A SIMPLE PROOF OF WHITNEY'S THEOREM ON CONNECTIVITY IN GRAPHS

Kewen Zhao, Sanya

(Received May 26, 2009)

Abstract. In 1932 Whitney showed that a graph G with order $n \geqslant 3$ is 2 -connected if and only if any two vertices of G are connected by at least two internally-disjoint paths. The above result and its proof have been used in some Graph Theory books, such as in Bondy and Murty's well-known Graph Theory with Applications. In this note we give a much simple proof of Whitney's Theorem.

Keywords: connectivity, graph
MSC 2010: 05C38, 05C45

We consider a finite undirected simple graph G with the vertex set $V(G)$. If $x, y \in V(G)$ then $d(x, y)$ denotes the distance between x and y, a path in G with end-vertices x and y will be denoted by (x, y).

In 1932 Whitney [2], [3] showed the following well-known result.

Theorem. A graph G with order $n \geqslant 3$ is 2-connected if and only if any two vertices of G are connected by at least two internally-disjoint paths.

Whitney's Theorem is Theorem 3.2 in [1]. However, the proof in [1] (pp.44-45) used Theorem 2.3 [1] (pp. 27-28), so the proof is more complex than the one given here.

Simple Proof of Theorem. If any two vertices of G are connected by at least two internally-disjoint paths, then, clearly, G is connected and has no 1-vertex cut. Hence G is 2 -connected.

Conversely, let G be 2-connected graph and assume there exist two vertices u and v without two internally-disjoint (u, v)-paths. Let P and Q be two (u, v)-paths with the common vertex set S as small as possible. Let $w \in S \backslash\{u, v\}$ and P_{1}, P_{2}
denote the sections of P from u to w and w to v and Q_{1}, Q_{2} denote the sections of Q from u to w and w to v, respectively. Since G is 2-connected, let R denote a shortest path from some vertex x of $\left(V\left(P_{1}\right) \cup V\left(Q_{1}\right)\right) \backslash\{w\}$ to some vertex y of $\left(V\left(P_{2}\right) \cup V\left(Q_{2}\right)\right) \backslash\{w\}$ without passing through $\{w\}$. We may assume, without loss of generality, that x is in P_{1} and y in Q_{2}. Let T denote the (u, v)-path composed of the section of P_{1} from u to x and the section of Q_{2} from y to v together with R. Clearly the common vertices of T and the (u, v)-path composed of Q_{1} and P_{2} are all in $S \backslash\{w\}$. This contradicts the choice of both P and Q as having the smallest number of vertices.

Acknowledgement. The author would like to thank Prof. José Ignacio for his valuable suggestion which led to an essential improvement of the original proof.

References

[1] J. A. Bondy, U. S. R. Murty: Graph Theory with Applications. Elsevier, New York, 1976.
[2] H. Whitney: Congruent graphs and the connectivity of graphs. Amer. J. Math. 54 (1932), 150-168.
[3] H. Whitney: Non-separable and planar graphs. Trans. Amer. Math. Soc. 34 (1932), 339-362.

Author's address: Kewen Zhao, Department of Mathematics, Qiongzhou University, Sanya, Hainan, 572022, P. R. China, e-mail: kewen.zhao@yahoo.com.cn.

