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Abstract. The paper contains some applications of the notion of (L) sets to several classes
of operators on Banach lattices. In particular, we introduce and study the class of order
(L)-Dunford-Pettis operators, that is, operators from a Banach space into a Banach lattice
whose adjoint maps order bounded subsets to an (L) sets. As a sequence characterization
of such operators, we see that an operator T : X → E from a Banach space into a Banach
lattice is order (L)-Dunford-Pettis, if and only if |T (xn)| → 0 for σ(E,E′) for every weakly
null sequence (xn) ⊂ X. We also investigate relationships between order (L)-Dunford-
Pettis, AM-compact, weak* Dunford-Pettis, and Dunford-Pettis operators. In particular,
it is established that each operator T : E → F between Banach lattices is Dunford-Pettis
whenever it is both order (L)-Dunford-Pettis and weak* Dunford-Pettis, if and only if E
has the Schur property or the norm of F is order continuous.
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1. Introduction and notation

In the sequel, X , Y and Z will denote real Banach spaces, E and F will denote real

Banach lattices. BX denotes the closed unit ball of X , and E+ denotes the positive

cone of E. We will use the term operator between two Banach spaces to mean

a bounded linear mapping. For an operator T : X → Y , the adjoint operator T ′ is

defined from Y ′ into X ′ by T ′(f)(x) = f(T (x)) for each f ∈ Y ′ and for each x ∈ X .

For terminology concerning Banach lattice theory and positive operators we refer

the reader to the excellent book of Aliprantis-Burkinshaw [1].

Recall that a subset A of a Banach spaceX is called a Dunford-Pettis set whenever

every weakly null sequence (fn) ⊂ X ′ converges uniformly to zero on the set A, that
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is, sup
x∈A

|fn(x)| → 0. Also, let us recall from [6] that a subset A of the topological

dual X ′, of a Banach space X , is said to be an (L) set whenever every weakly null

sequence (xn) ⊂ X converges uniformly to zero on the set A, that is, sup
f∈A

|f(xn)| → 0.

It is well known that the class of (L) sets contains strictly that of Dunford-Pettis (or

relatively compact) sets. But an (L) set is not necessarily Dunford Pettis (and hence

not relatively compact). In fact, the closed unit ball Bℓ∞ is an (L) set in ℓ∞ but

fails to be Dunford-Pettis, as ℓ1 has the Schur property while (ℓ∞)′ does not. An

operator T : X → Y is called Dunford-Pettis, if T carries each weakly null sequence

(xn) ⊂ X to a norm null one in Y , equivalently, T carries relatively weakly compact

subsets of X to relatively compact ones in Y . Accordingly, several weak versions of

Dunford-Pettis operators are considered in the theory of Banach lattices. Namely,

an operator T : E → F is

⊲ weak Dunford-Pettis, if the sequence (y′n(T (xn))) converges to 0 whenever (xn)

converges weakly to 0 in E and (y′n) converges weakly to 0 in F ′;

⊲ weak* Dunford-Pettis, if the sequence (y′n(T (xn))) converges to 0 whenever (xn)

converges weakly to 0 in E and (y′n) converges weak* to 0 in F ′;

⊲ almost Dunford-Pettis, if the sequence (‖T (xn)‖) converges to 0 for every weakly

null sequence (xn) ⊂ E consisting of pairewise disjoint elements, equivalently,

(‖T (xn)‖) converges to 0 for every weakly null sequence (xn) ⊂ E+.

The present paper is devoted to some applications of the notion of (L) sets to sev-

eral classes of operators on Banach lattices. More precisely, we establish some char-

acterizations of weak Dunford-Pettis operators (Theorem 2.2) and Banach spaces

with the Dunford-Pettis property (see Corollary 2.3). We introduce another weak

version of Dunford-Pettis operators, the so-called order (L)-Dunford-Pettis operators

(Definition 2.4), and derive some characterizations of this class of operators (Theo-

rem 2.5). Also, we study the relationship between the class of order (L)-Dunford-

Pettis operators and that of AM-compact (respectively, order weakly compact, weak

Dunford-Pettis) operators. Finally, we characterize Banach lattices E and F on

which each operator from E into F which is both order (L)-Dunford-Pettis and

weak* Dunford-Pettis, is Dunford-Pettis (Theorem 2.20).

To state our results, we need to fix some notation and recall some definitions.

A Banach lattice is a Banach space (E, ‖·‖) such that E is a vector lattice and for

each x, y ∈ E, |x| 6 |y| implies ‖x‖ 6 ‖y‖. If E is a Banach lattice, its topological

dual E′, endowed with the dual norm, is also a Banach lattice. A norm ‖·‖ of

a Banach lattice E is order continuous if for each net (xα) such that xα ↓ 0 in E,

(xα) converges to 0 for the norm ‖·‖, where the notation xα ↓ 0 means that (xα) is

decreasing and inf(xα) = 0. Also, a vector lattice E is Dedekind σ-complete if every

majorized countable nonempty subset of E has a supremum. The lattice operations
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in E are called weakly sequentially continuous if the sequence (|xn|) converges to 0 in

the weak topology, whenever the sequence (xn) converges weakly to 0 in E. A Banach

spaceX has the Schur property if each weakly null sequence inX converges to zero in

the norm. A Banach latticeE has the positive Schur property if weakly null sequences

with positive terms are norm null. For example, the Banach lattice L1([0, 1]) has

the positive Schur property. Note that a Banach space X has the Dunford-Pettis

(respectively, Dunford-Pettis*) property if fn(xn) → 0 for every weakly null sequence

(xn) ⊂ X and every weakly (respectively, weak*) null sequence (fn) ⊂ X ′. Finally,

we remember that an operator T : E → X is:

⊲ order weakly compact, if the image by T of each order bounded subset of E is a

relatively weakly compact subset of X ;

⊲ order limited, if T carries each order bounded subset in E to a limited one in X ,

equivalently, |T ′(fn)| → 0 for σ(E′, E) for each sequence (fn) ⊂ X ′ such that

fn → 0 for σ(X ′, X), [5], Theorem 3.3 (3);

⊲ AM-compact, if the image by T of each order bounded subset of E is a relatively

compact subset of X .

2. Main results

2.1. Weak Dunford-Pettis operators and (L) sets. We will use basically the

following operator characterization of (L) sets.

Theorem 2.1 ([7], Theorem 4.4). Let X be a Banach space. A norm bounded

subset A of the dual X ′ is an (L) set if and only if the adjoint of every weakly

compact operator from an arbitrary Banach space Y to X carries A to a relatively

compact set.

In our next result, we give a characterization of the class of weak Dunford-Pettis

operators through (L) sets.

Theorem 2.2. Let T : X → Y be an operator between two Banach spaces. The

following statements are equivalent:

(1) T is a weak Dunfor-Pettis operator;

(2) T ′ carries weakly compact sets in Y ′ to (L) sets in X ′;

(3) for an arbitrary Banach space Z and every weakly compact operator S : Z → X,

the adjoint operator TS′ is Dunford-Pettis.

P r o o f. (1) ⇒ (2): Assume that there exist a weakly compact set A ⊂ Y ′ such

that T ′(A) is not an (L) set. Then there exists a weakly null sequence (xn) ⊂ X ,

a sequence (fn) ⊂ A and some ε > 0 such that |fn(T (xn))| = |T ′(fn)(xn)| > ε for
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all n. Since A is weakly compact, we can assume that fn → f for σ(Y ′, Y ′′). As T

is a weak Dunford-Pettis operator, hence

ε < |fn(T (xn))| 6 |(fn − f)(T (xn))|+ |f(T (xn))| → 0,

which is impossible.

(2) ⇒ (3): Let Z be a Banach space and S : Z → X a weakly compact operator.

Let A be a weakly compact set in Y ′, then by hypothesis T ′(A) is an (L) set in X ′,

hence it follows from Theorem 2.1 that S′(T ′(A)) is a relatively compact set in Z ′.

This proves that TS′ is a Dunford-Pettis operator.

(3) ⇒ (1): Let (xn) ⊂ X and (fn) ⊂ Y ′ be weakly null sequences. Consider the

operator

(∗) S : ℓ1 → X, (λn)n 7→

∞∑

n=1

λnxn.

S is weakly compact ([1], Theorem 5.26). On the other hand, the adjoint operator S′

is defined by

S′ : X ′ → ℓ∞, f 7→ {f(xn)}n>1,

and note that S′(X ′) ⊂ c0.

Thus, by our hypothesis TS′ is a Dunford-Pettis operator and then,

|fn(T (xn))| = |T ′(fn)(xn)| 6 ‖S′T ′(fn)‖∞ → 0.

This shows that T is a weak Dunfor-Pettis operator. �

As a consequence of Theorem 2.2, we have the following characterizations of Ba-

nach spaces with the Dunford-Pettis property.

Corollary 2.3. Let X be a Banach space. The following statements are equiva-

lent:

(1) X has the Dunford-Pettis property;

(2) weakly compact subsets of X ′ are (L) sets;

(3) weakly compact operators from an arbitrary Banach space Z into X have

a Dunford-Pettis adjoint.

2.2. The class of order (L)-Dunford-Pettis operators. It can be shown easily

that an operator T : X → Y is Dunford-Pettis if and only if T ′ maps each norm

bounded set in Y ′ to an (L) set in X ′. Therefore, operators defined from a Banach

space into a Banach lattice whose adjoint carries order bounded subsets to an (L)

sets arise naturally.
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Definition 2.4. An operator T : X → E, from a Banach space into a Banach

lattice, is said to be order (L)-Dunford-Pettis if its adjoint T ′ carries each order

bounded subset of E′ into an (L) set in X ′.

The order (L)-Dunford-Pettis operators present the dual counterpart of order lim-

ited operators, and are at the same time a weak version of Dunford-Pettis operators

defined from a Banach space into a Banach lattice, as each Dunford-Pettis operator

T : X → E is order (L)-Dunford-Pettis. Note that the converse is false in general.

In fact, since the lattice operations in ℓ∞ are weakly sequentially continuous, the

identity operator of the Banach lattice ℓ∞ is order (L)-Dunford-Pettis (see Corol-

lary 2.6), but is not Dunford-Pettis. On the other hand, there are operators which are

not order (L)-Dunford-Pettis. The identity operator of the Banach lattice L2([0, 1])

is an example (the lattice operations in L2([0, 1]) are not weakly sequentially contin-

uous). Clearly, T : X → E is order (L)-Dunford-Pettis if and only if T ′([−f, f ]) is

an (L) set in X ′ for each f ∈ (E′)+. The next result characterizes the class of order

(L)-Dunford-Pettis operators.

Theorem 2.5. Let T : X → E be an operator from a Banach space into a Banach

lattice. The following statements are equivalent:

(1) T is an order (L)-Dunford-Pettis operator;

(2) for every weakly compact operator S from an arbitrary Banach space Y into X ,

(T ◦ S)′ is an AM-compact operator;

(3) for every weakly null sequence (xn) ⊂ X , |T (xn)| → 0 for σ(E,E′).

P r o o f. (1) ⇒ (2): Let S be a weakly compact operator from an arbitrary

Banach space Y into X . It follows from (1) that for each f ∈ (E′)+, T ′[−f, f ] is

an (L) set in X ′ and then, by Theorem 2.1, S′T ′[−f, f ] is a relatively compact set

in Y ′. Hence (T ◦ S)′ is an AM-compact operator.

(2) ⇒ (3): Let (xn) be a weakly null sequence in X and let S be defined as

in (∗). According to our hypothesis, S′T ′[−f, f ] is a relatively compact set in c0 for

each f ∈ (E′)+. Hence, it follows from [1], Exercise 14 in Section 3.2 that for each

f ∈ (E′)+,

f |T (xn)| = sup{|g(T (xn))|, |g| 6 f} = sup{|T ′(g)(xn)|, |g| 6 f}

= sup{|h(xn)|, h ∈ T ′[−f, f ]} → 0.

(3) ⇒ (1): follows immediately from the equality

f |T (xn)| = sup{|h(xn)|, h ∈ T ′[−f, f ]}.

�
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Notice that there is a weakly compact operator from a Banach space into a Banach

lattice whose adjoint is not AM-compact. In fact, the identity operator of the Ba-

nach lattice L2([0, 1]) is weakly compact but its adjoint, which is again the identity

operator of the Banach lattice L2([0, 1]) is not AM-compact (because L2([0, 1]) is not

discrete). However, the following result is a consequence of Theorem 2.5.

Corollary 2.6. Let E be a Banach lattice. The following statements are equiva-

lent:

(1) the identity operator of E is order (L)-Dunford-Pettis;

(2) all order intervals of E′ are (L) sets.

(3) weakly compact operators from an arbitrary Banach space X into E have an

AM-compact adjoint;

(4) the lattice operations in E are weakly sequentially continuous.

We need the following lemma for the next result.

Lemma 2.7. Let A be a norm bounded subset of the dual of a Banach space X .

If for each ε > 0 there exists an (L) set Aε in X ′ such that A ⊂ Aε + εBX′ then A

is an (L) set in X ′.

P r o o f. Let Y be a Banach space and let S : Y → X be a weakly compact

operator. We shall prove that S′(A) is relatively compact in Y ′. Let ε > 0, then

by our hypothesis there exists an (L) set Aε in X ′ such that A ⊂ Aε + εBX′ , hence

S′(A) ⊂ S′(Aε) + ε‖S′‖BY ′ . As Aε is an (L) set, S′(Aε) is relatively compact in Y ′

and hence by Theorem 3.1 of [1], S′(A) is relatively compact in Y ′. This shows by

Theorem 2.1 that A is an (L) set in X ′. �

Other properties of order (L)-Dunford-Pettis operators are given in the following

propositions.

Proposition 2.8. The class of order (L)-Dunford-Pettis operators from a Banach

spaceX into a Banach lattice E is a norm closed vector subspace of the space L(X,E)

of all operators from X into E.

P r o o f. Clearly, the class of order (L)-Dunford-Pettis operators from X into E

is a vector subspace of L(X,E). Now, let S be in the norm closure of the class of

order (L)-Dunford-Pettis operators from X into E. Let f be nonzero in (E′)+ and

let ε > 0. Choose an order (L)-Dunford-Pettis operator T from X into E such that

‖S′ − T ′‖ = ‖S − T ‖ 6 ε/‖f‖, and observe that S′([−f, f ]) ⊂ T ′([−f, f ]) + εBX′

holds. Since T is order (L)-Dunford-Pettis, T ′([−f, f ]) is an (L) set in X ′ and hence

by Lemma 2.7, S′([−f, f ]) is an (L) set in X ′. This shows that S is order (L)-Dun-

ford-Pettis. And we are done. �
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Proposition 2.9. Consider the scheme of operators X
S

−→ E
T

−→ F , where X

is a Banach space and E, F are two Banach lattices. Then the composed operator

T ◦ S is order (L)-Dunford-Pettis whenever one of the following holds:

(a) T is order (L)-Dunford-Pettis.

(b) T is order bounded and S is order (L)-Dunford-Pettis.

P r o o f. (a) Follows immediately from Theorem 2.5 (3).

(b) As T : E → F is an order bounded operator, its adjoint T ′ : F ′ → E′ is likewise

order bounded ([1], Theorem 1.73). Hence, for each f ∈ (F ′)+, T ′([−f, f ]) is an

order bounded subset of E′ and since S is order (L)-Dunford-Pettis, S′(T ′([−f, f ]))

is an (L) set in X ′. This proves that T ◦ S is order (L)-Dunford-Pettis. �

Corollary 2.10. Let E and F be two Banach lattices. Then the following holds:

(1) If the lattice operations in F are weakly sequentially continuous, then each

operator from E into F is order (L)-Dunford-Pettis.

(2) If the lattice operations in E are weakly sequentially continuous, then each order

bounded operator from E into F is order (L)-Dunford-Pettis.

Clearly, if T is an operator from a Banach space X into Banach lattice E such

that T ′ is AM-compact then T is an order (L)-Dunford-Pettis operator. But the

converse is false in general. In fact, the identity operator of the Banach lattice ℓ∞

is order (L)-Dunford-Pettis, but its adjoint operator, which is the identity operator

of (ℓ∞)′, is not AM-compact (because (ℓ∞)′ is not discrete).

Corollary 2.11. Let T be an operator from a Banach space X into a Banach lat-

tice E such that X is reflexive. If T is order (L)-Dunford-Pettis then T ′ is AM-com-

pact.

P r o o f. Let T : X → E be an order (L)-Dunford-Pettis operator. Since X

is reflexive then the identity operator I : X → X is weakly compact. Hence, by

Theorem 2.5, T ′ = (T ◦ I)′ is AM-compact. �

It should be noted that the adjoint of an order (L)-Dunford-Pettis operator is

not necessary order weakly compact. In fact, the identity operator of the Banach

lattice ℓ1 is Dunford-Pettis (order (L)-Dunford-Pettis) but its adjoint, which is the

identity operator of the Banach lattice ℓ∞ is not order weakly compact (the norm

of ℓ∞ is not order continuous).
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Theorem 2.12. Let T : E → F be an operator between Banach lattices such

that the norm of E′ is order continuous. If T is order (L)-Dunford-Pettis then the

adjoint T ′ is order weakly compact.

P r o o f. Consider an order (L)-Dunford-Pettis operator T : E → F . Then

T ′[−f, f ] is an (L) set in E′ for each f ∈ (F ′)+. Hence, [3], Theorem 3.1 implies

that T ′[−f, f ] is a relatively weakly compact set in E′ for each f ∈ (F ′)+, that is,

T ′ is order weakly compact. �

Note that, if T is an operator from a Banach space into a Banach lattice such that T

is weak Dunford-Pettis (or T ′ is order weakly compact) then T is not necessarily order

(L)-Dunford-Pettis. In fact, the identity operator of the Banach lattice L1([0, 1]) is

weak Dunford-Pettis (because L1([0, 1]) has the Dunford-Pettis property), but is not

order (L)-Dunford-Pettis (because the lattice operations in L1([0, 1]) are not weakly

sequentially continuous). Also, the identity operator of the Banach lattice L2([0, 1])

is not order (L)-Dunford-Pettis (as the lattice operations in L2([0, 1]) are not weakly

sequentially continuous), however, its adjoint is order weakly compact.

Theorem 2.13. Consider the scheme of operators Y
S

−→ X
T

−→ E, where X , Y

are two Banach spaces and E is a Banach lattice. Then, if S is weak Dunford-Pettis

and the adjoint T ′ is order weakly compact, then T ◦ S is order (L)-Dunford-Pettis.

P r o o f. Let f ∈ (E′)+, then T ′[−f, f ] is a weakly relatively compact set in X ′.

Since S is weak Dunford-Pettis, Theorem 2.2 implies that S′(T ′[−f, f ]) is an (L) set

in Y ′ and then T ◦ S is order (L)-Dunford-Pettis. �

The following consequence of Theorem 2.13 gives a sufficient condition under

which the class of order (L)-Dunford-Pettis operators contains strictly that of weak

Dunford-Pettis operators.

Corollary 2.14. Let X be a Banach space and let E be a Banach lattice such

that the norm of E′ is order continuous. Then each weak Dunford-Pettis operator

T : X → E is order (L)-Dunford-Pettis.

Another consequence of Theorem 2.13 gives a sufficient condition under which

each operator from a Banach space into a Banach lattice is order (L)-Dunford-Pettis,

whenever its adjoint is order weakly compact.
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Corollary 2.15. Let X be a Banach space with the Dunford-Pettis property

and let E be a Banach lattice. Then each operator T : X → E with order weakly

compact adjoint is order (L)-Dunford-Pettis.

As a consequence, we obtain the following result, which gives a sufficient condition

guaranteeing weakly sequentially continuous lattice operations in a Banach lattice.

Corollary 2.16. Let E be a Banach lattice. If E has the Dunford-Pettis property

and the norm of E′ is order continuous, then the lattice operations in E are weakly

sequentially continuous.

Note that there exists an almost Dunford-Pettis operator which is not Dunford-

Pettis. Indeed, the identity operator of the Banach lattice L1([0, 1]) is almost

Dunford-Pettis, but is not Dunford-Pettis.

Theorem 2.17. LetX and Y be two Banach spaces and let E be a Banach lattice.

For the scheme of operators X
T

−→ E
S

−→ Y , if T is order (L)-Dunford-Pettis and S

is almost Dunford-Pettis, then S ◦ T is a Dunford-Pettis operator.

P r o o f. Let (xn) be a weakly null sequence in X . Since T is order (L)-Dunford-

Pettis, we have |T (xn)| → 0 for σ(E,E′). From the inequalities 0 6 (T (xn))
+ 6

|T (xn)| and 0 6 (T (xn))
− 6 |T (xn)|, we get (T (xn))

+ → 0 and (T (xn))
− → 0 for

σ(E,E′). As S : E → Y is almost Dunford-Pettis, we have

‖S(T (xn))‖ 6 ‖S((T (xn))
+)‖+ ‖S((T (xn))

−)‖ → 0.

This shows that S ◦ T is Dunford-Pettis as desired. �

As a consequence of Theorem 2.17, we obtain the following result [2], Theo-

rem 2.2 (1).

Corollary 2.18. Let E and Y be a Banach lattice and a Banach space, respec-

tively. If the lattice operations in E are weakly sequentially continuous, then each

almost Dunford-Pettis operator from E into Y is Dunford-Pettis.

The following consequence of Theorem 2.17 gives a sufficient condition under which

the class of order (L)-Dunford-Pettis operators coincides with that of Dunford-Pettis

operators.
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Corollary 2.19. Let X and E be a Banach space and a Banach lattice, respec-

tively. If E has the positive Schur property, then each order (L)-Dunford-Pettis

operator from X into E is Dunford-Pettis.

Clearly, every Dunford-Pettis operator T : X → E is simultaneously order

(L)-Dunford-Pettis and weak* Dunford-Pettis. However, there exists an operator

T : X → E which is both order (L)-Dunford-Pettis and weak* Dunford-Pettis, but

fails to be Dunford-Pettis (e.g. the identity operator I : ℓ∞ → ℓ∞). In our last major

result, we characterize Banach lattices E and F on which each operator T : E → F

is Dunford-Pettis whenever it is both order (L)- and weak* Dunford-Pettis.

Theorem 2.20. Let E and F be two Banach lattices such that F is Dedekind

σ-complete. Then the following assertions are equivalent:

(1) each operator T : E → F is Dunford-Pettis whenever it is both order (L)-Dun-

ford-Pettis and weak* Dunford-Pettis;

(2) one of the following is valid:

(a) E has the Schur property;

(b) the norm of F is order continuous.

P r o o f. (1) ⇒ (2): Assume that (2) is false, i.e., the norm of F is not order

continuous and E does not have the Schur property. We will construct an operator

T : E → F which is weak* Dunford-Pettis and order (L)-Dunford-Pettis but fails to

be Dunford-Pettis. To this end, as E does not have the Schur property, there are a

weakly null sequence (xn) ⊂ E, some ε > 0, and a sequence (fn) ⊂ (BE′) such that

|fn(xn)| > ε for all n. Now, consider the operator P : E → ℓ∞ defined by

P (x) = {fn(x)}n.

On the other hand, since the norm of F is not order continuous, it follows from

Theorem 4.51, [1] that ℓ∞ is lattice embeddable in F , i.e., there exists a lattice

homomorphism S : ℓ∞ → F satisfying

m‖(λk)k‖∞ 6 ‖S((λk)k)‖ 6 M‖(λk)k‖∞

for some positive constants M and m, and for all (λk)k ∈ ℓ∞. Put T = S ◦P : E →

ℓ∞ → F , and note that T is weak* Dunford-Pettis (ℓ∞ has the DP⋆ property),

and also, T is order (L)-Dunford-Pettis (as the lattice operations in ℓ∞ are weakly

sequentially continuous). However, for the weakly null sequence (xn) ⊂ E, we have

‖T (xn)‖ = ‖S ◦ P (xn)‖ = ‖S((fk(xn))k)‖ > m‖(fk(xn))‖∞ > m|fn(xn)| > mε

for every n. This shows that T is not Dunford-Pettis.
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(2.a) ⇒ (1): Obvious.

(2.b) ⇒ (1): Consider an operator T : E → F which is weak* Dunford-Pettis and

order (L)-Dunford-Pettis. Let (xn) ⊂ E be a weakly null sequence. We shall show

that ‖T (xn)‖ → 0. By Corollary 2.6 in [4], it suffices to prove that |T (xn)| → 0

for σ(F, F ′) and fn(T (xn)) → 0 for every disjoint and norm bounded sequence

(fn) ⊂ (F ′)+. Indeed:

— as T is order (L)-Dunford-Pettis, hence |T (xn)| → 0 for σ(F, F ′);

— as the norm of F is order continuous, it follows from Corollary 2.4.3 in [8]

that for each disjoint and norm bounded sequence (fn) ⊂ (F ′)+ we have fn → 0 for

σ(F ′, F ) and thus fn(T (xn)) → 0 since T is weak* Dunford-Pettis operator. This

completes the proof. �

R em a r k. The assumption “F is Dedekind σ-complete” is essential in Theo-

rem 2.20. In fact, if we take E = ℓ∞ and F = c (which is not Dedekind σ-complete),

it is known that each operator from ℓ∞ into c is Dunford-Pettis. But neither ℓ∞ has

the Schur property nor the norm of c is order continuous.

As consequences of Theorem 2.20, we obtain the following results.

Corollary 2.21. Let E be a Dedekind σ-complete Banach lattice. Then the

following assertions are equivalent:

(1) each operator T : E → E is Dunford-Pettis whenever it is both order (L)- and

weak* Dunford-Pettis;

(2) the norm of E is order continuous.

Corollary 2.22. Let E and F be two Banach lattices such that F is Dedekind

σ-complete and discrete. Then the following assertions are equivalent:

(1) each weak* Dunford-Pettis operator T : E → F is Dunford-Pettis;

(2) one of the following is valid:

(a) E has the Schur property;

(b) the norm of F is order continuous.

P r o o f. Only (2.b) → 1 needs the proof. Indeed, it follows from [8], Proposi-

tion 2.5.23, that lattice operations in F are weakly sequentially continuous, i.e., each

operator T : E → F is order (L)-Dunford-Pettis. Therefore, the desired conclusion

follows from Theorem 2.20. �
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Corollary 2.23. Let E and F be two Banach lattices such that F is Dedekind σ-

complete and E or F has the Dunford-Pettis* property. Then the following assertions

are equivalent:

(1) each order (L)-Dunford-Pettis operator T : E → F is Dunford-Pettis;

(2) one of the following is valid:

(a) E has the Schur property;

(b) the norm of F is order continuous.

Corollary 2.24. Let E be a Dedekind σ-complete Banach lattice. Then the

following assertions are equivalent:

(1) each order (L)-Dunford-Pettis operator T : l∞ → E is Dunford-Pettis;

(2) the norm of E is order continuous.
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