.
Lemma 3.5. Assume that sets $\mathcal{J} \subset G([a, b] ; X)$ and $\mathcal{T} \subset G([a, b] ; X)$ are equiregulated. Then the set $\{f+g: f \in \mathcal{J}, g \in \mathcal{T}\}$ is equiregulated.

Proof. Let $t \in(a, b]$ be given. For any $\varepsilon>0$ we can find $\delta_{1}>0$ such that $\left(t-\delta_{1}, t\right) \subset[a, b]$ and if $\tau \in\left(t-\delta_{1}, t\right)$ then

$$
\|f(t-)-f(\tau)\|_{X}<\frac{\varepsilon}{2} \quad \text { holds for all } f \in \mathcal{J}
$$

and we can find $\delta_{2}>0$ such that $\left(t-\delta_{2}, t\right) \subset[a, b]$ and if $\tau \in\left(t-\delta_{2}, t\right)$ then

$$
\|g(t-)-g(\tau)\|_{X}<\frac{\varepsilon}{2} \quad \text { holds for all } g \in \mathcal{T}
$$

Then we put $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$ and if $\tau \in(t-\delta, t)$ then

$$
\|(f+g)(t-)-(f+g)(\tau)\|_{X} \leqslant\|f(t-)-f(\tau)\|_{X}+\|g(t-)-g(\tau)\|_{X}<\varepsilon
$$

Similarly for right-sided limits.
Proposition 3.6. Assume that sequences of regulated functions $f_{n}:[a, b] \rightarrow X$, $g_{n}:[a, b] \rightarrow X, n \in \mathbb{N}$, are given such that $\left\|g_{n}-f_{n}\right\|_{\infty} \rightarrow 0$. If the set $\left\{f_{n}: n \in \mathbb{N}\right\}$ is equiregulated, then the set $\left\{g_{n}: n \in \mathbb{N}\right\}$ is equiregulated.

Proof. Denote $h_{n}=g_{n}-f_{n}$. We have a sequence of regulated functions $\left\{h_{n}\right\}_{n \in \mathbb{N}}$ which is uniformly convergent to the zero function. According to Theorem 3.3, the set $\left\{h_{n}: n \in \mathbb{N}\right\}$ is equiregulated. Now we can use Lemma 3.5 to conclude that the set $\left\{g_{n}: n \in \mathbb{N}\right\}=\left\{f_{n}+h_{n}: n \in \mathbb{N}\right\}$ is equiregulated.

Definition 3.7. We say that a set of regulated functions $\mathcal{T} \subset G([a, b] ; X)$ has bounded jumps if for each $t \in(a, b]$ the set $\{f(t)-f(t-): f \in \mathcal{T}\}$ is bounded, and for each $t \in[a, b)$ the set $\{f(t+)-f(t): f \in \mathcal{T}\}$ is bounded.

For $t \in(a, b]$ and $s \in[a, b)$, we denote

$$
\begin{align*}
K_{t}^{-} & =\sup \left\{\|f(t)-f(t-)\|_{X}: f \in \mathcal{T}\right\} \tag{3.2}\\
K_{s}^{+} & =\sup \left\{\|f(s)-f(s+)\|_{X}: f \in \mathcal{T}\right\}
\end{align*}
$$

Proposition 3.8. Assume that a set $\mathcal{T} \subset G([a, b] ; X)$ is equiregulated and has bounded jumps. Then there is $K>0$ such that $\|f(t)-f(a)\|_{X} \leqslant K$ holds for all $f \in \mathcal{T}, t \in[a, b]$.

Moreover, if the set $\{f(a): f \in \mathcal{T}\}$ is bounded, then the set \mathcal{T} is bounded.
Proof. Using Proposition 3.2, we can find a division $a=a_{0}<a_{1}<\ldots<a_{k}=b$ such that $\left\|f\left(t^{\prime \prime}\right)-f\left(t^{\prime}\right)\right\|_{X}<1$ holds for any $f \in \mathcal{T}, a_{i-1}<t^{\prime}<t^{\prime \prime}<a_{i}$.

Let $K_{a_{i-1}}^{+}, K_{a_{i}}^{-}$be given by (3.2). We have

$$
\begin{aligned}
\| f\left(a_{i}\right)- & f\left(a_{i-1}\right) \|_{X} \\
& \leqslant\left\|f\left(a_{i}\right)-f\left(a_{i}-\right)\right\|_{X}+\left\|f\left(a_{i}-\right)-f\left(a_{i-1}+\right)\right\|_{X}+\left\|f\left(a_{i-1}+\right)-f\left(a_{i-1}\right)\right\|_{X} \\
& \leqslant K_{a_{i}}^{-}+1+K_{a_{i-1}}^{+}
\end{aligned}
$$

then $\left\|f\left(a_{j}\right)-f(a)\right\|_{X} \leqslant \sum_{i=1}^{j}\left\|f\left(a_{i}\right)-f\left(a_{i-1}\right)\right\|_{X} \leqslant j+\sum_{i=1}^{j}\left(K_{a_{i}}^{-}+K_{a_{i-1}}^{+}\right)$.
If $t \in\left(a_{j}, a_{j+1}\right)$ then

$$
\|f(t)-f(a)\|_{X} \leqslant\left\|f(t)-f\left(a_{j}+\right)\right\|_{X}+K_{a_{j}}^{+}+\left\|f\left(a_{j}\right)-f(a)\right\|_{X}
$$

we can conclude that

$$
\|f(t)-f(a)\|_{X} \leqslant K:=k+\sum_{i=0}^{k-1} K_{a_{i}}^{+}+\sum_{i=1}^{k} K_{a_{i}}^{-}
$$

holds for all $f \in \mathcal{T}, t \in[a, b]$.
The latter part of the proposition is evident.
Proposition 3.9. If the set $\mathcal{T} \subset G([a, b] ; X)$ is equiregulated and for every $t \in$ $[a, b]$ the set $\{f(t): f \in \mathcal{T}\}$ is bounded, then the set \mathcal{T} is bounded.

Proof. According to Proposition 3.2, we can find a division $a=a_{0}<a_{1}<$ $\ldots<a_{k}=b$ such that if $a_{i-1}<t^{\prime}<t^{\prime \prime}<a_{i}$ then $\left\|f\left(t^{\prime \prime}\right)-f\left(t^{\prime}\right)\right\|_{X}<1$ holds for any $f \in \mathcal{T}, i=1,2, \ldots, k$. For each $i=1,2, \ldots, k$, choose a point $b_{i} \in\left(a_{i-1}, a_{i}\right)$. The set

$$
\left\{f\left(a_{i}\right): f \in \mathcal{T}, i=0,1, \ldots, k\right\} \cup\left\{f\left(b_{i}\right): f \in \mathcal{T}, i=1,2, \ldots, k\right\}
$$

is bounded by a constant K.
Let any $t \in[a, b]$ be given, and $f \in \mathcal{T}$. Either $t=a_{i}$ for some $i \in\{0,1, \ldots, k\}$, then $\|f(t)\|_{X}=\left\|f\left(a_{i}\right)\right\|_{X} \leqslant K$; or $t \in\left(a_{i-1}, a_{i}\right)$ for some $i \in\{1,2, \ldots, k\}$, then

$$
\|f(t)\|_{X} \leqslant\left\|f(t)-f\left(b_{i}\right)\right\|_{X}+\left\|f\left(b_{i}\right)\right\|_{X}<1+K
$$

concluding the proof.

Theorem 3.10. For any set of regulated functions $\mathcal{T} \subset G([a, b] ; X)$, the following properties are equivalent:
(i) \mathcal{T} is equiregulated and has bounded jumps;
(ii) there is a non-decreasing function $h:[a, b] \rightarrow[c, d]$ and an equicontinuous set $\mathcal{B} \subset \mathcal{C}([c, d] ; X)$ such that for any $f \in \mathcal{T}$ there is a continuous function $g \in \mathcal{B}$ satisfying $f(t)=g(h(t))$ for $t \in[a, b]$;
(iii) there is a non-decreasing function $\omega:[0, \infty) \rightarrow[0, \infty), \omega(0+)=0$, and a nondecreasing function $h:[a, b] \rightarrow \mathbb{R}$ such that $\left\|f\left(t^{\prime \prime}\right)-f\left(t^{\prime}\right)\right\|_{X} \leqslant \omega\left(\left|h\left(t^{\prime \prime}\right)-h\left(t^{\prime}\right)\right|\right)$ holds for all $f \in \mathcal{T}, a \leqslant t^{\prime}<t^{\prime \prime} \leqslant b$.

Proof. (i) \Rightarrow (ii): It follows from Proposition 3.4 that the sets J^{+}, J^{-}are at most countable. As was proved in Theorem 2.6, there exists a non-decreasing function $h:[a, b] \rightarrow \mathbb{R}$ such that

$$
\begin{aligned}
& J^{-}=\{t \in(a, b]: h(t-) \neq h(t)\} \\
& J^{+}=\{t \in[a, b): h(t+) \neq h(t)\}
\end{aligned}
$$

We can assume that the function h is increasing (if not, it can be replaced by $\tilde{h}(t)=h(t)+t)$.

For each $f \in \mathcal{T}$, we can define its linear prolongation g_{f} as in the proof of Theorem 2.6:

If $\tau=h(t)$, we define

$$
g_{f}(\tau)=f(t)
$$

If $h(t-) \leqslant \tau<h(t)$, we define

$$
\begin{equation*}
g_{f}(\tau)=f(t)+\frac{h(t)-\tau}{h(t)-h(t-)}(f(t-)-f(t)) . \tag{3.3}
\end{equation*}
$$

If $h(t)<\tau \leqslant h(t+)$, we define

$$
g_{f}(\tau)=f(t)+\frac{\tau-h(t)}{h(t+)-h(t)}(f(t+)-f(t)) .
$$

Then $g_{f}(h(t))=f(t) ; g_{f}(h(t-))=f(t-) ; g_{f}(h(t+))=f(t+)$. All these functions g_{f} are continuous and we denote $\mathcal{B}=\left\{g_{f}: f \in \mathcal{T}\right\}$. We will prove that the set \mathcal{B} is equicontinuous.

Let $t \in(a, b]$ be given such that $h(t-)<h(t)$. It is assumed that

$$
\|f(t)-f(t-)\|_{X} \leqslant K_{t}^{-}
$$

for all $f \in \mathcal{T}$, where $K_{t}^{-}<\infty$ is given by (3.2). We have

$$
\left\|g_{f}(h(t))-g_{f}(h(t-))\right\|_{X}=\|f(t)-f(t-)\|_{X} \leqslant K_{t}^{-},
$$

hence for any $\tau^{\prime}, \tau^{\prime \prime} \in[h(t-), h(t)]$ we have

$$
\left\|g_{f}\left(h\left(\tau^{\prime \prime}\right)\right)-g_{f}\left(h\left(\tau^{\prime}\right)\right)\right\|_{X} \leqslant \frac{\left|\tau^{\prime \prime}-\tau^{\prime}\right| K_{t}^{-}}{h(t)-h(t-)}
$$

the functions g_{f} are equicontinuous on $[h(t-), h(t)]$. Analogously, they are equicontinuous on each interval $[h(t), h(t+)]$ where $h(t) \neq h(t+)$.

Now assume that $s_{0}=h\left(t_{0}-\right)$ for some $t_{0} \in(a, b]$ (regardless if h if left-continuous at t_{0} or not); we will prove that the functions in \mathcal{B} are equicontinuous from the left at s_{0}. For given $\varepsilon>0$ we can find $\delta>0$ such that $t_{0}-\delta>a$, and if $t_{0}-\delta<\tau<t_{0}$ then $\left\|f\left(t_{0}-\right)-f(\tau)\right\|_{X}<\frac{1}{3} \varepsilon$. It is evident that

$$
\left\|f\left(t_{0}-\right)-f(\tau+)\right\|_{X} \leqslant \frac{\varepsilon}{3}, \quad\left\|f\left(t_{0}-\right)-f(\tau-)\right\|_{X} \leqslant \frac{\varepsilon}{3}
$$

holds for any $\tau \in\left(t_{0}-\delta, t_{0}\right)$. Fix a point $\tau \in\left(t_{0}-\delta, t_{0}\right)$ and denote $\eta=h\left(t_{0}-\right)-$ $h(\tau)$. We have $\eta>0$ because the function h is increasing. Let $s \in\left(s_{0}-\eta, s_{0}\right)=$ $\left(h(\tau), h\left(t_{0}-\right)\right)$ be an arbitrary point. Considering that h is an increasing function, there is a unique point $t \in\left(\tau, t_{0}\right)$ such that $h(t-) \leqslant s \leqslant h(t+)$.

The first case is $h(t-) \leqslant s \leqslant h(t)$; then for any $f \in \mathcal{T}$ we have

$$
\begin{aligned}
\left\|g_{f}(s)-g_{f}\left(s_{0}\right)\right\|_{X} & \leqslant\left\|g_{f}(s)-g_{f}(h(t))\right\|_{X}+\left\|g_{f}(h(t))-g_{f}\left(h\left(t_{0}-\right)\right)\right\|_{X} \\
& =\frac{s-h(t)}{h(t-)-h(t)}\|f(t-)-f(t)\|_{X}+\left\|f(t)-f\left(t_{0}-\right)\right\|_{X} \\
& \leqslant\left\|f(t-)-f\left(t_{0}-\right)\right\|_{X}+2\left\|f(t)-f\left(t_{0}-\right)\right\|_{X}<\varepsilon
\end{aligned}
$$

or in the case $h(t) \leqslant s \leqslant h(t+)$, again we obtain $\left\|g_{f}(s)-g_{f}\left(s_{0}\right)\right\|<\varepsilon$. This proves the equicontinuity at $h\left(t_{0}-\right)$ from the left; equicontinuity at $h\left(t_{0}+\right)$ from the right can be proved similarly.
(ii) \Rightarrow (iii): Define

$$
\omega(r)=\sup \left\{\left\|g\left(s^{\prime \prime}\right)-g\left(s^{\prime}\right)\right\|_{X} ; s^{\prime}, s^{\prime \prime} \in[c, d],\left|s^{\prime \prime}-s^{\prime}\right| \leqslant r ; g \in \mathcal{B}\right\}, \quad \omega(0)=0
$$

It is well-known that an equicontinuous set of functions is uniformly continuous; therefore $w(0+)=0$. We have

$$
\left\|g\left(s^{\prime \prime}\right)-g\left(s^{\prime}\right)\right\|_{X} \leqslant \omega\left(\left|s^{\prime \prime}-s^{\prime}\right|\right) \quad \text { for any } g \in \mathcal{B}, s^{\prime}, s^{\prime \prime} \in[c, d]
$$

It follows that

$$
\begin{aligned}
&\left\|f\left(t^{\prime \prime}\right)-f\left(t^{\prime}\right)\right\|_{X}=\left\|g_{f}\left(h\left(t^{\prime \prime}\right)\right)-g_{f}\left(h\left(t^{\prime}\right)\right)\right\|_{X} \leqslant \omega\left(\left|h\left(t^{\prime \prime}\right)-h\left(t^{\prime}\right)\right|\right) \\
& \text { for all } f \in \mathcal{T}, t^{\prime}, t^{\prime \prime} \in[a, b] .
\end{aligned}
$$

(iii) \Rightarrow (i): It is well-known that any non-decreasing function is regulated. Let $\varepsilon>0$ be given; there is $r>0$ such that $\omega(r)<\varepsilon$. For any $t \in[a, b)$ there is $\delta>0$ such that $h(t+\delta)-h(t+)<r$. If $f \in \mathcal{T}$ and $\tau \in(t, t+\delta)$, then

$$
\|f(\tau)-f(t+)\|_{X} \leqslant \omega(h(\tau)-h(t+)) \leqslant \omega(r)<\varepsilon
$$

similarly for the left-sided limits. Further, for any $t \in[a, b)$ and $f \in \mathcal{T}$ we have

$$
\|f(t+)-f(t)\|_{X} \leqslant \omega(h(t+)-h(t))
$$

similarly, for any $t \in(a, b]$ and $f \in \mathcal{T}$ we have

$$
\|f(t)-f(t-)\|_{X} \leqslant \omega(h(t)-h(t-))
$$

Consequently, the set \mathcal{T} has bounded jumps.
Proposition 3.11. Assume that a sequence of regulated functions $\left\{f_{n}\right\}_{n \in \mathbb{N}} \subset$ $G([a, b] ; X)$ is given such that:
\triangleright there is a non-decreasing function $\omega:[0, \infty) \rightarrow[0, \infty), \omega(0+)=0$, and
\triangleright there is a bounded sequence of non-decreasing functions $h_{n}:[a, b] \rightarrow \mathbb{R}, n \in \mathbb{N}_{0}$ such that

$$
\left\|f_{n}\left(t^{\prime \prime}\right)-f_{n}(t)\right\|_{X} \leqslant \omega\left(h_{n}\left(t^{\prime \prime}\right)-h_{n}\left(t^{\prime}\right)\right)
$$

for every $n \in \mathbb{N}, a \leqslant t^{\prime}<t^{\prime \prime} \leqslant b$.
The following conditions are sufficient for the set $\left\{f_{n}: n \in \mathbb{N}\right\}$ to be equiregulated:
(i) the set $\left\{h_{n}: n \in \mathbb{N}\right\}$ is equiregulated;
(ii) $\limsup _{n \rightarrow \infty}\left[h_{n}\left(t^{\prime \prime}\right)-h_{n}\left(t^{\prime}\right)\right] \leqslant h_{0}\left(t^{\prime \prime}\right)-h_{0}\left(t^{\prime}\right)$ holds for any $a<t^{\prime}<t^{\prime \prime}<b$ and the function h_{0} is continuous;
(iii) $\lim _{n \rightarrow \infty} h_{n}(t)=h_{0}(t)$ for every $t \in[a, b]$ and the function h_{0} is continuous.

Proof. (i) Assume that the set $\left\{h_{n}: n \in \mathbb{N}\right\}$ is equiregulated. According to Theorem 3.10, we can find a non-decreasing function $\vartheta:[0, \infty) \rightarrow[0, \infty), \vartheta(0+)=0$ and a non-decreasing function $h:[a, b] \rightarrow \mathbb{R}$ such that

$$
\left|h_{n}\left(t^{\prime \prime}\right)-h_{n}\left(t^{\prime}\right)\right| \leqslant \vartheta\left(\left|h\left(t^{\prime \prime}\right)-h\left(t^{\prime}\right)\right|\right)
$$

holds for any $n \in \mathbb{N}, a \leqslant t^{\prime}<t^{\prime \prime} \leqslant b$. Then

$$
\left\|f_{n}\left(t^{\prime \prime}\right)-f_{n}\left(t^{\prime}\right)\right\|_{X} \leqslant \omega\left(\left|h_{n}\left(t^{\prime \prime}\right)-h_{n}\left(t^{\prime}\right)\right|\right) \leqslant \omega\left(\vartheta\left(h\left(t^{\prime \prime}\right)-h\left(t^{\prime}\right)\right)\right)
$$

using Theorem 3.10, we conclude that the set $\left\{f_{n}: n \in \mathbb{N}\right\}$ is equiregulated.
(ii) Let $\varepsilon>0$ be given. The continuous function h_{0} is uniformly continuous on $[a, b]$; then there is $\delta>0$ such that if $\mathrm{a} \leqslant t^{\prime}<t^{\prime \prime} \leqslant b$ and $t^{\prime \prime}-t^{\prime}<\delta$ then $h_{0}\left(t^{\prime \prime}\right)-h_{0}\left(t^{\prime}\right)<\varepsilon$. We can find a division $a=b_{0}<b_{1}<\ldots<b_{k}=b$ such that

$$
h_{0}\left(b_{j}\right)-h_{0}\left(b_{j-1}\right)<\frac{\varepsilon}{2} \quad \text { for any } i=1,2, \ldots, k .
$$

There is $n_{0} \in \mathbb{N}$ such that if $n \geqslant n_{0}$ and $j=1,2, \ldots, k$ then

$$
0 \leqslant h_{n}\left(b_{j}\right)-h_{n}\left(b_{j-1}\right)<\frac{\varepsilon}{2}+h_{0}\left(b_{j}\right)-h_{0}\left(b_{j-1}\right) .
$$

Considering that the functions h_{n} are non-decreasing, we get

$$
0 \leqslant h_{n}\left(t^{\prime \prime}\right)-h_{n}\left(t^{\prime}\right) \leqslant h_{n}\left(b_{j}\right)-h_{n}\left(b_{j-1}\right)<\frac{\varepsilon}{2}+h_{0}\left(b_{j}\right)-h_{0}\left(b_{j-1}\right)<\varepsilon
$$

for any $t^{\prime}, t^{\prime \prime}$ such that $b_{j-1} \leqslant t^{\prime}<t^{\prime \prime} \leqslant b_{j}, n \geqslant n_{0}$.
The functions $h_{1}, h_{2}, \ldots, h_{n_{0}}$ are regulated, therefore, for each interval $\left[b_{j-1}, b_{j}\right]$ we can find a subdivision $b_{j-1}=a_{0, j}<a_{1, j}<\ldots<a_{l_{j}, j}=b_{j}$ such that $0 \leqslant$ $h_{n}\left(t^{\prime \prime}\right)-h_{n}\left(t^{\prime}\right)<\varepsilon$ holds for $n \leqslant n_{0}, a_{i-1, j} \leqslant t^{\prime}<t^{\prime \prime} \leqslant a_{i, j}$; it follows that the conditions of Proposition 3.2 are satisfied, and therefore, the set $\left\{h_{n}: n \in \mathbb{N}\right\}$ is equiregulated. Now, we can use part (i).

Finally, (iii) is a consequence of (ii).

4. Sup-NORM TOPOLOGY

Proposition 4.1. The linear space of regulated functions $G([a, b] ; X)$ with the norm $\|\cdot\|_{\infty}$ is a Banach space.

Proof. Obviously $G([a, b] ; X)$ is a linear space and $\|\cdot\|_{\infty}$ is a norm. We shall prove that it is a complete normed linear space.

Assume that $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ is a Cauchy sequence of regulated functions. For any $t \in$ $[a, b]$, the sequence $\left\{f_{n}(t)\right\}_{n \in \mathbb{N}}$ has the Cauchy property, therefore its limit in the Banach space X exists, and it can be denoted by $f_{0}(t)$. For each $\varepsilon>0$ there is $n_{0} \in \mathbb{N}$ such that

$$
\left\|f_{n}(t)-f_{m}(t)\right\|_{X}<\varepsilon \quad \text { for all } t \in[a, b] \text { and all } m, n \geqslant n_{0}
$$

Passing to the limit $m \rightarrow \infty$, we get

$$
\left\|f_{n}(t)-f_{0}(t)\right\|_{X} \leqslant \varepsilon \quad \text { for all } t \in[a, b] \text { and all } n \geqslant n_{0}
$$

We have $f_{n} \rightrightarrows f_{0}$ and it follows from Proposition 2.2 that the function f_{0} is regulated.

Theorem 4.2. A set of regulated functions $\mathcal{T} \subset G([a, b] ; X)$ is relatively compact in the Banach space $G([a, b] ; X)$ if and only if the set \mathcal{T} is equiregulated and satisfies the following condition:

$$
\begin{equation*}
\text { for every } t \in[a, b] \text {, the set }\{f(t): f \in \mathcal{T}\} \text { is relatively compact in } X \text {. } \tag{4.1}
\end{equation*}
$$

Proof. (i) Assume that \mathcal{T} is relatively compact. Then for every $\varepsilon>0$ there is a finite ε-net, i.e., a finite set $\mathcal{P} \subset G([a, b] ; X)$ such that for each $f \in \mathcal{T}$ there is $g \in \mathcal{P}$ satisfying $\|f-g\|_{\infty}<\varepsilon$. For any fixed $t \in[a, b]$, denote $\mathcal{P}_{t}=\{g(t): g \in \mathcal{P}\} ;$ this is a finite subset of X and for any $f \in \mathcal{T}$ we can find $p \in \mathcal{P}_{t}(p=g(t))$ such that $\|f(t)-p\|_{X}<\varepsilon$; this means that \mathcal{P}_{t} is a finite ε-net for the set $\{f(t): f \in \mathcal{T}\}$. Consequently, this is a relatively compact subset of X.

Now, we shall prove that the functions in \mathcal{T} have uniform one-sided limits. Let $\tau \in[a, b]$ and $\varepsilon>0$ be given. We can find a finite $\frac{1}{3} \varepsilon$-net $\mathcal{P} \subset G([a, b] ; X)$ for \mathcal{T}.

Let us denote the elements of \mathcal{P} as $\left\{g_{1}, g_{2}, \ldots, g_{n}\right\}$. These are regulated functions, therefore we can find $\delta>0$ such that if $t \in(\tau-\delta, \tau) \cap[a, b]$ then $\left\|g_{j}(t)-g_{j}(\tau-)\right\|_{X}<$ $\frac{1}{3} \varepsilon$ and if $t \in(\tau, \tau+\delta) \cap[a, b]$ then $\left\|g_{j}(t)-g_{j}(\tau+)\right\|_{X}<\frac{1}{3} \varepsilon$ for any $j \in\{1,2, \ldots, n\}$.

Let $f \in \mathcal{T}$ be given, then we can find j such that $\left\|f-g_{j}\right\|_{\infty}<\frac{1}{3} \varepsilon$. For any $t \in(\tau-\delta, \tau) \cap[a, b]$ we have

$$
\|f(t)-f(\tau-)\|_{X} \leqslant 2\left\|f-g_{j}\right\|_{\infty}+\left\|g_{j}(t)-g_{j}(\tau-)\right\|_{X}<\varepsilon
$$

and for any $t \in(\tau, \tau+\delta) \cap[a, b]$ we have

$$
\|f(t)-f(\tau+)\|_{X} \leqslant 2\left\|f-g_{j}\right\|_{\infty}+\left\|g_{j}(t)-g_{j}(\tau+)\right\|_{X}<\varepsilon
$$

(ii) Assume that the set \mathcal{T} is equiregulated and satisfies condition (4.1). Let $\varepsilon>0$ be given. According to Proposition 3.2, there is a division $a=a_{0}<a_{1}<\ldots<a_{k}=b$ such that if $a_{i-1}<t^{\prime}<t^{\prime \prime}<a_{i}$ for an index $i \in\{1,2, \ldots, k\}$ and $f \in \mathcal{T}$ then $\left\|f\left(t^{\prime \prime}\right)-f\left(t^{\prime}\right)\right\|_{X}<\varepsilon$.

Let us choose a point $b_{i} \in\left(a_{i-1}, a_{i}\right)$ for each $i \in\{1,2, \ldots, k\}$. Due to (4.1) the set $Y=\left\{f\left(a_{i}\right), i=0,1, \ldots, k ; f \in \mathcal{T}\right\} \cup\left\{f\left(b_{i}\right), i=1,2, \ldots, k ; f \in \mathcal{T}\right\}$ is relatively compact in the Banach space X; consequently, it has a finite $\frac{1}{2} \varepsilon$-net $Z \subset X$.

Let us define a set Q of all step functions with values in Z which are constant on each of the intervals $\left(a_{i-1}, a_{i}\right), i=1,2, \ldots, k$. The set Q is finite. For a given $f \in \mathcal{T}$, we have $f\left(a_{i}\right) \in Y, f\left(b_{i}\right) \in Y$, hence there are $\alpha_{i} \in Z, \beta_{i} \in Z$ such that

$$
\begin{aligned}
\left\|f\left(a_{i}\right)-\alpha_{i}\right\|_{X}<\frac{\varepsilon}{2}, & i=0,1, \ldots, k \\
\left\|f\left(b_{i}\right)-\beta_{i}\right\|_{X}<\frac{\varepsilon}{2}, & i=1,2, \ldots, k
\end{aligned}
$$

Define $g\left(a_{i}\right)=\alpha_{i}, g(t)=\beta_{i}$ for $t \in\left(a_{i-1}, a_{i}\right)$; then $g \in Q$ and we have

$$
\left\|f\left(a_{i}\right)-g\left(b_{i}\right)\right\|_{X}<\frac{\varepsilon}{2}, \quad\|f(t)-g(t)\|_{X} \leqslant\left\|f(t)-f\left(b_{i}\right)\right\|_{X}+\left\|f\left(b_{i}\right)-g\left(b_{i}\right)\right\|_{X}<\varepsilon
$$

for all $t \in\left(a_{i-1}, a_{i}\right)$. This means that for an arbitrary $f \in \mathcal{T}$ a function $g \in Q$ was found such that $\|f-g\|_{\infty}<\varepsilon$; the set Q is a finite ε-net for \mathcal{T}.

We have found that the set \mathcal{T} is totally bounded, and therefore it is relatively compact in the Banach space $G([a, b] ; X)$.

Corollary 4.3. A set of regulated functions $\mathcal{T} \subset G\left([a, b] ; \mathbb{R}^{N}\right)$ is relatively compact in $G\left([a, b] ; \mathbb{R}^{N}\right)$ if and only if the set \mathcal{T} is equiregulated and for every $t \in[a, b]$ the set $\{f(t) ; f \in \mathcal{T}\}$ is bounded.

Proposition 4.4. If a set $\mathcal{T} \subset G([a, b] ; X)$ is relatively compact, then its image $\operatorname{Im}(\mathcal{T})=\{f(t): f \in \mathcal{T}, t \in[a, b]\}$ is a relatively compact subset of X.

Proof. We are going to prove that the set $\operatorname{Im}(\mathcal{T})$ is totally bounded; i.e., has a finite ε-net for any $\varepsilon>0$.

Let $\varepsilon>0$ be given. The relatively compact set \mathcal{T} has a finite $\frac{1}{2} \varepsilon$-net $Q \subset$ $G([a, b] ; X)$, it means that for every $f \in \mathcal{T}$ there is $g \in Q$ satisfying $\|f-g\|_{\infty}<\frac{1}{2} \varepsilon$. According to Theorem 2.3, for each $g \in Q$ there is a step function ψ_{g} such that $\left\|g-\psi_{g}\right\|_{\infty}<\frac{1}{2} \varepsilon$. The finite set of step functions $\left\{\psi_{g}: g \in Q\right\}$ has a finite set of values

$$
Z=\left\{\psi_{g}(t): t \in[a, b], g \in Q\right\}
$$

For any $f \in \mathcal{T}$ we can find $g \in Q$ such that $\|f-g\|_{\infty}<\frac{1}{2} \varepsilon$; then

$$
\left\|f(t)-\psi_{g}(t)\right\|_{X} \leqslant\|f-g\|_{\infty}+\left\|g-\psi_{g}\right\|_{\infty}<\varepsilon
$$

and $\psi_{g}(t) \in Z$; this means that Z is a finite ε-net for $\operatorname{Im}(\mathcal{T})$.

Proposition 4.5. For an equiregulated set of functions $\mathcal{T} \subset G([a, b] ; X)$ its relative compactness is equivalent to relative compactness of its image.

Proof. (i) If the set \mathcal{T} is equiregulated, then $\operatorname{Im}(\mathcal{T})$ is relatively compact according to Proposition 4.4.
(ii) If $\operatorname{Im}(\mathcal{T})$ is relatively compact, then condition (4.1) holds and we can use Theorem 4.2.

Theorem 4.6. For a set of regulated functions $\mathcal{T} \subset G([a, b] ; X)$, the following properties are equivalent:
(i) The set \mathcal{T} is a relatively compact subset of the Banach space $\left(G\left([a, b] ; X ;\|\cdot\|_{\infty}\right)\right.$.
(ii) There is a non-decreasing function $h:[a, b] \rightarrow[c, d]$ and a set $\mathcal{B} \subset \mathcal{C}([c, d] ; X)$ of continuous functions which is relatively compact in the sup-norm $\|\cdot\|_{\infty}$ so that for every $f \in \mathcal{T}$ there is $g \in \mathcal{B}$ satisfying $f(t)=g(h(t)), t \in[a, b]$.
(iii) For every $t \in[a, b]$, the set $\{f(t): f \in \mathcal{T}\}$ is relatively compact in X and there is a non-decreasing function $h:[a, b] \rightarrow \mathbb{R}$ and a non-decreasing function $\omega:[0, \infty) \rightarrow[0, \infty), w(0+)=0$ such that $\left\|f\left(t^{\prime \prime}\right)-f\left(t^{\prime}\right)\right\|_{X} \leqslant \omega\left(\left|h\left(t^{\prime \prime}\right)-h\left(t^{\prime}\right)\right|\right)$ holds for every $f \in \mathcal{T}, t^{\prime}, t^{\prime \prime} \in[a, b]$.

Proof. (i) \Rightarrow (ii): According to Theorem 4.2, the set \mathcal{T} is equiregulated and satisfies (4.1). Then \mathcal{T} has bounded jumps; using Theorem 3.10, we can find a nondecreasing function $h:[a, b] \rightarrow[c, d]$ where $h(a)=c, h(b)=d$ and an equicontinuous set $\mathcal{B} \subset C([c, d] ; X)$ defined by $\mathcal{B}=\left\{g_{f}: f \in \mathcal{T}\right\}$, where the function g_{f} is the linear prolongation of f defined by the formula (3.3).

We are going to prove that the set \mathcal{B} is totally bounded, therefore relatively compact.

Given $\varepsilon>0$, there is a finite ε-net $Q \subset G([a, b] ; X)$ for \mathcal{T}. Define g_{ζ} by the formula (3.3) for every $\zeta \in Q$. Then the set $\left\{g_{\zeta}: \zeta \in Q\right\}$ is a finite ε-net for the set \mathcal{B}.
(ii) \Rightarrow (iii): For each $t \in[a, b]$ we have $\{f(t): f \in \mathcal{T}\} \subset\{g(h(t)): g \in \mathcal{B}\}$; hence the set $\{f(t): f \in \mathcal{T}\}$ is relatively compact in X. We can define

$$
\omega(r)=\sup \left\{\left\|g\left(s^{\prime}\right)-g\left(s^{\prime \prime}\right)\right\|_{X}:\left|s^{\prime}-s^{\prime \prime}\right| \leqslant r ; g \in \mathcal{B}\right\} .
$$

It follows from Arzelà-Ascoli theorem (version in Banach space) that the relatively compact set \mathcal{B} is equicontinuous, consequently $w(0+)=0$. Obviously, the function ω is non-decreasing.

For any $f \in \mathcal{T}$ we can find $g \in \mathcal{B}$ satisfying $f(t)=g(h(t)), t \in[a, b]$. Then, for any $t^{\prime}, t^{\prime \prime} \in[a, b]$ we obtain the inequality $\left\|f\left(t^{\prime \prime}\right)-f\left(t^{\prime}\right)\right\|_{X}=\left\|g\left(h\left(t^{\prime \prime}\right)\right)-g\left(h\left(t^{\prime}\right)\right)\right\|_{X} \leqslant$ $\omega\left(\left|h\left(t^{\prime \prime}\right)-h\left(t^{\prime}\right)\right|\right)$.
(iii) \Rightarrow (i): Follows from Theorem 4.2.

Proposition 4.7. Assume that a set $\mathcal{T} \subset G([a, b] ; X)$ is equiregulated. Denote the sets J^{-}, J^{+}as in (3.1). Then for any dense subset $M \subset[a, b]$ and any $\varepsilon>0$ there is a division $a=c_{0}<c_{1}<\ldots c_{k}=b$ such that $\left\{c_{1}, c_{2}, \ldots, c_{k-1}\right\} \subset M \cup J^{-} \cup J^{+}$ and if $c_{i-1}<t^{\prime}<t^{\prime \prime}<c_{i}$ for some $i \in\{1,2, \ldots, k\}$ then $\left\|f\left(t^{\prime \prime}\right)-f\left(t^{\prime}\right)\right\|_{X}<\varepsilon$ holds for all $f \in \mathcal{T}$.

Proof. We can find a division $a=a_{0}<a_{1}<\ldots a_{k}=b$ as described in Proposition 3.2. If $a_{i} \in M \cup J^{-} \cup J^{+} \cup\{a, b\}$, we denote $c_{i}=a_{i}$. If $a_{i} \notin M \cup J^{-} \cup$ $J^{+} \cup\{a, b\}$ then all functions $f \in \mathcal{T}$ are continuous at a_{i} : there is $\delta>0$ such that if $\left|t-a_{i}\right|<\delta$ and $f \in \mathcal{T}$ then $\left\|f(t)-f\left(a_{i}\right)\right\|_{X}<\varepsilon$. The set M is dense in $[a, b]$, therefore we can find $c_{i} \in\left(a_{i-1}, a_{i}\right) \cap M$ such that $\left|c_{i}-a_{i}\right|<\delta$. In both cases, we have $\left\|f\left(c_{i}\right)-f\left(a_{i}\right)\right\|_{X}<\varepsilon$ for every $f \in \mathcal{T}, i \in\{0,1,2, \ldots k\}$. Now, if $i \in\{1,2, \ldots, k\}$ and $c_{i-1}<t^{\prime}<t^{\prime \prime}<c_{i}$, there are several options and it is only a technical matter to verify that $\left\|f\left(t^{\prime \prime}\right)-f\left(t^{\prime}\right)\right\|_{X}<2 \varepsilon$ in all possible cases.

Theorem 4.8. Assume that a set of functions $\mathcal{T} \subset G([a, b] ; X)$ is equiregulated. Denote the sets J^{-}, J^{+}as in (3.1). Assume that there is a dense subset $M \subset[a, b]$ such that for every $t \in M_{0}=M \cup J^{-} \cup J^{+} \cup\{a, b\}$ the set $\{f(t): f \in \mathcal{T}\}$ is relatively compact in X. Then the set \mathcal{T} is relatively compact in the Banach space $G([a, b] ; X)$.

Proof. The proof can be performed the same way as the second part of the proof of Theorem 4.2, where the points $b_{i} \in\left(a_{i-1}, a_{i}\right)$ can be chosen so that $b_{i} \in M_{0}$ for each $i \in\{1,2, \ldots, k\}$.

References

[1] M. Brokate, P. Krejčí: Duality in the space of regulated functions and the play operator. Math. Z. 245 (2003), 667-688.
zbl MR doi
[2] D. Fraňková: Regulated functions. Math. Bohem. 116 (1991), 20-59.
[3] C.S. Hönig: Volterra-Stieltjes Integral Equations. Functional Analytic Methods; Linear Constraints. North-Holland Mathematics Studies 16. Notas de Mathematica (56), North-Holland Publishing Company, Amsterdam-Oxford; American Elsevier Publishing Company, New York, 1975.
[4] W. Rudin: Principles of Mathematical Analysis. McGraw-Hill, New York, 1964.
[5] S. Schwabik: Linear Stieltjes integral equations in Banach spaces. Math. Bohem. 124 (1999), 433-457.

Author's address: Dana Fraňková, Zájezd 5, 27343, Czech Republic.

