AN OBSERVATION ON SPACES WITH A ZEROSET DIAGONAL

Wei-Feng Xuan, Nanjing
Received February 6, 2018. Published online November 26, 2018.
Communicated by Pavel Pyrih

Abstract. We say that a space X has the discrete countable chain condition (DCCC for short) if every discrete family of nonempty open subsets of X is countable. A space X has a zeroset diagonal if there is a continuous mapping $f: X^{2} \rightarrow[0,1]$ with $\Delta_{X}=f^{-1}(0)$, where $\Delta_{X}=\{(x, x): x \in X\}$. In this paper, we prove that every first countable DCCC space with a zeroset diagonal has cardinality at most \mathfrak{c}.

Keywords: first countable; discrete countable chain condition; zeroset diagonal; cardinal
MSC 2010: 54D20, 54E35

1. Introduction

All topological spaces in this paper are assumed to be Hausdorff unless otherwise stated. The cardinality of a set X is denoted by $|X|$, and $[X]^{2}$ will denote the set of two-element subsets of X. We write ω for the first infinite cardinal, ω_{1} for the first uncountable cardinal and \mathfrak{c} for the cardinality of the continuum.

In 1977, Ginsburg and Woods proved that the cardinality of a T_{1}-space with countable extent and a G_{δ}-diagonal is at most \mathfrak{c} (see [5]). In the same paper, Ginsburg and Woods asked if it was true that a regular CCC-space (here CCC denotes the countable chain condition) with a G_{δ}-diagonal has cardinality at most c . This question was also posted by Arhangel'skii independently. In 1984, Shakhmatov showed that cardinalities of such spaces may not have an upper bound (see [8]). And later, Uspenskij proved that an upper bound still does not exist even assuming Fréchet property (see [9]). Regular G_{δ}-diagonal is a property stronger than G_{δ}-diagonal. Arhangel'skii asked what if " G_{δ}-diagonal" is replaced by "regular G_{δ}-diagonal".

The author is supposed by NSFC Projects 11801271 and 11626131.

In 2005, Buzyakova proved that the cardinality of a CCC-space with a regular $G_{\delta^{-}}$ diagonal is at most \mathfrak{c} (see [3]). In 2015, Gotchev in [6] proved that the cardinality of a weakly Lindelöf space with a regular G_{δ}-diagonal is at most $2^{\text {c }}$.

Definition 1.1. We say that a space X has the discrete countable chain condition (DCCC for short) if every discrete family of nonempty open subsets of X is countable.

By Definition 1.1, it follows immediately that every CCC space is DCCC. In fact, every weakly Lindelöf space is DCCC, but the converse is not true. For example, ω_{1} with the ordered topology is a first countable and countably compact (hence, DCCC) space which is not weakly Lindelöf, because the open cover $\mathcal{U}=\left\{[0, \alpha]: \alpha<\omega_{1}\right\}$ of ω_{1} does not have a countable subfamily whose union is dense in ω_{1}.

Definition 1.2 ([2]). A space X has a zeroset diagonal if there is a continuous mapping $f: X^{2} \rightarrow[0,1]$ with $\Delta_{X}=f^{-1}(0)$, where $\Delta_{X}=\{(x, x): x \in X\}$.

It is well-known and easy to prove that every submetrizable space has a zeroset diagonal and every zeroset diagonal is a regular $G_{\boldsymbol{\delta}}$-diagonal. The converses are not true (see [1], [10]).

In this paper, we prove that every first countable DCCC space with a zeroset diagonal has cardinality at most \mathbf{c}.

All notations and terminology not explained in the paper are given in [4].

2. Results

We will use the following countable version of a set-theoretic theorem due to Erdős and Radó (see [7], page 8).

Lemma 2.1. Let X be a set with $|X|>\mathfrak{c}$ and suppose $[X]^{2}=\bigcup\left\{P_{n}: n \in \omega\right\}$. Then there exist $n_{0}<\omega$ and a subset S of X with $|S|>\omega$ such that $[S]^{2} \subset P_{n_{0}}$.

Theorem 2.2. Every first countable $D C C C$ space X with a zeroset diagonal has cardinality at most \mathbf{c}.

Proof. Assume the contrary, i.e. that $|X|>c$. Fix a continuous function $f: X^{2} \rightarrow[0,1]$ with $\Delta_{X}=f^{-1}(0)$. Let $\mathcal{B}(x)=\left\{B_{n}(x): n \in \omega\right\}$ be a local decreasing base for each $x \in X$. Since for any distinct $x, y \in X$ there is some $n_{1} \in \omega$ such that $(x, y) \in f^{-1}\left(\left(1 /\left(n_{1}+2019\right), 1\right]\right)$ and since f is continuous, there are $n_{2}, n_{3} \in \omega$ such that

$$
B_{n_{2}}(x) \times B_{n_{3}}(y) \subset f^{-1}\left(\left(\frac{1}{n_{1}+2019}, 1\right]\right)
$$

Let $n^{*}=\max \left\{n_{1}, n_{2}, n_{3}\right\}$. Then by our hypothesis, we can deduce that

$$
B_{n^{*}}(x) \times B_{n^{*}}(y) \subset f^{-1}\left(\left(\frac{1}{n^{*}+2019}, 1\right]\right)
$$

Thus, the following sets P_{n} are well defined. For each $n \in \omega$ let

$$
P_{n}=\left\{\{x, y\} \in[X]^{2}: B_{n}(x) \times B_{n}(y) \subset f^{-1}\left(\left(\frac{1}{n+2019}, 1\right]\right)\right\} .
$$

It is clear that $[X]^{2}=\bigcup\left\{P_{n}: n \in \omega\right\}$. (Note that $[X]^{2}$ is the set of two-element subsets of X). We can apply Lemma 2.1 to conclude that there exists an uncountable subset S of X and $n_{0} \in \omega$ such that $[S]^{2} \subset P_{n_{0}}$. It follows immediately that $\mathcal{U}=\left\{B_{n_{0}}(x): x \in S\right\}$ is an uncountable family of nonempty open sets of X. Since X is DCCC, the family \mathcal{U} must have a cluster point $x \in X$. Pick any neighbourhood O_{x} of x such that

$$
O_{x} \times O_{x} \subset f^{-1}\left(\left[0, \frac{1}{n_{0}+2019}\right)\right)
$$

Obviously, O_{x} meets infinitely many members of \mathcal{U}. Thus, there exist two distinct (at least) $y, z \in S$ such that $O_{x} \cap B_{n_{0}}(y) \neq \emptyset$ and $O_{x} \cap B_{n_{0}}(z) \neq \emptyset$. Take any $y^{\prime} \in O_{x} \cap B_{n_{0}}(y)$ and $z^{\prime} \in O_{x} \cap B_{n_{0}}(z)$. Hence, $f\left(y^{\prime}, z^{\prime}\right)<1 /\left(n_{0}+2019\right)$ since $y^{\prime}, z^{\prime} \in O_{x}$. On the other hand, $f\left(y^{\prime}, z^{\prime}\right)>1 /\left(n_{0}+2019\right)$ since $y^{\prime} \in B_{n_{0}}(y), z^{\prime} \in$ $B_{n_{0}}(z)$ and $\{y, z\} \in P_{n_{0}}$. This gives a contradiction and we prove that $|X| \leqslant \mathfrak{c}$.

If we drop the condition "DCCC", or "zeroset diagonal" in Theorem 2.2, the conclusion is no longer true, which can be seen in the following examples.

Example 2.3. Let D be a discrete space with $|D|=2^{\text {c }}$. It is evident that D is first countable and has a zeroset diagonal, but D is not DCCC.

Example 2.4. Let X be the subspace of $\left[0,2^{c}\right]$, consisting of all ordinals of countable cofinality, equipped with the ordered topology. Then X is a first countable and countably compact (hence DCCC) space of cardinality $2^{\text {c }}$, but it does not have a zeroset diagonal.

We finish the paper with the following question.
Question 2.5. Is it true that every DCCC (or weakly Lindelöf) space with a zeroset diagonal has cardinality at most \mathfrak{c} ?

Acknowledgement. We would like to thank the referee for their valuable remarks and suggestions which greatly improved the paper.

References

[1] A. V. Arhangel'skii, R.Z. Buzyakova: The rank of the diagonal and submetrizability. Commentat. Math. Univ. Carol. 47 (2006), 585-597.
zbl MR
[2] R. Z. Buzyakova: Observations on spaces with zeroset or regular G_{δ}-diagonals. Commentat. Math. Univ. Carol. 46 (2005), 469-473.
zbl MR
[3] R. Z. Buzyakova: Cardinalities of ccc-spaces with regular G_{δ}-diagonals. Topology Appl. 153 (2006), 1696-1698.
zbl MR doi
[4] R. Engelking: General Topology. Sigma Series in Pure Mathematics 6. Heldermann, Berlin, 1989.
[5] J. Ginsburg, R. G. Woods: A cardinal inequality for topological spaces involving closed discrete sets. Proc. Am. Math. Soc. 64 (1977), 357-360.
zbl MR doi
[6] I. S. Gotchev: Cardinalities of weakly Lindelöf spaces with regular G_{κ}-diagonals. Available at https://arxiv.org/abs/1504.01785 (2015).
[7] R. E. Hodel: Cardinal function. I. Handbook of Set-Theoretic Topology (K. Kunen et al., eds.). North-Holland, Amsterdam, 1984, pp. 1-61.
zbl MR doi
[8] D. Shakhmatov: No upper bound for cardinalities of Tychonoff c.c.c. spaces with a G_{δ}-diagonal exists. An answer to J. Ginsburg and R. G. Woods' question. Commentat. Math. Univ. Carol. 25 (1984), 731-746.
zbl MR
[9] $V . V$. Uspenskij: A large F_{σ}-discrete Fréchet space having the Souslin property. Commentat. Math. Univ. Carol. 25 (1984), 257-260.
zbl MR
[10] M. L. Wage, W. G. Fleissner, G. M. Reed: Normality versus countable paracompactness in perfect spaces. Bull. Am. Math. Soc. 82 (1976), 635-639.

Author's address: Wei-Feng Xuan, School of Statistics and Mathematics, Nanjing Audit University, 86 West Yushan Road, Pukou District, Nanjing, 211815, China, e-mail: wfxuan @nau.edu.cn.

