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Abstract� The properties of the bounded linear operators T on a Hilbert space which
satisfy the condition TT

∗ � U
∗
T

∗
TU where U is unitary� are studied in relation to those

of normal� hyponormal� quasinormal and subnormal operators�
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�� Introduction

In this paper we introduce the concept of nearly equivalent operators as follows�

Two bounded linear operators T and S on a Hilbert space H are said to be nearly

equivalent if T ∗T and S∗S are similar� We �rst investigate the properties of such

operators and later study an interesting class of bounded linear operators T for which

T and T ∗ are nearly equivalent� Such operators are more general than the normal

operators and we call them nearly normal operators�

We obtain some properties of these nearly normal operators and relate them to

those of other well�known classes of operators such as hyponormal� quasinormal and

subnormal� We show that these operators have a special type of polar decomposition

and obtain also a necessary and su�cient condition for a nearly normal operator to

be normal�

�� Nearly equivalent operators

Let H be a Hilbert space and B(H) the set of bounded linear operators from H

into H�

We introduce the following de�nition�

���



Definition 2.1. Let T and S ∈ B(H)� Then S is said to be nearly equivalent to

T � denoted S=©T � if and only if there exists an invertible operator V ∈ B(H) such
that S∗S = V −�T ∗TV � We denote the set of operators S that are nearly equivalent

to T by ξ(T )�

Remarks�

�� For any T � if S ∈ ξ(T )� then the positive operator |S| = (S∗S)
�

� also belongs to

ξ(T )�

	� For any T and any isometries P and Q �i�e� P ∗P = Q∗Q = I), S ∈ ξ(T ) if and
only if PS ∈ ξ(QT ) = ξ(T )�

�� S is nearly equivalent to T if and only if there exists a unitary operator U

such that S∗S = U∗T ∗TU � For� similar normal operators are actually unitarily

equivalent�


� If S is unitarily equivalent to T �i�e� S = U∗TU for a unitary operator U�� then

S is nearly equivalent to T � but� if S is nearly equivalent to T then S need

not even be similar to T � �Recall that S is similar to T if S = V −�TV for an

invertible operator V ��

The �rst part of the remark is easy to prove� For the second part� consider

T =

(
0 0

1 0

)
and S =

(
�√
�

�√
�

0 0

)
� Then S∗S = U∗T ∗TU if U =

(− �√
�

− �√
�

+ �√
�

− �√
�

)
�

Hence� S is nearly equivalent to T � but S is not similar �and hence not unitarily

equivalent� to T �

Indeed� if V =

(
a b

c d

)
with |V | = ad− bc �= 0 then V −�TV = �

|V |

(−ab −b�
a� ab

)
�=(

�√
�

�√
�

0 0

)
for any a and b�

As another example �now in the in�nite dimensional space l��� consider the uni�

lateral shift operator T �see J� Conway 	�� p� 	��� Then T ∗T = I and hence T is

nearly equivalent to I but surely T is not unitarily equivalent to I�

�� If T is compact� all operators S in ξ(T ) are compact�

�� S ∈ ξ(T ) if and only if for some unitary operator U � ‖Sx‖ = ‖TUx‖ for all

x ∈ H� Consequently� if S ∈ ξ(T )� then ‖S‖ = ‖T‖�

Proposition 2.2. For an invertible operator T ∈ B(H), the following are equiv-
alent:

��� T =©T−� and ‖T‖ � 1.
�	� T is unitary.

Proof� Since T−�=©T � ‖T−�‖ = ‖T‖ � 1� Hence� for any x ∈ H� ‖x‖ =
‖T−�Tx‖ � ‖Tx‖ � ‖x‖� Thus� ‖Tx‖ = ‖x‖ which implies that T ∗T = I�

��




Further� since ‖T ∗‖ = ‖T‖ � 1 and ‖(T ∗)−�‖ = ‖(T−�)∗‖ = ‖T−�‖ � 1� we have
also TT ∗ = I� Hence T is unitary� The converse is trivial� �

�� Nearly normal operators

We start with the following theorem which is mainly a collection of results from

Section �� Chapter �	 of Dunford�Schwartz ���

Theorem 3.1. For a densely defined closed operator fromH intoH, the following

are equivalent:

�i� T = US, U unitary and S positive self-adjoint.

�ii� T = UN , U unitary and N normal.

�iii� TT ∗ = UT ∗TU∗, U unitary.

�iv� dim N(T ) = dim N(T ∗).

Proof� �i� ⇒ �ii�� evident�

�ii� ⇒ �i�� since every normal operatorN is of the form V |N | for a unitary operator
V and |N | is the positive square root of N∗N �

�ii� ⇒ �iii�� evident� �iii� ⇒ �ii�� if we set N = U∗T � then N is normal� �iii� ⇔
�iv�� a known result� �

Now we introduce the following de�nitions�

Definition 3.2. T is said to be nearly normal if and only if T ∗ ∈ ξ(T );S is said to
be nearly hyponormal if there exists a unitary operator U such that ‖Sx‖ � ‖S∗Ux‖
for every x ∈ H�

Remarks�

�� T is nearly normal if and only if there exists a normal operator N such that

T = UN for a unitary operator U � �Theorem �����

	� An operator S is hyponormal if and only if S∗S � SS∗� Then� it is easily seen

that an operator T is nearly hyponormal if and only if there exists a hyponormal

operator S such that T = US for a unitary operator U �

When Paul R� Halmos 
� introduced the concept of subnormal operators in �����

he also considered a larger class of operators which were termed later by S�K� Berbe�

rian as hyponormal operators� Both of these concepts were inspired by the unilateral

shift� a very useful example of a non�normal operator�

�� Clearly� every normal operator is nearly normal and every hyponormal operator

is nearly hyponormal� also every nearly normal operator is nearly hyponormal�

Example �� Nearly normal operator that is not normal�

���



Let H be of dimension 	 and let T : H → H be de�ned by the corresponding

matrix

T =

(
1 1

0 0

)
.

Then TT ∗ =

(
2 0

0 0

)
and T ∗T =

(
1 1

1 1

)
� T is not normal� But TT ∗ = U∗T ∗TU

if we take U =

(− �√
�

�√
�

− �√
�

− �√
�

)
�

Proposition 3.3. A nearly normal operator T is normal if and only if T ∗ = V T

for a unitary operator V .

Proof� Any nearly normal operator T is of the form T = UN where U is unitary

and N normal� Denote by |T | the positive square root of T ∗T � Since N = U�|N |
where U� is unitary� T = U�|T | for a unitary U��
Since TT ∗ = UT ∗TU∗� |T ∗|� = U |T |�U∗� This implies that |T ∗|�n = U |T |�nU∗

and consequently for any polynomial f � f(|T ∗|�) = Uf(|T |�)U∗� From this we con�

clude that |T ∗| = U |T |U∗ since the positive square root of a positive operator S is

the weak limit of a sequence of polynomials in S�

Finally� if T is nearly normal so is T ∗ and hence T ∗ = U�|T ∗| for a unitary

operator U��

a� Suppose now that T is normal� Then |T | = |T ∗|� Hence T ∗ = U�|T ∗| = U�|T | =
U�U

−�

�
T = V T � V unitary�

b� Conversely� suppose T ∗ = V T �

Then T ∗ = V U�|T | and hence TT ∗ = (V U�|T |)∗(V U�|T |) = |T |� = T ∗T � i�e� T is

normal�

Thus the proof of the proposition is complete� �

Example 	� Nearly normal operator T for which T and T ∗ are not similar�

Choose a diagonal operator T with diagonal {αn}� Then T ∗ is a diagonal operator

with diagonal {αn}� Since the spectrum of a diagonal operator is the closure of the

set of its diagonal terms� it is obvious that {αn} can be chosen so that the spectrum

of T is di�erent from the spectrum of T ∗�

Hence T and T ∗ are not similar but� T being normal� T is nearly normal�

Example �� Hyponormal operator that is not nearly normal�

Let S be the weighted shift operator with weights (�
�
, �
�
, 1, 1, . . .)� Then if x =

(x�, x�, x�, . . .)� Sx = (0,
�

�
x�,

�

�
x�, x�, . . .) and S

∗x = (�
�
x�,

�

�
x�, . . .)� Hence S

∗Sx =

(�
�
x�,

�

��
x�, x�, . . .) and SS

∗x = (0, �
�
x�,

�

�
x�, x�, . . .)� Consequently� S is a hyponor�

mal operator�

���



Suppose now SS∗ = N−�(S∗S)N for an invertible operator N � Then� if e� =

(1, 0, 0, . . .)� then SS∗e� = 0 which would imply that (S∗S)Ne� = N(SS
∗)e� = 0�

This is a contradiction since S∗S and N being one�to�one� (S∗S)Ne� �= 0� Hence S
cannot be nearly normal�

Example 
� Any invertible operator T is nearly normal� For� TT ∗ =

(T−�)−�T ∗T (T−�)�

Polar decomposition and nearly normal decomposition: It is known that a

densely�de�ned closed operator T can be uniquely represented in the form T = P |T |
where |T | = (T ∗T )

�

� is positive self�adjoint� and P is a partial isometry with initial

domain R(|T |) and �nal domain R(T )� This is called the polar decomposition �p�d��

of T �

Now� a nearly normal operator T is� by de�nition� of the form T = U |T | where U
is unitary� We will call this the nearly-normal decomposition �n�n�d�� of T � Remark

that an operator T has the n�n�d� if and only if T is nearly normal�

First� we remark that for a nearly normal operator T � its n�n�d� need not be the

polar decomposition�

Consider� for example� T = R
� → R

� de�ned by T (x�, x�) = (0, x�)� Then

T ∗(x�, x�) = (x�, 0) and |T |(x�, x�) = (x�, 0)� Let P (x�, x�) = (0, x�) and

U(x�, x�) = (−x�, x�)� Then P is a partial isometry and U is unitary�

Since T = U |T |� T is nearly normal� but its polar decomposition is T = P |T |�

Proposition 3.4. For an operator T ∈ B(H), its polar decomposition is a n.n.d.
if and only if T ∗ is injective.

Proof� Let T = P |T | be the polar decomposition of the operator T � Then�

T ∗ is injective ⇔ R(T ) is dense �since N(T ∗) = R(T )⊥)

⇔ the �nal domain of P is H

⇔ P is unitary�

�

Example �� Nearly normal operator that is not hyponormal�

Choose any non�hyponormal operator A �see p� 	��� V� Istr�atescu ���� Let λ �∈
σ(A)� Take T = A−λI� Then T ∗T−TT ∗ = A∗A−AA∗� Hence T is not hyponormal�

but T being invertible� T is nearly normal�

Relations between some classes of operators in a Hilbert space� Denote

N�normal operators�

���



HN�hyponormal operators�

NN�nearly normal operators�

NH�nearly hyponormal operators�

a� If the Hilbert space is finite dimensional� we have the relations N = HN �
NN = NH�

See Example � and note that in a �nite dimensional space� every hyponormal

operator is normal and consequently every nearly hyponormal operator is nearly

normal�

b� If the Hilbert space is infinite dimensional� we have N � HN and NN �
NH� For the former� consider the example of a unilateral shift and for the

latter� consider Example � �noting that every hyponormal operator is nearly

hyponormal��

However� the relation between HN and NN is not inclusive� For� the operator T

in Example � is in HN \NN � On the other hand� any operator in Example � is in

NN \HN �
We introduce the following de�nition�

Definition 3.5. An operator T ∈ B(H) is said to be nearly quasinormal if and

only if T ∗T commutes with UT for a unitary operator U �

Proposition 3.6. For an operator T ∈ B(H) the following are equivalent:
1. T is nearly quasinormal.

2. UT is quasinormal for a unitary operator U .

3. T is of the form T = V Q where V is unitary and Q is quasinormal.

Proof� �� ⇒ 	�� Since T is nearly quasinormal� there exists a unitary operator

U such that (T ∗T )UT = UT (T ∗T )�

Let S = UT � Then S∗S = T ∗T and consequently (S∗S)S = S(S∗S)� i�e� S is

quasinormal� a notion de�ned by A� Brown ���

	� ⇒ ��� Suppose S = UT is quasinormal� Then T = U∗S where U∗ is unitary�

�� ⇒ ��� Suppose T = V Q where Q is quasinormal and hence satis�es the condition

(Q∗Q)Q = Q(Q∗Q)�

But Q∗Q = T ∗T since V is unitary� Hence (T ∗T )V ∗T = V ∗T (T ∗T )� i�e� T is

nearly quasinormal� �

Remark� In Example �� we have an operator that is nearly quasinormal but

not quasinormal�

Proposition 3.7. The following relations hold: nearly normal � nearly quasi-
normal ⊂ nearly hyponormal.

���



Proof� a� Let T be nearly normal� i�e� TT ∗ = U∗T ∗TU � Then

UT (T ∗T ) = U(TT ∗)T = U(U∗T ∗TU)T = (T ∗T )UT

Hence T is nearly quasinormal�

Note� however� that a unilateral shift is nearly quasinormal but not nearly normal�

b� Suppose now T is a nearly quasinormal operator� i�e� S = UT is quasinormal

for a unitary U � Then S is hyponormal� i�e� S∗S � SS∗� This means that T ∗T �

UTT ∗U∗� i�e� ‖Tx‖ � ‖T ∗U∗x‖ for all x ∈ H� Hence T is nearly hyponormal� �

We introduce now the following de�nition�

Definition 3.8. An operator T ∈ B(H) is said to be nearly subnormal if T = US
where U is unitary and S is subnormal�

Proposition 3.9. Let T ∈ B(H) be a nearly subnormal operator. Then there
exists a Hilbert space K ⊃ H, H being a closed subspace of K, and a nearly normal
operator A ∈ B(K) such that Ax = Tx for all x ∈ H.

Proof� Suppose T = US where U is unitary and S is subnormal in H� Since

S is subnormal� there exists a Hilbert space K ⊃ H� H being a closed subspace of

K� and a normal operator N ∈ B(K) such that Nx = Sx for all x ∈ H�
Now� de�ne an operator V ∈ B(K)� K = H ⊕ H⊥� given by

(
U 0

0 I

)
� Then

V V ∗ = V ∗V = I and hence A = V N is nearly normal in K� Moreover� for any

x ∈ H� Ax = V Nx = V Sx = USx = Tx� Hence the theorem� �

�� Nearly equivalence relation and partial isometries

Let F be the family of all partial isometries in B(H)� We investigate in this section

the nature of the equivalence classes in F determined by the equivalence relation in

B(H) as de�ned in Section 	�

Proposition 4.1. For T ∈ B(H), the following are equivalent.
�� I ∈ ξ(T ),
	� ξ(T ) contains an isometric operator,

�� ξ(T ) is the family of all isometric operators in B(H).

Proof�

� ⇒ 	 and � ⇒ � are evident�

	 ⇒ �� Let S ∈ ξ(T ) be an isometry� Then� I = S∗S = U∗T ∗TU and hence

T ∗T = I�

���



Consequently� since T is isometric� every element in ξ(T ) is isometric� moreover�

if Q is any isometric operator� then Q ∈ ξ(T )� �

Corollary. An isometric operator is nearly normal if and only if it is unitary.

Proof� Let T be unitary� Then it is normal and hence nearly normal� Con�

versely� let an isometric operator T be nearly normal� i�e� T ∗ ∈ ξ(T )� Then by the

above proposition� T ∗ also is an isometry� Hence T is unitary� �

Proposition 4.2. S ∈ B(H) is a partial isometry if and only if there exists a
hermitian projection T such that S ∈ ξ(T ).

Proof� Let T be a hermitian projection and S ∈ ξ(T )�
Then S∗S = U∗T ∗TU and P = T ∗T is a projection and consequently� (S∗S)� =

(U∗PU)(U∗PU) = U∗PU = S∗S�

Hence S∗S is a hermitian projection� which implies that S is a partial isometry�

Conversely� for any given operator S and a unitary operator U � there exists a

unique hermitian operator R such that R� = U∗S∗SU � since U∗S∗SU is positive�

Now� if S is moreover a partial isometry� that is� if S∗S = Q is a projection� we

have

R� = (U∗QU)(U∗QU) = U∗QU = R�.

Set T = R�� Then T is a hermitian projection and T ∗T = U∗S∗SU � i�e� S ∈ ξ(T )�
�

Corollary. If T is a partial isometry, then all operators in ξ(T ) are partial isome-

tries.

Proposition 4.3. Let c� be the class of all partial isometries and c̃� the equiva-

lence classes in c� determined by the nearly equivalence relation. Let c� be the class

of all hermitian projections and c̃� the equivalence classes in c� determined by the

unitary equivalence relation. Then c̃� is isomorphic to c̃�.

Proof� Let S, T ∈ c�� Then by Proposition 
�	� there exist P,Q ∈ c� such that

for some unitary operators U and V �

S∗S = U∗P ∗PU = U∗PU and T ∗T = V ∗Q∗QV = V ∗QV.

a� Suppose S and T are nearly equivalent� i�e� S∗S = A∗T ∗TA for a unitary

operator A� Then P = (V AU∗)∗Q(V AU∗)� Hence P and Q are unitarily equivalent�

b� On the other hand� if P and Q are unitarily equivalent� P = B∗QB for a

unitary operator B� Then S∗S = (V ∗BU)∗T ∗T (V ∗BU)� Hence S and T are nearly

equivalent� Thus� the isomorphic relation between c̃� and c̃� is established� �

�
�
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