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Abstract. For graphs G, F1, F2, we write G → (F1, F2) if for every red-blue colouring of
the edge set ofG we have a red copy of F1 or a blue copy of F2 in G. The size Ramsey number
r̂(F1, F2) is the minimum number of edges of a graph G such that G → (F1, F2). Erdős
and Faudree proved that for the cycle Cn of length n and for t > 2 matchings tK2, the size
Ramsey number r̂(tK2, Cn) < n+(4t+3)

√
n. We improve their upper bound for t = 2 and

t = 3 by showing that r̂(2K2, Cn) 6 n+2
√
3n+9 for n > 12 and r̂(3K2, Cn) < n+6

√
n+9

for n > 25.

Keywords: size Ramsey number; matching; cycle

MSC 2020 : 05C55, 05C35

1. Introduction

Ramsey theory studies problems which can be grouped under the common theme

that every large system contains a highly organized subsystem. Ramsey-type theo-

rems have roots in various branches of mathematics and the theory developed from

them has influenced areas such as set theory, number theory, ergodic theory, geom-

etry and theoretical computer science.

The size Ramsey number was introduced by Erdős et al. (see [3]) who investigated

the size Ramsey number for various graphs. Size Ramsey numbers for all pairs of

connected graphs having at most four vertices were found by Faudree and Sheehan

(see [4]). Bounds on the size Ramsey number for trees were presented by Ke in [5],

paths and stars were investigated by Lortz and Mengersen in [6]. Modifications of
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the size Ramsey number have been studied extensively, too (see [1] and [7] for results

on the size multipartite Ramsey numbers).

We denote the edge set of a graph G by E(G) and the number of edges in G by

|E(G)|. For an edge set E1 ⊆ E(G), the edge-induced subgraph of G consists of the

edges in E1 and the vertices incident to edges in E1.

A cycle of length n (an n-cycle) Cn = v1v2 . . . vnv1 is a graph with n vertices v1,

v2, . . . , vn and n edges v1v2, v2v3, . . . , vn−1vn and vnv1. Similarly, a path v1v2 . . . vn
of length n − 1 contains n − 1 edges v1v2, v2v3, . . . , vn−1vn. For t > 1, the graph

which consists of t independent edges (matchings) is denoted by tK2 (it is a 1-regular

graph having 2t vertices).

For simple graphs G, F1, F2, we write G → (F1, F2) if for each 2-colouring (say

red and blue) of E(G) we necessarily get a red copy of F1 or a blue copy of F2 in G.

The size Ramsey number r̂(F1, F2) is the minimum number of edges in a graph G

such that G → (F1, F2).

Erdős and Faudree (see [2]) mentioned that the difficulty in calculating r̂(tK2, Cn)

is surprising. They proved that for a fixed t > 2, there exist positive constants c1, c2,

such that n+ c1
√
n < r̂(tK2, Cn) < n+ c2

√
n. Their upper bound depends on t and

it has the form

r̂(tK2, Cn) < n+ (4t+ 3)
√
n.

We considerably improve this bound for t = 2 and t = 3 by showing that

r̂(2K2, Cn) 6 n+ 2
√
3n+ 9 for n > 12 and r̂(3K2, Cn) < n+ 6

√
n+ 9 for n > 25.

2. Results

Let us present upper bounds on the size Ramsey numbers r̂(2K2, Cn) and

r̂(3K2, Cn).

Theorem 2.1. Let n > 12. Then r̂(2K2, Cn) 6 n+ 2
√
3n+ 9.

P r o o f. Let k be an integer where kϕ+ 2 6 n < (k + 1)ϕ+ 2, and ϕ =
⌊
√

1
3n

⌋

.

Then we can write

n = kϕ+ 2 + p,

where 0 6 p 6 ϕ − 1. Let t1, t2 ∈ Z, where 1 6 t1 + 1 < t2 6 k + 2 and (t1, t2) 6=
(0, k + 2). Let G be a graph having n′ = (k + 3)ϕ vertices v0, v1, v2, . . . , vn′−1 and

E(G) = {vivi+1 : i = 0, 1, 2, . . . , n′ − 1}
∪ {vjvj+2ϕ : j = 0, ϕ, 2ϕ, . . . , (k + 2)ϕ}
∪ {vt1ϕv(t1+1)ϕ−p, vt2ϕv(t2+1)ϕ−p},
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the indices are taken modulo n′. Since n > 12, we have ϕ > 2 and vt1ϕv(t1+1)ϕ−p,

vt2ϕv(t2+1)ϕ−p /∈ {vivi+1 : i = 0, 1, 2, . . . , n′ − 1}. Thus

|E(G)| = (k + 3)ϕ+ (k + 3) + 2 = n− p+ 3ϕ+ k + 3.

It can be checked that k 6 3ϕ+ 6 (where k = 3ϕ + 6 only if 1
3 (n+ 1) is a square).

Therefore

|E(G)| 6 n+ 6ϕ+ 9 6 n+ 2
√
3n+ 9.

It remains to show that G contains a red 2K2 or a blue Cn. Assume that G does

not contain a red 2K2. We show that G contains a blue Cn. Let us consider two

cases.

Case 1. A graph induced by red edges is a subgraph of a star. Let vi be the

center of this star. Without loss of generality we can suppose that 1 6 i 6 ϕ.

We have a blue path v2ϕv2ϕ+1 . . . v(k+3)ϕ−1v0 of length (k + 1)ϕ and a blue

cycle C′ = v0v2ϕv2ϕ+1 . . . v(k+3)ϕ−1v0 of length (k + 1)ϕ + 1. Then we can

replace the path vt2ϕvt2ϕ . . . v(t2+1)ϕ having length ϕ in C′ by the blue path

vt2ϕv(t2+1)ϕ−pv(t2+1)ϕ−p+1 . . . v(t2+1)ϕ of length p + 1 to obtain a blue cycle C

of length kϕ+ p+ 2 = n.

Case 2. A graph induced by red edges is a 3-cycle. The graph G contains 3-cycles

only if p = ϕ− 2 (cycles vtiϕvtiϕ+1vtiϕ+2vtiϕ for i = 1, 2). Without loss of generality

we can suppose that t1 = 0 and the 3-cycle v0v1v2v0 is red. Then G contains blue

cycles C′ and C described in the previous case. The proof is complete. �

Theorem 2.2. Let n > 25. Then r̂(3K2, Cn) < n+ 6
√
n+ 9.

P r o o f. Let k be an integer such that kω+3 6 n < (k+1)ω+3, where ω = ⌊√n⌋.
Then we can write

(2.1) n = kω + 3 + p,

where 0 6 p 6 ω − 1. Let t1, t2, t3 ∈ Z, where 1 6 t1 + 1 < t2 < t3 − 1 6 k + 1

and (t1, t3) 6= (0, k + 2). Let G be a graph having n′ = (k + 3)ω vertices v0, v1,

v2, . . . , vn′−1 and

E(G) = {vivi+1 : i = 0, 1, 2, . . . , n′ − 1} ∪ {vjvj+ω : j = 0, ω, 2ω, . . . , n′ − ω}

∪
{

vrvr+ω : r =
⌊ω

2

⌋

,
⌊3ω

2

⌋

,
⌊5ω

2

⌋

, . . . , n′ −
⌈ω

2

⌉}

∪ {vsvs+2ω−1 : s = 0, ω, 2ω, . . . , n′ − ω} ∪ {vtiωv(ti+1)ω−p : i = 1, 2, 3},
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the indices are taken modulo n′. Then

|E(G)| = (k + 3)ω + 3(k + 3) + 3 = (n− 3− p) + 3ω + 3(k + 3) + 3(2.2)

6 n+ 3ω + 3k + 9.

It can be checked that k 6 ⌈√n⌉. Note that k = ⌈√n⌉ only if n has the form
n = b2 − b+ 3 + p (where 0 6 p 6 b − 4). Then ω = b− 1 and k = b. We obtain

(2.3) ω + k = 2
(

b− 1

2

)

< 2
√
n,

since n = (b− 1
2 )

2 + 11
4 + p. From (2.2) and (2.3) we get |E(G)| < n+ 6

√
n+ 9.

If k = ω, then from (2.1) we know that
√
n is not an integer (ω <

√
n) and by (2.2),

we obtain |E(G)| < n+ 6
√
n+ 9. If k < ω, again by (2.2), |E(G)| < n+ 6

√
n+ 9.

It remains to show that G has a red 3K2 or a blue Cn. Assume that G does not

contain a red 3K2. We show that G contains a blue Cn. Let us consider a few cases.

Case 1. A graph induced by red edges is a subgraph of two stars. Let vi and vj be

the centers of these stars. Without loss of generality we can suppose that 1 6 i 6 ω

and 1 6 j − i 6 1
2n

′. If j 6 2ω − 2, then G has a blue path v0v2ω−1v2ω of length 2

and also a blue cycle C′ = v0v2ω−1v2ω . . . v(k+3)ω−1v0 of length (k+1)ω+2. We can

replace the path vt3ωvt3ω+1 . . . v(t3+1)ω of length ω in C′ by the blue path

vt3ωv(t3+1)ω−pv(t3+1)ω−p+1 . . . v(t3+1)ω

of length p+ 1 to obtain a blue cycle of length kω + p+ 3 = n.

Let j > 2ω − 1. If i 6= ω, then G contains a blue path v0vωvω+1 . . . v⌊3ω/2⌋ of

length ⌊ 1
2ω⌋+ 1, and if i = ω, then G contains a blue path v0v1 . . . v⌊ω/2⌋v⌊3ω/2⌋ of

length ⌊ 1
2ω⌋+ 1.

Note that ⌊ 1
2 (c− 1)ω⌋ < j 6 ⌊ 1

2 (c+ 1)ω⌋ for some even c > 4. If j 6= ⌊ 1
2 (c+ 1)ω⌋,

then v⌊(c−1)ω/2⌋v⌊(c+1)ω/2⌋v⌊(c+1)ω/2⌋+1 . . . v(c/2+1)ω is a blue path having length

⌈ 1
2ω⌉+ 1, and if j = ⌊ 1

2 (c+ 1)ω⌋, then v⌊(c−1)ω/2⌋v⌊(c−1)ω/2⌋+1 . . . v(c/2)ωv(c/2+1)ω is

a blue path of length ⌈ 1
2ω⌉+ 1.

G also contains a blue path v⌊3ω/2⌋v⌊3ω/2⌋+1 . . . v⌊(c−1)ω/2⌋ having length (
1
2c−2)ω

and a blue path v(c/2+1)ωv(c/2+1)ω+1 . . . v(k+3)ω−1v0 having length (k − 1
2c+ 2)ω.

Thus G contains a blue cycle C′′ having length

(⌊ω

2

⌋

+ 1
)

+
(⌈ω

2

⌉

+ 1
)

+
( c

2
− 2

)

ω +
(

k − c

2
+ 2

)

ω = kω + ω + 2.

From the definition of the edges vtiωv(ti+1)ω−p, it follows that the cycle C
′′ contains

a path vtiωvtiω+1 . . . v(ti+1)ω of length ω for some i ∈ {1, 2, 3}. That path can be
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replaced by the blue path vtiωv(ti+1)ω−pv(ti+1)ω−p+1 . . . v(ti+1)ω of length p+1, which

implies that G has a blue cycle of length kω + p+ 3 = n.

Case 2. A graph induced by red edges contains a 3-cycle. G contains 3-cycles

only if p = 1 (cycles vtiωv(ti+1)ω−1v(ti+1)ωvtiω for i = 1, 2, 3) or p = ω − 2 (cycles

vtiωvtiω+1vtiω+2vtiω for i = 1, 2, 3).

Without loss of generality we can suppose that t1 = 0 and the 3-cycle v0 vω−1vωv0

is red for p = 1, and the 3-cycle v0v1v2v0 is red for p = ω − 2.

Case 2.1. A graph induced by red edges is a 3-cycle and a subgraph of a star.

Let vj be the center of this star. If j 6 2ω − 2, then G has a blue cycle

C′ = v0v2ω−1v2ω . . . v(k+3)ω−1v0 of length (k + 1)ω + 2. Let us replace the path

vt3ωvt3ω+1 . . . v(t3+1)ω of length ω in C′ by the blue path

vt3ωv(t3+1)ω−pv(t3+1)ω−p+1 . . . v(t3+1)ω

of length p+ 1 to obtain a blue cycle of length kω + p+ 3 = n.

If j > 2ω−1, then G contains a blue path v0v1 . . . v⌊ω/2⌋v⌊3ω/2⌋ of length ⌊ 1
2ω⌋+1

for p = 1, and a blue path v0vωvω+1 . . . v⌊3ω/2⌋ of length ⌊ 1
2ω⌋+ 1 for p = ω − 2. It

can be shown as in the last three paragraphs of Case 1 that G has a blue cycle of

length n.

Case 2.2. A graph induced by red edges consists of two 3-cycles. Without loss of

generality we can suppose that vzωvzω+1vzω+2vzω or vzωv(z−1)ωvzω−1vzω for some

z > 2 is the other red 3-cycle. Thus G contains a blue path

v⌊3ω/2⌋v⌊3ω/2⌋+1 . . . v⌊(z−1/2)ω⌋v⌊(z+1/2)ω⌋v⌊(z+1/2)ω⌋+1 . . . v(k+3)ω−1v0

of length kω + ⌈ 1
2ω⌉ + 1. Note that we also have a blue path of length ⌊ 1

2ω⌋ + 1

between v0 and v⌊3ω/2⌋, which means that G contains a blue cycle C′′ of length

kω + ω + 2. This cycle contains a path vtiωvtiω+1 . . . v(ti+1)ω for some i ∈ {1, 2, 3}.
That path can be replaced by the blue path vtiωv(ti+1)ω−pv(ti+1)ω−p+1 . . . v(ti+1)ω,

so G has a blue cycle of length kω + p+ 3 = n.

Case 3. A graph induced by red edges consists of a 5-cycle. Since n > 25, every

5-cycle of G contains an edge vtiωv(ti+1)ω−p for some i, where 1 6 i 6 3. Without

loss of generality we can suppose that ti = 0 and the red 5-cycle contains the edge

v0vω−p.

All 5-cycles (except for two 5-cycles) containing the edge v0vω−p consist only

of edges connecting some of the vertices v0, v1, . . . , v⌊3ω/2⌋ or some of the vertices

v(k+2)ω , v(k+2)ω+1, . . . , v⌊ω/2⌋. Then we have a blue cycle v0v2ω−1v2ω . . . v(k+3)ω−1v0
or a blue cycle v(k+2)ωvω−1vω . . . v(k+2)ω (of length (k + 1)ω + 2). These cycles

contain the path vt3ωvt3ω+1 . . . v(t3+1)ω . We replace this path by the blue path

vt3ωv(t3+1)ω−pv(t3+1)ω−p+1 . . . v(t3+1)ω to obtain a blue cycle of length kω+p+3 = n.
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Those two exceptions are the 5-cycles

v0v(k+2)ωvω−1vω−2vω−3v0 and v0v2ω−1v2ωvωvω−1v0

(note that these cycles exist only for particular values of p).

If the 5-cycle v0v(k+2)ωvω−1vω−2vω−3v0 is red, then the cycle

v0v2ω−1v2ω . . . v(k+3)ω−1v0

is blue, and if the 5-cycle v0v2ω−1v2ωvωvω−1v0 is red, then we have a blue cycle

v⌊ω/2⌋v⌊3ω/2⌋v⌊5ω/2⌋v⌊5ω/2⌋+1 . . . v⌊ω/2⌋. These blue cycles have length (k + 1)ω + 2

and it is easy to obtain a blue cycle having length kω + p+ 3 = n. �
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[2] P.Erdős, R. J. Faudree: Size Ramsey numbers involving matchings. Finite and Infinite
Sets. Vol. I, II (Eger, 1981) (A.Hajnal et al., eds.). Colloquia Mathematica Societatis
János Bolyai 37. János Bolyai Mathematical Society, Budapest; North-Holland, Ams-
terdam, 1984, pp. 247–264. zbl MR doi
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