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Abstract. We formulate a common fixed point theorem for four non-self mappings in con-
vex partial metric spaces. The result extends a fixed point theorem by Gajić and Rakočević
(2007) proved for two non-self mappings in metric spaces with a Takahashi convex structure.
We also provide an illustrative example on the use of the theorem.
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1. Introduction and preliminaries

Gajić and Rakočević [5] proved a common fixed point theorem for non-self map-

pings on a Takahashi convex metric space for a pair of mappings. In their work, they

generalized the theorems by Jungck [7], Das and Naik [4], Ćirić et al. [3], Ćirić [2] and

Imdad and Kumar [6]. In this study, we extend the theorem by Gajić and Rakočević

to apply for two pairs of non-self mappings in convex partial metric spaces.

We now introduce the results which will be of use in this paper.

Definition 1.1 ([8]). A partial metric on a nonempty set X is a mapping p :

X ×X → [0,∞) such that for all x, y, z ∈ X ,

(P0) 0 6 p(x, x) 6 p(x, y),

(P1) x = y if and only if p(x, x) = p(x, y) = p(y, y),

(P2) p(x, y) = p(y, x) and

(P3) p(x, y) 6 p(x, z) + p(z, y)− p(z, z).

A pair (X, p) is said to be a partial metric space.
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From Definition 1.1, we deduce that for all x, y, z in a partial metric space (X, p),

we have:

p(x, y) = 0 ⇒ x = y,(1.1)

p(x, y) 6 p(x, z) + p(z, y).(1.2)

P r o o f. If p(x, y) = 0, then p(x, x) = 0 because 0 6 p(x, x) 6 p(x, y) from (P0).

Similarly, p(x, y) = 0 implies p(y, y) = 0 because 0 6 p(y, y) 6 p(x, y). Hence

p(x, y) = 0 implies p(x, x) = p(x, y) = p(y, y) = 0. From (P1) this means that x = y.

From (P3), we infer that

p(x, y) 6 p(x, z) + p(z, y).

�

As an example, let X = R
+ and let p : R

+ × R
+ → R

+, p(x, y) = max{x, y}.

Then (X, p) is a partial metric space.

Each partial metric p on X generates a T0 topology τp on X with a base being the

family of open balls {Bp(x, ε) : x ∈ X, ε > 0} where Bp(x, ε) = {y ∈ X : p(x, y) <

p(x, x) + ε} for all x ∈ X and ε > 0.

A sequence {xn} in a partial metric space (X, p) converges to x ∈ X if and only if

p(x, x) = lim
n→∞

p(x, xn).

Definition 1.2 ([8]). Let (X, p) be a partial metric space and {xn} a sequence

in X . Then

(i) {xn} converges to a point x ∈ X if and only if p(x, x) = lim
n→∞

p(x, xn),

(ii) {xn} is called a Cauchy sequence if lim
n,m→∞

p(xn, xm) exists and is finite,

(iii) a partial metric space (X, p) is said to be complete if every Cauchy sequence

{xn} in X converges, with respect to τp, to a point x ∈ X such that

p(x, x) = lim
n,m→∞

p(xn, xm).

Lemma 1.3 ([8]). If p is a partial metric on X , then the mapping ps : X ×X →

[0,∞) given by

ps(x, y) = 2p(x, y)− p(x, x) − p(y, y)

is a metric.

In this paper we will denote by ps the metric derived from the partial metric p.
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Lemma 1.4 ([8]). Let (X, p) be a partial metric space and {xn} a sequence in X .

Then

(i) {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in

the metric space (X, ps),

(ii) (X, p) is complete if and only if (X, ps) is complete. Furthermore, lim
n→∞

p(xn, x)

is zero if and only if p(x, x) = lim
n→∞

p(xn, x) = lim
n,m→∞

p(xn, xm).

Definition 1.5 ([8]). Let (X, p) be a partial metric space and {xn} a sequence

in X . Then

(i) the sequence {xn} is called 0-Cauchy if lim
n,m→∞

p(xn, xm) = 0,

(ii) (X, p) is said to be 0-complete if every 0-Cauchy sequence {xn} in X converges,

with respect to τp, to a point x ∈ X such that p(x, x) = 0.

Definition 1.6 ([9]). Let (X, p) be a partial metric space and I = [0, 1] the

closed unit interval. A mappingW : X×X×I → X is said to be a convex structure

on X if for all (x, y, t) ∈ X ×X × I,

p(u,W (x, y, t)) 6 tp(u, x) + (1 − t)p(u, y)

for every u ∈ X . A partial metric space (X, p), together with the convex structureW ,

is called a convex partial metric space.

If (X, p) is a convex partial metric space, then for every x, y ∈ X , we define

(1.3) seg[x, y] := {W (x, y, t) : t ∈ [0, 1]}.

In this study, we will use the following properties of a convex partial metric space

with convex structure W .

Lemma 1.7. Let x, y ∈ X where (X, p) is a convex partial metric space with

convex structure W . Let w ∈ seg[x, y]. Then for all u ∈ X , we have

(i) p(u,w) 6 max{p(u, x), p(u, y)},

(ii) p(x,w) 6 p(x, y).

P r o o f. Suppose Γ = max{p(u, x), p(u, y)}. Applying Definition 1.6, we have

p(u,w) 6 tp(u, x) + (1− t)p(u, y) 6 tΓ + (1− t)Γ = Γ = max{p(u, x), p(u, y)}.

We have proved Lemma 1.7 (i). Now let us set x = u in Lemma 1.7 (i). We get

p(x,w) 6 max{p(x, x), p(x, y)} = p(x, y),

from (P0) of Definition 1.1, so we have proved Lemma 1.7 (ii). �
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Definition 1.8 ([1]). Let (X, p) be a partial metric space and B ⊆ X . Then

(i) B is said to be bounded if there is a positive number M such that p(x, y) 6 M

for all x, y ∈ B,

(ii) if B is a bounded set, the diameter of B is defined as

diam(B) = sup
u,v∈B

{p(u, v)}.

Let f : C → X be a mapping, where C ⊆ X . We say that f is a self mapping if

C = X , otherwise f is called a non-self mapping. If there is an element x ∈ C such

that fx = x, we say that x is a fixed point of f in X .

Suppose we have two mappings f, g : C → X , with C ⊆ X . Let there be x ∈ C

such that fx = gx = w. We say that x is a coincidence point of f and g in X . If

x = w, then we call x a common fixed point of f and g in X .

Suppose we have two mappings f, g : C → X with C ⊆ X . We say f and g are

coincidentally commuting if for all x ∈ C we have

fx = gx ⇒ fgx = gfx.

In this paper, we aim to extend the following theorem by Gajić and Rakočević

(see [5]) which proves the existence of a common fixed point for non-self mappings

in context of metric spaces under specified conditions.

Theorem 1.9 ([5]). Let (X, d) be a complete Takahashi convex metric space with

convex structure W which is continuous in the third variable. Let C be a nonempty

closed subset of X and ∂C the boundary of C. Let f, g : C → X and suppose

∂C 6= ∅. Let us assume that f and g satisfy the following conditions:

(i) For every x, y ∈ C, d(gx, gy) 6 Mω(x, y) where

Mω(x, y) = max{ω1[d(fx, fy)], ω2[d(fx, gx)], ω3[d(fy, gy)],

ω4[d(fx, gy)], ω5[d(gx, fy]},

ωi : [0,∞) → [0,∞), i ∈ {1, 2, 3, 4, 5} is a non-decreasing semicontinuous func-

tion from the right, such that ωi(r) < r for r > 0, and lim
r→∞

(r − ωi(r)) = ∞,

(ii) ∂C ⊆ f(C),

(iii) g(C) ∩C ⊂ f(C),

(iv) fx ∈ ∂C ⇒ gx ∈ C and

(v) f(C) is closed in X .

Then there exists a coincidence point v in C. Moreover, if {f, g} are coincidentally

commuting, then v remains a unique common fixed point of f and g.
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We now proceed to the main results.

2. Main results

In this section, we extend Theorem 1.9 to two pairs of non-self mappings. We

prove the following theorem:

Theorem 2.1. Let (X, p) be a complete convex partial metric space with convex

structure W which is continuous in the third variable. Let C be a closed subset of X

with a nonempty boundary ∂C. Let S, T,A,B : C → X . Let us assume that S, T , A

and B satisfy the following conditions:

(i) For every x, y ∈ C, p(Ax,By) 6 Mω(x, y) where

Mω(x, y) = max{ω1[p(Sx, T y)], ω2[p(Ax, Sx)], ω3[p(By, Ty)],

ω4[p(Ax, Ty)], ω5[p(Sx,By)]},

ωi : [0,∞) → [0,∞), i = 1, 2, 3, 4, 5, is a non-decreasing semicontinuous function

from the right, such that ωi(r) <
1

2
r for r > 0, and lim

r→∞

(r − 2ωi(r)) = ∞.

(ii) ∂C ⊆ TC, ∂C ⊆ SC,

(iii) Sx ∈ ∂C ⇒ Ax ∈ C; Tx ∈ ∂C ⇒ Bx ∈ C,

(iv) AC ∩C ⊂ TC, BC ∩ C ⊂ SC and

(v) SC, TC are closed in C.

Then there exists a coincidence point z ∈ C for A, B, S and T . Moreover, if each of

the pairs {S,A} and {T,B} is coincidentally commuting, then z remains a unique

common fixed point of A, B, S and T .

P r o o f. Commencing with an arbitrary point w ∈ ∂C, we construct a se-

quence {xn} of points in C as follows:

By assumption (ii), there is a point x0 ∈ C such that Sx0 = w. We find Ax0.

Then we proceed inductively as follows.

If Ax2n ∈ C, then, by (iv), we choose x2n+1 ∈ C such that Tx2n+1 = Ax2n.

If however Ax2n /∈ C, because W is continuous in the third variable, it means

that, by (iii), there is λ2n,2n ∈ (0, 1) such that

W (Sx2n, Ax2n, λ2n,2n) ∈ ∂C.

By (ii), this means we can choose xn+1 ∈ C such that

Txn+1 = W (Sx2n, Ax2n, λ2n,2n) ∈ ∂C.

We then determine Bx2n+1.
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If Bx2n+1 ∈ C, then, by (iv), we choose x2n+2 ∈ C such that Sx2n+2 = Bx2n+1.

However if Bx2n+1 /∈ C, becauseW is continuous in the third variable, this means

there is λ2n+1,2n+1 ∈ (0, 1) such that

W (Tx2n+1, Bx2n+1, λ2n+1,2n+1) ∈ ∂C.

By (ii), this means we can choose xn+2 ∈ C such that

Sxn+2 = W (Tx2n+1, Bx2n+1, λ2n+1,2n+1) ∈ ∂C.

We then determine Ax2n+2.

We show that, for n > 1, we have

(2.1) Ax2n 6= Tx2n+1 ⇒ Bx2n−1 = Sx2n.

Suppose we have Bx2n−1 6= Sx2n. Then we have Sx2n ∈ ∂C, which by (iii) means

Ax2n ∈ C. This, by (iv), implies that Ax2n = Tx2n+1, which is a contradiction.

Using a similar argument we have

(2.2) Bx2n+1 6= Sx2n+2 ⇒ Ax2n = Tx2n+1.

We now prove that the sequences {Sx2n}, {Ax2n}, {Bx2n+1} and {Tx2n+1} are

bounded. For each n > 1 let

Dn =

n−1
⋃

i=0

{Ax2i} ∪
n−1
⋃

i=0

{Bx2i+1} ∪
n−1
⋃

i=0

{Sx2i} ∪
n−1
⋃

i=0

{Tx2i+1}, n > 1.

Let αn = diam(Dn). We show that

(2.3) αn 6 max{p(Sx0, Ax2j), p(Sx0, Bx2j+1)}, 0 6 j 6 n− 1.

Let us consider the case where αn = 0, n > 1.

This means p(Sx0, Ax0) = p(Ax0, Bx1) = p(Bx1, T x1) = 0. Applying (1.2) this

means

Sx0 = Ax0 = Bx1 = Tx1.

We shall show that Sx0 is a common fixed point of S and A. As the mappings S

and A are coincidentally commuting at the coincidence point x0, we have

(2.4) Sx0 = Ax0 ⇒ SSx0 = SAx0 = ASx0.
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From (i), we have

p(SSx0, Sx0) = p(ASx0, Bx1) 6 Mω(Sx0, x1)

= max{ω1[p(SSx0, T x1)], ω2[p(ASx0, SSx0)], ω3[p(Bx1, T x1)],

ω4[p(ASx0, T x1)], ω5[p(SSx0, Bx1)]}

= max{ω1[p(SSx0, Sx0)], ω2[p(SSx0, SSx0)], ω3[p(Sx0, Sx0)],

ω4[p(SSx0, Sx0)], ω5[p(SSx0, Sx0)]}

6 ωt[p(SSx0, Sx0)] for some t ∈ {1, 2, 3, 4, 5},

< 1

2
p(SSx0, Sx0) for p(SSx0, Sx0) > 0

⇒ p(SSx0, Sx0) = 0.

By (1.2), this implies

(2.5) SSx0 = Sx0.

Hence Sx0 is a fixed point of S. From (2.4) we have SSx0 = ASx0. Thus (2.5)

implies ASx0 = Sx0, making Sx0 a fixed point of A too.

Using a similar argument we have Tx1 = Sx0 being a common fixed point of T

and B. Hence, z = Sx0 is a common fixed point of all four mappings S, T , A and B.

To show the uniqueness of the fixed point, let z′ be also a fixed point of S, T , A

and B. Then we have

p(z, z′) = p(Az,Bz′)

6 max{ω1[p(Sz, T z
′)], ω2[p(Az, Sz)], ω3[p(Bz′, T z′)],

ω4[p(Az, T z
′)], ω5[p(Sz,Bz′)]}

= max{ω1[p(z, z
′)], ω2[p(z, z)], ω3[p(z

′, z′)],

ω4[p(z, z
′)], ω5[p(z, z

′)]}

6 ωi[p(z, z
′)] for some i ∈ {1, 2, 3, 4, 5}

< 1

2
p(z, z′) for p(z, z′) > 0,

⇒ p(z, z′) = 0

⇒ z = z, by (1.1).

Hence when αn = 0, then z = Sx0 is the unique common fixed point of S, T , A

and B.

We now consider the cases when αn > 0.

Case 1 : Consider the case where αn = p(Sx2i, Ax2j) for some 0 6 i, j 6 n− 1.
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Subcase 1.1 : If i > 1 and Sx2i = Bx2i−1 we have

αn = p(Sx2i, Ax2j) = p(Ax2j , Bx2i−1) 6 Mω(x2j , x2i−1)

6 ωs(αn) for some s ∈ {1, 2, 3, 4, 5}

< 1

2
αn,

which is a contradiction. Hence i = 0.

Subcase 1.2 : If however i > 1 and Sx2i 6= Bx2i−1, it follows that Sx2i ∈

seg[Ax2i−2, Bx2i−1] and hence, by Lemma 1.7 (i), we have

αn = p(Sx2i, Ax2j) 6 max{p(Ax2j , Bx2i−1), p(Ax2i−2, Ax2j)}.

Subcase 1.2.1 : If p(Ax2j , Bx2i−1) > p(Ax2i−2, Ax2j), we have

αn = p(Sx2i, Ax2j) 6 p(Ax2j , Bx2i−1),

which leads to the contradiction in Case 1.1, meaning that i = 0.

Subcase 1.2.2 : Otherwise, if p(Ax2j , Bx2i−1) < p(Ax2i−2, Ax2j), then for some k

such that 2i− 2 < 2k + 1 < 2j and for some s, t ∈ {1, 2, . . . , 5}, we have

αn = p(Sx2i, Ax2j) 6 p(Ax2i−2, Ax2j)

6 p(Ax2i−2, Bx2k+1) + p(Ax2j , Bx2k+1), by (1.2)

6 Mω(x2i−2, x2i−1) +Mω(x2j , x2i−1)

6 ωs(αn) + ωt(αn)

< 1

2
αn + 1

2
αn ⇒ αn < αn,

which is a contradiction. Hence i = 0.

Case 2 : The case where αn = p(Ax2i, Bx2j+1) leads to contradiction by Case 1.1.

Case 3 : The case where αn = p(Ax2i, Ax2j) leads to contradiction by Case 1.2.2.

Case 4 : If αn = p(Bx2i+1, Bx2j+1) then for k such that 2i+ 1 < 2k < 2j +1 and

for some s, t ∈ {1, 2, . . . , 5}, we have

αn = p(Bx2i+1, Bx2j+1)

6 p(Ax2k, Bx2i+1) + p(Ax2k, Bx2j+1)

6 Mω(x2k, x2i+1) +Mω(x2k, x2j+1)

6 ωs(αn) + ωt(αn)

< 1

2
αn + 1

2
αn ⇒ αn < αn,

which is a contradiction.
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Case 5 : If αn = p(Tx2i+1, Bx2j+1) for some 0 6 i, j 6 n− 1, then:

Subcase 5.1 : If Tx2i+1 = Ax2i, then we have

αn = p(Tx2i+1, Bx2j+1) = p(Ax2i, Bx2j+1),

which is a contradiction by Case 1.1.

Subcase 5.2 : Otherwise, if Tx2i+1 6= Ax2i then Tx2i+1 ∈ seg[Bx2i−1, Ax2i] and

hence by Lemma 1.7 (i) we have

αn = p(Tx2i+1, Bx2j+1) 6 max{p(Bx2i−1, Bx2j+1), p(Ax2i, Bx2j+1)}.

This means we have either p(Tx2i+1, Bx2j+1) 6 p(Bx2i−1, Bx2j+1), which is a con-

tradiction by Case 4 or p(Tx2i+1, Bx2j+1) 6 p(Ax2i, Bx2j+1), which is a contradic-

tion by Case 1.1.

Case 6 : If αn = p(Tx2i+1, Ax2j) for some 0 6 i, j 6 n− 1, then:

Subcase 6.1 : If Tx2i+1 = Ax2i, then we have

αn = p(Tx2i+1, Ax2j) = p(Ax2i, Ax2j)

which is not possible by Case 1.2.2.

Subcase 6.2 : Otherwise, if Tx2i+1 6= Ax2i, then Tx2i+1 ∈ seg[Bx2i−1, Ax2i]

and hence αn = p(Tx2i+1, Ax2j) 6 max{p(Ax2j , Bx2i−1), p(Ax2i, Ax2j)}. This im-

plies we have either p(Tx2i+1, Ax2j) 6 p(Ax2j , Bx2i−1), which is a contradiction by

Case 1.1 or else we have p(Tx2i+1, Ax2j) 6 p(Ax2i, Ax2j), which is a contradiction

by Case 1.2.2.

Case 7 : Suppose αn = p(Tx2i+1, T x2j+1) for some 0 6 i, j 6 n− 1.

Subcase 7.1 : If Tx2j+1 = Ax2j , we have

αn = p(Tx2i+1, T x2j+1) = p(Tx2i+1, Ax2j),

which is a contradiction by Case 6.

Subcase 7.2 : Otherwise, if Tx2j+1 6= Ax2j , then Tx2j+1 ∈ seg[Bx2j−1, Ax2j ] and

hence αn = p(Tx2i+1, T xj+1) 6 max{p(Tx2i+1, Bx2j−1), p(Tx2i+1, Ax2j)}.

This implies we have either p(Tx2i+1, T x2j+1) 6 p(Tx2i+1, Bx2j−1), which results

in a contradiction by Case 5, or else we have p(Tx2i+1, T x2j+1) 6 p(Tx2i+1, Ax2j),

which is a contradiction by Case 6.

Case 8 : Let αn = p(Sx2i, Bx2j+1) for some 0 6 i, j 6 n− 1.

Subcase 8.1 : If i > 1 and Sx2i = Bx2i−1, then αn = p(Sx2i, Bx2j+1) =

p(Bx2i−1, Bx2j+1), which is not possible as per Case 4. Hence i = 0.
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Subcase 8.2 : If however i > 1 and Sx2i 6= Bx2i−1, it means that Sx2i ∈

seg[Ax2i−2, Bx2i−1]. This implies that αn = p(Sx2i, Bx2j+1) 6 max{p(Ax2i−2,

Bx2j+1), p(Bx2i−1, Bx2j+1)}. This leads to a contradiction by Case 1.1 when

p(Sx2i, Bx2j+1) 6 p(Ax2i−2, Bx2j+1) and a contradiction by Case 4 when it hap-

pens that p(Sx2i, Bx2j+1) 6 p(Bx2i−1, Bx2j+1). Hence i = 0.

Case 9 : Let us consider the case when αn = p(Sx2i, Sx2j) for some 0 6 i < j 6

n− 1.

Subcase 9.1 : If i > 1 and Sx2j = Bx2j−1, then we have αn = p(Sx2i, Sx2j) =

p(Sx2i, Bx2j−1), which leads to a contradiction according to Case 8. Hence i = 0.

Subcase 9.2 : If i > 1 and Sx2j 6= Bx2j−1, it follows that Sx2j ∈ seg[Ax2j−2,

Bx2j−1] and p(Sx2i, Sx2j) 6 max{p(Sx2i, Ax2j−2), p(Sx2i, Bx2j−1)}.

If it happens p(Sx2i, Sx2j) 6 p(Sx2i, Ax2j−2), we get a contradiction by Case 1.

However if it happens that p(Sx2i, Sx2j) 6 p(Sx2i, Bx2j−1), then we get a contra-

diction by Case 8. Hence i = 0.

Case 10 : Suppose αn = p(Sx2i, T x2j+1) for some 0 6 i, j 6 n− 1.

Subcase 10.1 : If i > 1 and Sx2i = Bx2i−1, then we have αn = p(Sx2i, T x2j+1) =

p(Tx2j+1, Bx2i−1), which is not possible as per Case 8. Hence i = 0.

Subcase 10.2 : If however i > 1 and Sx2i 6= Bx2i−1 it follows that Sx2i ∈

seg[Ax2i−2, Bx2i−1] and

p(Sx2i, T x2j+1) 6 max{p(Tx2j+1, Ax2i−2), p(Tx2j+1, Bx2i−1)}.

This leads to contradictions by Case 6 and Case 5. Hence i = 0.

We have considered ten possible cases for αn and conclude from Cases 1, 8, 9

and 10 that for some 0 6 j 6 n− 1 we have

(2.6) αn ∈ {p(Sx0, Sx2j), p(Sx0, Ax2j), p(Sx0, Bx2j+1), p(Sx0, T x2j+1)}.

Note that, from the construction of the sequence, Sx2j ∈ C implies Sx2j = Bx2j−1.

This leads to

(2.7) p(Sx0, Sx2j) = p(Sx0, Bx2j−1).

For Sx2j /∈ C, we have Sx2j ∈ seg[Ax2j−2, Bx2j−1]. By Lemma 1.7 (i), this implies

(2.8) p(Sx0, Sx2j) 6 max{p(Sx0, Ax2j−2), p(Sx0, Bx2j−1)}.

From (2.7) and (2.8) we conclude that

(2.9) p(Sx0, Sx2j) 6 max{p(Sx0, Ax2j−2), p(Sx0, Bx2j−1)}.
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Using a similar argument we also have

(2.10) p(Sx0, T x2j+1) 6 max{p(Sx0, Bx2j−1), p(Sx0, Ax2j)}.

Applying (2.9) and (2.10) to (2.6) we get

αn 6 max{p(Sx0, Ax2j), p(Sx0, Bx2j+1)}, 0 6 j 6 n− 1.

We have proved (2.3).

Consider the case where max{p(Sx0, Ax2j)} 6 max{p(Sx0, Bx2j+1)}, 0 6 j 6

n− 1. Then, for some u ∈ {1, 2, . . . , 5}, (2.3) implies

αn 6 p(Sx0, Bx2j+1)

6 p(Sx0, Ax0) + p(Ax0, Bx2j+1), by (1.2)

6 p(Sx0, Ax0) + ωu[αn]

6 p(Sx0, Ax0) + 2ωu[αn]

⇒ αn − 2ωu[αn] 6 p(Sx0, Ax0).

Consider now the case when max{p(Sx0, Ax2j)} > max{p(Sx0, Bx2j+1)}, 0 6 j 6

n− 1. Then for some v ∈ {1, 2, . . . , 5}, (2.3) implies

αn 6 p(Sx0, Ax2j)

6 p(Sx0, Ax0) + p(Ax0, Ax2j), by (1.2)

6 p(Sx0, Ax0) + 2ωv[αn], by Case 1.2.2

⇒ αn − 2ωv[αn] 6 p(Sx0, Ax0).

Thus in both cases, we have for some s ∈ {1, 2, . . . , 5}

(2.11) αn − 2ωs[αn] 6 p(Sx0, Ax0).

By assumption (i) there is an r0 ∈ [0,∞) such that for each s ∈ {1, 2, . . . , 5} we have

r − 2ωs(r) > p(Sx0, Ax0) for r > r0.

There is a subsequence {an} of {αn} and s ∈ {1, 2, . . . , 5} such that for each n,

we have

an − 2ωs[an] 6 p(Sx0, Ax0).

Thus by (2.11), an 6 r0. Thus we have

a = lim
n→∞

an = diam(D) 6 r0.
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We have hence proved that {Sx2n}, {Tx2n+1}, {Ax2n} and {Bx2n+1} are bounded

sequences.

To prove that {Sx2n}, {Tx2n+1}, {Ax2n} and {Bx2n+1} converge in C, we con-

sider the set

(2.12) En =

∞
⋃

i=n

{Ax2i} ∪
∞
⋃

i=n

{Bx2i+1} ∪
∞
⋃

i=n

{Sx2i} ∪
∞
⋃

i=n

{Tx2i+1},

n = 2, 3, . . .

By (2.3) we have for n = 2, 3, . . .

(2.13) en := diam(En) 6 sup
j>n

{p(Sx2n, Ax2j), p(Sx2n, Bx2j+1)}.

If Sx2n = Bx2n−1 we have as in Case 1 and Case 8, for each j > n and for some

u ∈ {1, 2, . . . , 5}

en 6 sup
j>n

{p(Ax2j , Bx2n−1), p(Bx2j+1, Bx2n−1)}, n = 2, 3 . . .(2.14)

6 2ωu[en−1].

If however Sx2n 6= Bx2n−1, it follows that Sx2n ∈ seg[Ax2n−2, Bx2n−1]. Hence, as

in Case 1 and Case 8, for each j > n and for some v ∈ {1, 2, . . . , 5}, we have

en 6 sup
j>n

{p(Ax2n−2, Ax2j), p(Bx2n−1, Ax2j),(2.15)

p(Ax2n−2, Bx2j+1), p(Bx2n−1, Bx2j+1)}, n = 2, 3, . . .

6 2ωv[en−2].

By (2.14) and (2.15), there is a subsequence {εn} of {en} and s ∈ {1, 2, . . . , 5}

such that for each n

εn 6 2ωs[εn−2], n = 2, 3, . . .(2.16)

< εn−2.

We note that en > en+1 for every n. Let lim
n→∞

en = lim
n→∞

εn = e. We claim that

e = 0.

If e > 0, then by (2.16) and assumption (i) of Theorem 2.1 we have

lim
n→∞

εn < lim
n→∞

εn−2 ⇒ e < e,

which is a contradiction. Hence e = 0.
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We recall from (2.13) that en = Diam(En). Taking n,m → ∞ in (2.12), we get

(2.17) lim
n,m→∞

p(Ax2n, Ax2m) = lim
n,m→∞

p(Bx2n+1, Bx2m+1) = 0.

This means both {A2n} and {B2n+1} are Cauchy sequences.

Because X is a complete partial metric space, this means there is z ∈ X such that

(2.18) lim
n→∞

Ax2n = lim
n→∞

Bx2n+1 = z and p(z, z) = 0.

Consider the subsequence Sx2nk
of Sx2n such that Sx2nk

= Bx2nk−1. Taking

nk → ∞ we have

(2.19) lim
n→∞

Sx2n = lim
n→∞

Sx2nk
= lim

n→∞

Bx2nk−1 = z, with p(z, z) = 0.

Using a similar argument we have

(2.20) lim
n→∞

Tx2n+1 = z, with p(z, z) = 0.

But both SC, TC are 0-complete. This implies z ∈ SC and z ∈ TC.

As z ∈ SC, there is a point u ∈ C such that Su = z. We show that u is a

coincidence point of A, B and S:

p(Au,Bx2n+1) 6 max{ω1[p(Su, Tx2n+1)], ω2[p(Au, Su)], ω3[p(Bx2n+1, T x2n+1)],

ω4[p(Au, Tx2n+1)], ω5[p(Su,Bx2n+1)]}

= max{ω1[p(z, Tx2n+1)], ω2[p(Au, z)], ω3[p(Bx2n+1, T x2n+1)],

ω4[p(Au, Tx2n+1)], ω5[p(z,Bx2n+1)]}.

Taking n → ∞ and applying (2.19) and (2.20), we get

p(Au, z) 6 max{ω1[p(z, z)], ω2[p(Au, z)], ω3[p(z, z], ω4[p(Au, z)], ω5[p(z, z)]}(2.21)

6 ωi[p(Au, z)] for some i ∈ {1, 2, . . . , 5}

< p(Au, z) for p(Au, z) > 0

⇒ p(Au, z) = 0

⇒ Au = z, from (1.1).

Using a similar procedure, when we expand p(Ax2n, Bu), we get Bu = z, making u

a coincidence point of A, B and S. By the coincidental commutativity of S and A,

we have SAu = ASu ⇒ Sz = Az.
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In the same vein, z ∈ TC means there is v ∈ C such that Tv = z. We show that

Bv = z:

p(z,Bv) = p(Au,Bv)

6 max{ω1[p(Su, T v)], ω2[p(Su,Au)], ω3[p(Tv,Bv)],

ω4[p(Au, Tv)], ω5[p(Su,Bv)]}

= max{ω1[p(z, z)], ω2[p(z, z)], ω3[p(z,Bv)],

ω4[p(z, z)], ω5[p(z,Bv)]}

6 ωj[p(z,Bv)] for some j ∈ {1, 2, . . . , 5}

< p(z,Bv) for p(z,Bv) > 0

⇒ p(z,Bv) = 0

⇒ Bv = z, from (1.1).

Thus v is a coincidence point of B and T . By the coincidental commutativity prop-

erty, we have

BTv = TBv ⇒ Bz = Tz.

Now the following holds:

p(Az,Bz) 6 max{ω1[p(Sz, T z)], ω2[p(Sz,Az)], ω3[p(Tz,Bz)],

ω4[p(Az, T z)], ω5[p(Sz,Bz)]}

= max{ω1[p(Az,Bz)], ω2[p(Az,Az)], ω3[p(Bz,Bz)],

ω4[p(Az,Bz)], ω5[p(Az,Bz)]}

6 ωi[p(Az,Bz)] for i ∈ {1, 2, . . . , 5}

< p(Az,Bz) for p(Az,Bz) > 0

⇒ p(Az,Bz) = 0

⇒ Az = Bz.

Hence we have

(2.22) Az = Bz = Sz = Tz.

Now the following holds:

p(z,Bz) = p(Au,Bz), from (2.21)

6 max{ω1[p(Su, T z)], ω2[p(Au, Su)], ω3[p(Bz, T z)],

ω4[p(Au, T z)], ω5[p(Su,Bz)]}

= max{ω1[p(z,Bz)], ω2[p(z.z)], ω3[p(Bz,Bz)], ω4[p(z,Bz)], ω5[p(z,Bz)]}.
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This implies

p(z,Bz) 6 ωj [p(z,Bz)] for some j ∈ {1, 2, . . . , 5}

< p(z,Bz) for p(z,Bz) > 0

⇒ p(z,Bz) = 0

⇒ Bz = z, by (1.1).

From (2.22) we conclude that Az = Bz = Sz = Tz = z, meaning that z is a common

fixed point of A,B, S and T .

We now show that z is unique. Suppose z′ is also a common fixed point of A, B, S

and T . We get

p(z, z′) = p(Az,Bz′)

6 max{ω1[p(Sz, T z
′)], ω2[p(Az, Sz)], ω3[p(Bz′, T z′)],

ω4[p(Az, T z
′)], ω5[p(Sz,Bz′)]}

= max{ω1[p(z, z
′)], ω2[p(z, z)], ω3[p(z

′, z′)],

ω4[p(z, z
′)], ω5[p(z, z

′)]}.

This implies
p(z, z′) 6 ωk[p(z, z

′] for k ∈ {1, 2, . . . , 5}

< p(z, z′) for p(z, z′) > 0

⇒ p(z, z′) = 0

⇒ z = z′.

This proves that the common fixed point of A, B, S and T is unique. �

R em a r k 2.2. Theorem 2.1 leads to corollaries if we consider the following cases:

(i) A = B;

(ii) A = B, S = T , we get Theorem 1.9;

(iii) A = B, S = T = I, we get an extension of a theorem proved by Ćirić (see [2])

into partial metric spaces;

(iv) A = I;

(v) S = T ;

(vi) x = y.

The proof given above works even when we define C as closed in (X, ps). This

leads to the following theorem.

Theorem 2.3. Let (X, p) be a complete convex partial metric space with convex

structure W which is continuous in the third variable. Let C be a closed subset
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of X , the closure being taken with respect to (X, ps). Let ∂C, the boundary of C in

(X, ps), be nonempty. Let A,B, S, T : C → X . Let us assume that A, B, S and T

satisfy the following conditions:

(i) For every x, y ∈ C, p(Ax,By) 6 Mω(x, y) whereMω(x, y) = max{ω1[p(Sx, T y)],

ω2[p(Ax, Sx)], ω3[p(By, Ty)], ω4[p(Ax, Ty)], ω5[p(Sx,By)]}, ωi : R
+ → R

+, i =

1, 2, 3, 4, 5, is a non-decreasing semicontinuous function from the right, such that

ωi(r) <
1

2
r for r > 0, and lim

r→∞

(r − 2ωi(r)) = ∞.

(ii) ∂C ⊆ SC, ∂C ⊆ TC,

(iii) Sx ∈ ∂C ⇒ Ax ∈ C; Tx ∈ ∂C ⇒ Bx ∈ C,

(iv) AC ∩C ⊂ TC, BC ∩ C ⊂ SC and

(v) SC, TC are closed in C.

Then there exists a coincidence point z ∈ C for A, B, S and T . Moreover, if each of

the pairs {S,A} and {T,B} is coincidentally commuting, then z remains a unique

common fixed point of A, B, S and T .

Here we give an example on the use of Theorem 2.3, as it is better suited for the

partial metric that we will use.

E x am p l e 2.4. Consider the partial metric space (R+, p) where p(x, y) =

max{x, y} for all x, y ∈ R+. Let C = [0, 2]. We note that C is closed in the derived

metric ps(x, y) = |x− y| and ∂C = {0, 2}.

We define the mappings A,B, S, T : C → R+ as follows:

Ax =

{

3x − 1, x ∈ [0, 1],

1, x ∈ (1, 2],
Bx =

{

4x − 1, x ∈ [0, 1],

2, x ∈ (1, 2],

Sx =

{

27x − 1, x ∈ [0, 1],

6, x ∈ (1, 2],
T x =

{

64x − 1, x ∈ [0, 1],

8, x ∈ (1, 2].

We have AC = [0, 2] and BC = [0, 3]. We also have TC = [0, 63] and SC = [0, 26],

both of which are closed in (X, ps).

Sx ∈ ∂C implies z ∈ {0, 1
3
} ⊂ C. Similarly Tx ∈ ∂C implies x ∈ {0, ln 3

ln 64
} ⊂ C.

We also have ∂K = {1, 3} ⊆ SC, TC.

We note that both {S,A} and {T,B} are coincidentally commuting at x = 0, that

is, SA(0) = AS(0) and TB(0) = BT (0). We also note that all four mappings are

discontinuous at 1.

Let us define functions g, h : C → R+ as

g(x) =
27x − 1

4x − 1
, h(x) =

64x − 1

4x − 1
.
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Both g and h are increasing functions. Using L’Hôpital rule, we can show that, as

x → 0, we have h(x) → 3 and

(2.23) g(x) →
log 27

log 4
=

1

0.42062
.

Hence, for x ∈ [0, 1], we have

(2.24) 4x − 1 6
1

3
(64x − 1) 6 0.43(64x − 1).

We also have, from (2.23)

(2.25) 4x − 1 6 0.42062(27x − 1) ⇒ 4x − 1 6 0.43(27x − 1).

When x, y ∈ [0, 1] with x 6 y, we have

p(Ax,By) = p(3x − 1, 4y − 1)

= max{3x − 1, 4y − 1}

= 4y − 1, because x 6 y

6 0.43(64y − 1), by (2.24)

= 0.43Ty

6 0.43max{Sx, T y}

= 0.43p(Sx, T y).

When x, y ∈ [0, 1] with x > y, we have

p(Ax,By) = p(3x − 1, 4y − 1)

= max{4x − 1, 4y − 1}, because 3x − 1 6 4x − 1

= 4x − 1, because x > y

6 0.43(27x − 1), by (2.25)

= 0.43Sx

6 0.43max{Sx, T y}

= 0.43p(Sx, T y).
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For x, y ∈ (1, 2] we have

p(Ax,By) = p(1, 2)

= max{1, 2}

= 2

< 0.43× 6

6 0.43max{6, T y}

= 0.43max{Sx, T y}, because Sx = 6

= 0.43p(Sx, T y).

Considering x ∈ [0, 1], y ∈ (1, 2] we get

p(Ax,By) = p(3x − 1, 2)

= max{3x − 1, 2}

= 2, because 3x − 1 6 2 for x ∈ [0, 1]

< 0.43× 8

= 0.43Ty because Ty = 8

6 0.43max{Sx, T y}

= 0.43p(Sx, T y).

Considering x ∈ (1, 2], y ∈ (0, 1).

p(Ax,By) = p(1, 4y − 1) = max{1, 4y − 1} =

{

1,

6, y ∈ (1
2
, 1].

For y ∈ [0, 1

2
] we have

p(Ax,By) = p(1, 4y − 1)

= 1

< 0.43× 6

= 0.43Sx because Sx = 6

6 0.43max{Sx, T y}

= 0.43p(Sx, T y).

For y ∈ (1
2
, 1] we have

p(Ax,By) = p(1, 4y − 1)

= 4y − 1
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6 0.43(64y − 1), by (2.24)

= 0.43Ty

6 0.43max{Sx, T y}

= 0.43p(Sx, T y).

Thus in all cases, for every x, y ∈ C we have

p(Ax,By) 6 0.43p(Sx, T y) 6 Mω(x, y),

where

Mω(x, y) = max{ω1[p(Sx, T y)], ω2[p(Ax, Sx)], ω3[p(Ay, Ty)],

ω4[p(Ax, Ty)], ω5[p(Sx,Ay)]},

with ωi(r) = 0.43r. We note that ωi(r) = 0.43r < 1

2
r. As r−2ωi(r) = r−2×0.43r =

0.14r, we also have lim
r→∞

r − 2ωi(r) = lim
r→∞

0.14r = ∞.

Thus all the conditions of Theorem 2.3 are satisfied and 0 is the unique common

fixed point of A, B, S and T .
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