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Abstract. The concept of a 0-ideal in 0-distributive posets is introduced. Several prop-
erties of 0-ideals in O-distributive posets are established. Further, the interrelationships
between 0-ideals and a-ideals in O-distributive posets are investigated. Moreover, a char-
acterization of prime ideals to be 0-ideals in 0-distributive posets is obtained in terms of
non-dense ideals. It is shown that every 0-ideal of a 0-distributive meet semilattice is
semiprime. Several counterexamples are discussed.
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1. INTRODUCTION

Ideals play a major role in the theory of lattices, in particular distributive lat-
tices. This fact gives the reason why some mathematicians have tried to study some
types of ideals and establish their properties. Cornish [1] introduced the concept
of 0-ideals in distributive lattices and obtained their properties in [2] using congru-
ences. Jayaram [6] generalized the concept of 0-ideals in semilattices and studied
their properties in [7] in the case of quasicomplemented 0-distributive semilattices.

In this paper we introduce the concept of 0O-ideals for more general structures,
namely the posets. In Section 2 of this paper, we will show that many of the classical
results of the lattice theory can be extended to posets. In particular, we investigate
the interrelationships between 0-ideals and «a-ideals in 0-distributive posets. In Sec-
tion 3, we establish the relations between 0-ideals and prime ideals and also between
0-ideals and semiprime ideals.

We begin with the necessary concepts and terminology. For undefined notation
and terminology the reader is referred to Gritzer [3].
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Let P be a poset and A C P. The set A* = {z € P: © > a for every a € A}
is called the upper cone of A. Dually, we have the concept of the lower cone A'
of A. We shall write A" instead of {A"}! and dually. The upper cone {a}" is simply
denoted by a" and {a,b}" is denoted by (a,b)". Similar notation is used for lower
cones. Further, for A, B C P, {AU B}" is denoted by {A, B}" and for « € P, the
set {AU {z}}" is denoted by {4, z}". Similar notation is used for lower cones. We
note that A C A" and A C A™. If A C B, then B' C A! and B* C A". Moreover,
Al = AL Ault — AW and {a*}! = {a}' = d'.

A nonempty subset I of a poset P is called an ideal if a,b € I implies (a,b)" C I,
see Hala§ [4]. Dually, we have the concept of a filter. Given a € P, the subset
al = {x € P: x < a} is an ideal of P generated by a, denoted by (a]; we shall call (a]
a principal ideal. Dually, a filter [a) = a® = {& € P: = < a} generated by a is
called a principal filter. A nonempty subset Q) of P is called an up directed set, if
QN (z,y)" # ¢ for any x,y € Q. Dually, we have the concept of a down directed set.
If an ideal I (filter F') is an up (down) directed set of P, then it is called a u-ideal
(I-filter). An ideal or filter is called proper if it does not coincide with P.

A proper ideal [ is called prime if (a,b)! C I implies that a € I or b € I, see Hala$
and Rachtinek [5]. An ideal I of a poset P is called semiprime if (a,b)! C I and
(a,e)! C I together imply {a, (b,c)"}! C I, see Kharat and Mokbel [9]. Dually, we
have the concepts of a prime filter and semiprime filter.

A poset P with 0 is called 0-distributive if (z,y)! = {0} = (z,2)! implies
{x, (y,2)*}} = {0} for x,y,z € P, see Joshi and Waphare [8]. Evidently, a poset P
with 0 is 0-distributive if and only if (0] is a semiprime ideal.

For a nonempty subset A of a poset P with 0, define a subset A+ of P as

At ={z€P: (a,2)' = {0} for all a € A};

if A = {a}, then we write a' instead of {a}*. We note that A C AL+ and a € a*++.

Further, A+ = () at and AN A+ = {0}. Moreover, if A C B then B+ C A+.
a€A
An ideal I of a poset P is said to be an a-ideal if z++ C I for all = € I, see

Mokbel [10]. An ideal I of a poset P is said to be dense if I+ = {0}.
For a nonempty subset A of a poset P with 0, consider the set

0(A) = {x € P: (a,z)" = {0} for some a € A}.

A proper ideal I of a poset P with 0 is said to be a 0-ideal if I = O(F') for some
proper filter F' of P.

Note that, for a given proper filter F' of a poset P, if O(F) is a 0-ideal, then
0(F)N F = . In fact, if there exists € P such that x € 0(F) N F, then exists
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y € F such that (z,y)! = {0}. Since x,y € F, we have (z,y)" = {0}* = P C F,
a contradiction to the fact that F' is a proper filter.

If P is a lattice then each of the above concepts coincides with the corresponding
concept for lattices. Throughout this paper, P denotes a poset with 0.

2. 0-IDEALS AND «a-IDEALS

In this section, we will study the relation between 0-ideals and «a-ideals in posets.
We begin by proving the following result in a general poset.

Theorem 2.1. Every 0-ideal of a poset is an a-ideal.

Proof. Let I be a 0-ideal of a poset P. Then there exists a proper filter F' such
that I = O(F). Let us show that I is an a-ideal. To this aim, let z € [ and a € z++.
We have to show that a € I. Since z € I = 0(F), there exists an element y € F
such that (x,y)! = {0}, that is y € 2. Now, because a € z-+ and y € 21, we have
(a,y)' = {0}. Hence by definition of O(F), we have a € 0(F) = I. O

Remark 2.2. The converse of Theorem 2.1 does not hold in general. Let N be
the set of natural numbers. Consider the set P = {@}U{N}U{X: X is a finite subset
of N}. It is easy to observe that P is a poset under set inclusion. Let I = P — {N}.
Then I is an a-ideal but not a 0-ideal. Indeed, {N} is the only filter disjoint with I
and 0({N}) = {¢}. In Theorem 2.13 of this paper, we answer the question “Under
which conditions, the converse of Theorem 2.1 will be true?”. Before that, let us
extrapolate some properties of 0-ideals.

Lemma 2.3. Let F' be a proper l-filter of a 0-distributive poset P. Then 0(F) is
a 0-ideal.

Proof. Let z,y € 0(F). To show that O(F) is an ideal, we have to show that
(z,y)" C O(F). Since z,y € 0(F), there exist f1, fo € F such that (z, f;)! = {0} =
(y, f2)'. Since F is an [-filter and f1, fo € F, there exists an element f € (f1, fo)!NF.
Evidently (z, f)! = {0} = (y,f)!. By O-distributivity, {f, (z,y)"}} = {0}. Let

€ (z,9)". So (f,2)! C {f, (z,y)*}} = {0} which gives (f,2)! = {0}. This implies
z € 0(F), as f € F. Thus (z,y)* C 0(F). Therefore 0(F) is an ideal. Now, we
claim that O(F) is a proper ideal. On the contrary, suppose that 0(F) = P. Then
clearly F' C O(F). So for any a € F there exists b € F such that (a,b)! = {0}. As
a,b € F and F is a filter, we get that P = {0}" = (a,b)'™ C F, a contradiction with
the properness of F. O
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Remark 2.4. Note that the condition on a filter being an [-filter is necessary in
the statement of Lemma 2.3. Indeed, consider the 0-distributive poset P depicted
in Figure 1. Observe that the set F' = {a,b,c, 1} is a proper filter but not an I-filter
and 0(F) = {0} U {x;} U{y;} U{z}, where i =1,2,... But 0(F) is not an ideal, as
z1,y1 € O(F) and (z1,y1)" = a!  O(F).

€2 %)
X1 Z1

Figure 1.

Lemma 2.5 (Joshi and Waphare [8]). A poset P is 0-distributive if and only if

xt is an ideal for every x € P.

Theorem 2.6. Let = be a nonzero element of a 0O-distributive poset P. Then x=

is a 0-ideal.

Proof. Let x be a nonzero element of P, that means x* # P. So x* is a proper
ideal by Lemma 2.5. We claim that 2+ = 0([z)). Suppose that @ € x*. Then
clearly, (a,r)! = {0} and = € [z). Thus a € 0([z)), and hence x* C 0([z)). For the
converse inclusion, let a € 0([z)). Then there exists z € [z) such that (a, z)! = {0}.
Since = < 2, we obtain (a,z)! = {0}. This implies @ € x*, and hence 0([z)) C z*.

Combining both the inclusions, we get - = 0([z)). Thus z is a 0-ideal. O

Lemma 2.7. Let P be a poset with 0. The following statements for b, z,y € P
are equivalent: (1) b € (z,y)'*, (2) (b,z,y)! = {0}, (3) (b,z)! C y .

Proof. (1) = (2). Suppose b € (x,y)'*. Let z € (b,x,9)!. Clearly, z < b and
z € (z,y). Since z € (z,y)! and b € (z,y)'t, we get (b,2)! = {0}. But z < b,
therefore z = 0. Thus (b, z,y)! = {0}.

(2) = (3). Suppose that (b,z,y)! = {0}. Let z € (b,x). Then (z,y)! C
(b, z,y)! = {0}. Hence z € yt.

(3) = (1). Let (b,x)! C y* and 2z € (z,y)!. To prove that b € (x,y)'* it
is sufficient to show that (b,2)! = {0}. Since z < x and (b,z)! C y*, we have
(b, 2)! C y*. Further, if a € (b, 2)!, then a € y* and a < z < y. Consequently, a = 0
and hence (b, 2)! = {0} as required. O
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Lemma 2.8. Let x and y be elements of a poset P with 0. Then

(EJ'J' N yJ_J_ _ ((E,y)U'J'.

Proof. It is enough to show that z++ N y*+ C (z,y)'**, as the converse in-
clusion is always true. Suppose that a € x++ Ny*++ and b € (x,9)'*. We have to
show that (a,b)! = {0}. Evidently a € 1+ and a € y*+, so we have 2+ C a' and
y+ C at. Now, since b € (z,y)'*, by Lemma 2.7 we have (b, z)! C y*. This implies
(b,x)! C at. Again by the assertion of Lemma 2.7, (b,z)! C a* implies (a,b)! C z+.
Hence (a,b)! C 2t C at. Now, it is clear that (a,b)! = {0}. Indeed, if 2 € (a,b)},
then 2 € (a] Nat = {0}. Therefore 2z = 0, as we need. O

For an ideal I of a poset P, let I’ and I, denote the following subsets of P:

I'={zecP: 2+ Ca' for some z € I},

I, ={x e P: 2+ Cat" for some z € T}.

In the next result, we establish some properties of I .

Lemma 2.9. Let I be a proper u-ideal of a 0-distributive poset P. Then I, is
a filter. Moreover, if I is an a-ideal, then I, is a proper filter.

Proof. Let I be a proper u-ideal of P. We show that I, is a filter. For this
assume that x,y € I;. We have to show that (x,y)lu C I,. Since z,y € I, there
exist z1, z9 € I such that zf C g1t and zj - yLL, and thus zf N ZQL Czttn yLL.
This implies zi- N 25~ C (z,y)** by Lemma 2.8. Since [ is a u-ideal and 21, 29 € I,
there exists an element z € P such that z € (z1,22)" N I. Now, z € (z1,22)" gives
2zt C 2 Nzy, hence 2+ C (z,y)*+. Now, let a € (z,y)™. Then clearly (z,y)' C a!,
thus (z,y)**+ C a*+. This implies z+ C (z,y)**+ C a*+. Since zt C o+ and
z € I by the definition of I, we get a € I, . Consequently, (x,y)™ C I,.

Further, let I be an a-ideal. We claim that I, # P. Suppose on the contrary that
I, = P. Observe that 0 € I, . Hence by the definition of I, , there exists z € I such
that z+ C 01+ = {0}, that is, 2~ = {0}. Since I is an a-ideal and z € I, we have
P ={0}+ =zt C I, a contradiction to the fact that I is a proper ideal. O

Remark 2.10. (1) In Lemma 2.9, the condition on I of being a u-ideal is nec-
essary. For example in the O-distributive poset P depicted in Figure 2, the ideal
I ={0,a,b} is not a u-ideal and I, = {y;} U {z;} U{a,b}, where i =1,2,..., is not
a filter. In fact, a,b € I, but (a,b)" =P Z I,.

(2) The assertion of Lemma 2.9 is not true if we remove the condition that I is an
a-ideal. For this, consider the three elements poset P = {0,a,1}, where 0 < a < 1.
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It can be easily seen that P is O-distributive. Observe that the set I = {0,a} is
a proper u-ideal but not an a-ideal. Note that I, is a filter but not proper.
We say that a poset P satisfies the condition (Q) if the following assertion is true.

(Q) For any x € P, there exists y € P such that z++ = y*.

Remark 2.11. The poset P depicted in Figure 3 is an example of a 0-distributive
one which does not satisfy (Q). In fact, € P but there is no element y € P for
which z1+ =yt

Lemma 2.12 (Mokbel [10]). Let I be a u-ideal of a 0-distributive poset P.
Then I’ is the smallest a-ideal containing I. Moreover, an ideal I of P is an a-ideal
if and only if I =1'.

Theorem 2.13. Let I be a proper u-ideal of a 0-distributive poset P satisfying
the condition (Q). If I is an a-ideal, then I is a 0-ideal.

Proof. Let I be an a-ideal of P. By Lemma 2.9, I, is a proper filter. To show
that I is a 0-ideal, it is enough to show that I = 0(/, ). Let = € I. Since I = I’ by
Lemma 2.12, we have = € I’. Hence there exists z € I such that 21 C zt. Therefore
xt+ C 2+ Since # € P, by (Q) there exists y € P such that 21+ = yt. Using
att C 2t we get yt C 2+, This yields 2+ C y*+. Now, 2zt C y++ and z € T
together imply that y € I,. Since y € I, and x € z++ = y*, that is, (z,y)! = {0},
we have x € 0(I1). Therefore I C 0(1).

For the converse inclusion, let z € 0(I,). Then there is an element b € I, such
that (z,b)! = {0}. This gives b+ C z*. Since b € I, , there exists an element z € [
such that z+ C b+L. This means that z+ C b++ C z1. Since z+ C 2+ and z € 1,
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we have x € I’ = I. Thus 0(I,) C I. By combining both the inclusions, we have
I=0(1)). O

Remark 2.14. (1) The condition on I of being a u-ideal cannot be dropped in
the statement of Theorem 2.13. The 0-distributive poset P shown in Figure 4 clearly
satisfies the condition (Q). Now, consider the proper a-ideal I = {0, a,b} which is
not a u-ideal. Observe that there does not exist a filter ' of P for which I = 0(F).

(2) Also, consider the 0-distributive poset P depicted in Figure 3 which does not
satisfy (Q). Observe that the proper u-ideal I = (z] is an a-ideal but there does
not exist a filter F' in P for which I = 0(F). Therefore the condition (Q) cannot be
dropped out in Theorem 2.13.

1
c d
a b
0
Figure 4.

An immediate consequence of Theorem 2.1 and Theorem 2.13 is

Corollary 2.15. Let I be a proper u-ideal of a 0-distributive poset P satisfying
the condition (Q). Then I is an a-ideal if and only if I is a 0-ideal.

3. 0-IDEALS AND PRIMENESS

Lemma 3.1. Every non-dense prime ideal of a 0-distributive poset P is of the

form x+ for some nonzero = of P.

Proof. Let I be a non-dense prime ideal of P, that is, I+ # {0}. Then there
exists an element z € I+ such that x # 0. Using the fact that I NI+ = {0}, we get
that © ¢ I. We claim that I = xt. Since z € I+, we obtain I C I+ C z'. Hence
I C xt. For the converse inclusion, suppose z € z-. We have (z,z)! = {0} C I and
x ¢ I; by primeness of I, we get z € I. Thus z+ C I, as we need. O

By Theorem 2.6 and Lemma 3.1, the following corollary follows.
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Corollary 3.2. If a prime ideal I of a 0-distributive poset P is non-dense, then I
is a 0-ideal.

An element q of a poset P with 0 is called an atom if there is no ¢ € P for which
0<c<g.

Lemma 3.3 (Kharat and Mokbel [9]). Every [-filter of a finite poset P is principal.

Theorem 3.4. Let F' be an [-filter of a finite 0-distributive poset P. Then 0(F)

is a semiprime ideal.

Proof. If FF = P, then 0(F) = P is a semiprime ideal. Suppose that F' # P.
By Lemma 3.3, F' is principal, say F' = [f). In view of Lemma 2.3, it is enough to
show that 0([f)) is semiprime. Suppose that (z,y)' C 0([f)) and (z,2)! C 0([f)).
We have to show that {z,(y,2)"}' C 0([f)). Let a € {x,(y,2)"}. Suppose on
the contrary that a ¢ 0([f)). Therefore (a, f)! # {0}, and so there is a nonzero
element b € P such that b € (a, f)!. Since P is finite and b # 0, there exists an
atom q € P such that ¢ < b. Observe that (¢,y)! = {0}. Indeed, if (q,3)' # {0},
then ¢ < y. Since ¢ < a < x and ¢ < y, we get that ¢ € (z,9)! C 0([f)), thus
(g, f)' = {0}, a contradiction to the fact that ¢ < f. Similarly, (¢, z)' = {0}. Now, by
0-distributivity, we get {q, (y,2)"}! = {0}. Since a € (y, 2)", we have (q,a)! = {0},
a contradiction to the fact that ¢ < a. Thus a € 0([f)). O

Figure 5.

Remark 3.5. In the finite 0-distributive poset P depicted in Figure 5, consider
the filter F' = {1,a’,b’,¢'} which is not an I-filter. Observe that 0(F) = {0, a, b, c}
is an ideal but not a semiprime one. In fact, (d’,b')! C 0(F) and (d’,c')! C 0(F),
but d' = {d', (t/,¢)"}! € O(F). Hence the condition of the filter being an [-filter is
essential in Theorem 3.4.

516



However, in the case of meet semilattices we have

Theorem 3.6. Every 0-ideal of a 0-distributive meet semilattice S is semiprime.

Proof. Suppose that 0(F) is a 0-ideal of S. Let x Ay € O(F) and = A z € O(F).
We have to show that {z, (y,2)"}! C 0(F). Since z Ay, = A z € O(F), there exist
f1, f2 € F such that (xAy)A f1 = 0 and (xAz)A fo = 0. Since S is a meet semilattice
and f1, fo € F, hence fi A fo exists, say fi A fo = f,and f € F. As f < f1; and
(xAy)A f1 =0, we get that (xAy)Af = (xAf)Ay = 0. Similarly, (zAf)Az = 0. By
0-distributivity, we have {x A f, (y, 2)*}! = {0}. This implies f'N{z, (y,2z)"}! = {0}.
Now, let a € {, (y,2)"}!. Then we have (f,a)! = {0}. Observe that (f,a)! = {0}
and f € F together imply that a € 0(F). Therefore {z, (y, 2)"}! C 0(F) as required.
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