Mathematica Bohemica, online first, 16 pp.

On oscillatory nonlinear fourth-order difference equations with delays

Arun K. Tripathy

Received February 6, 2016.   First published May 19, 2017.

Arun K. Tripathy, Department of Mathematics, Sambalpur University, Jyoti Vihar, Burla, Sambalpur, Odisha 768019, India, e-mail:

Abstract: In this work, oscillatory behaviour of solutions of a class of fourth-order neutral functional difference equations of the form \begin{equation*} \Delta^2(r(n)\Delta^2(y(n)+p(n)y(n-m)))+ q(n)G(y(n-k))=0 \end{equation*} is studied under the assumption \begin{equation*} \sum_{n=0}^{\infty}\frac{n}{r(n)}< \infty. \end{equation*} New oscillation criteria have been established which generalize some of the existing results in the literature.

Keywords: oscillation; nonlinear; delay; neutral functional difference equation

Classification (MSC 2010): 39A10, 39A12

DOI: 10.21136/MB.2017.0018-16

Full text available as PDF.

  [1] R. P. Agarwal: Difference Equations and Inequalities: Theory, Methods, and Applications. Pure and Applied Mathematics 228. Marcel Dekker, New York (2000). MR 1740241 | Zbl 0952.39001
  [2] R. P. Agarwal, S. R. Grace, P. J. Y. Wong: Oscillation of fourth order nonlinear difference equations. Int. J. Difference Equ. 2 (2007), 123-137. MR 2493593
  [3] M. Bohner, A. Peterson: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Basel (2001). DOI 10.1007/978-1-4612-0201-1 | MR 1843232 | Zbl 0978.39001
  [4] M. Bohner, A. Peterson: Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston (2003). DOI 10.1007/978-0-8176-8230-9 | MR 1962542 | Zbl 1025.34001
  [5] J. R. Graef, A. Miciano, P. Spikes, P. Sundaram, E. Thandapani: Oscillatory and asymptotic behaviour of solutions of nonlinear neutral-type difference equations. J. Aust. Math. Soc., Ser. B 38 (1996), 163-171. DOI 10.1017/S0334270000000552 | MR 1414357 | Zbl 0890.39018
  [6] J. R. Graef, E. Thandapani: Oscillatory and asymptotic behaviour of fourth order nonlinear delay difference equations. Fasc. Math. 31 (2001), 23-36. MR 1860547 | Zbl 1009.39007
  [7] I. Gyori, G. Ladas: Oscillation Theory for Delay Differential Equations with Applications. Oxford Mathematical Monographs. Clarendon Press, Oxford (1991). MR 1168471 | Zbl 0780.34048
  [8] M. Migda: Asymptotic properties of nonoscillatory solutions of higher order neutral difference equations. Opusc. Math. 26 (2006), 507-514. MR 2280277 | Zbl 1131.39008
  [9] M. Migda, J. Migda: Oscillatory and asymptotic properties of solutions of even order neutral difference equations. J. Difference Equ. Appl. 15 (2009), 1077-1084. DOI 10.1080/10236190903032708 | MR 2569136 | Zbl 1194.39009
  [10] N. Parhi, A. K. Tripathy: Oscillation of a class of nonlinear neutral difference equations of higher order. J. Math. Anal. Appl. 284 (2003), 756-774. DOI 10.1016/S0022-247X(03)00298-1 | MR 1998666
  [11] E. Thandapani, I. M. Arockiasamy: Oscillatory and asymptotic behaviour of fourth order nonlinear neutral delay difference equations. Indian J. Pure Appl. Math. 32 (2001), 109-123. MR 1819234 | Zbl 1004.39005
  [12] E. Thandapani, P. Sundaram, J. R. Graef, A. Miciano, P. Spikes: Classification of non- oscillatory solutions of higher order neutral type difference equations. Arch. Math. (Brno) 31 (1995), 263-277. MR 1390585 | Zbl 0855.39014
  [13] A. K. Tripathy: Oscillation of fourth-order nonlinear neutral difference equations II. Math. Slovaca 58 (2008), 581-604. MR 2434679 | Zbl 1199.39018
  [14] A. K. Tripathy: New oscillation criteria for fourth order nonlinear neutral difference equations. Adv. Dyn. Syst. Appl 8 (2013), 387-399. MR 3162156

Access to the full text of journal articles on this site is restricted to the subscribers. For access please contact editorial office at indicating DOI.
[List of online first articles] [Contents of Mathematica Bohemica] [Full text of the older issues of Mathematica Bohemica at DML-CZ]