Mathematica Bohemica, online first, 9 pp.

A study of various results for a class of entire Dirichlet series with complex frequencies

Niraj Kumar, Garima Manocha

Received July 16, 2016.   First published May 11, 2017.

Niraj Kumar, Garima Manocha, Department of Mathematics, Netaji Subhas Institute of Technology, Azad Hind Fauz Marg, Sector 3, Dwarka, New Delhi-110078, India, e-mail: nirajkumar2001@hotmail.com, garima89.manocha@gmail.com

Abstract: Let $F$ be a class of entire functions represented by Dirichlet series with complex frequencies $\sum a_k {\rm e}^{\langle\lambda^k, z\rangle}$ for which $(|\lambda^k|/{\rm e})^{|\lambda^k|} k!|a_k|$ is bounded. Then $F$ is proved to be a commutative Banach algebra with identity and it fails to become a division algebra. $F$ is also proved to be a total set. Conditions for the existence of inverse, topological zero divisor and continuous linear functional for any element belonging to $F$ have also been established.

Keywords: Dirichlet series; Banach algebra; topological zero divisor; division algebra; continuous linear functional; total set

Classification (MSC 2010): 30B50, 46J15, 17A35

DOI: 10.21136/MB.2017.0066-16

Full text available as PDF.


References:
  [1] L. H. Khoi: Coefficient multipliers for some classes of Dirichlet series in several complex variables. Acta Math. Vietnam. 24 (1999), 169-182. MR 1710776 | Zbl 0942.32001
  [2] N. Kumar, G. Manocha: A class of entire Dirichlet series as an FK-space and a Fr├ęchet space. Acta Math. Sci., Ser. B, Engl. Ed. 33 (2013), 1571-1578. DOI 10.1016/S0252-9602(13)60105-8 | MR 3116603 | Zbl 1313.30007
  [3] N. Kumar, G. Manocha: On a class of entire functions represented by Dirichlet series. J. Egypt. Math. Soc. 21 (2013), 21-24. DOI 10.1016/j.joems.2012.10.008 | MR 3040754 | Zbl 1277.30004
  [4] N. Kumar, G. Manocha: Certain results on a class of entire functions represented by Dirichlet series having complex frequencies. Acta Univ. M. Belii, Ser. Math. 23 (2015), 95-100. MR 3373834 | Zbl 1336.30004
  [5] R. Larsen: Banach Algebras - An Introduction. Pure and Applied Mathematics 24. Marcel Dekker, New York (1973). MR 0487369 | Zbl 0264.46042
  [6] R. Larsen,: Functional analysis - An Introduction. Pure and Applied Mathematics 15. Marcel Dekker, New York (1973). MR 0461069 | Zbl 0261.46001
  [7] R. K. Srivastava: Some growth properties of a class of entire Dirichlet series. Proc. Natl. Acad. Sci. India, Sect. A 61 (1991), 507-517. MR 1169262 | Zbl 0885.30004
  [8] R. K. Srivastava: On a paper of Bhattacharya and Manna. Internal Report (1993), IC/93/417.


Access to the full text of journal articles on this site is restricted to the subscribers. For access please contact editorial office at mathboh@math.cas.cz indicating DOI.
[List of online first articles] [Contents of Mathematica Bohemica] [Full text of the older issues of Mathematica Bohemica at DML-CZ]