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Abstract. We modify slightly the definition of H-partial functions given by Celani and
Montangie (2012); these partial functions are the morphisms in the category of H∨-space
and this category is the dual category of the category with objects the Hilbert algebras
with supremum and morphisms, the algebraic homomorphisms. As an application we show
that finite pure Hilbert algebras with supremum are determined by the monoid of their
endomorphisms.
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1. Introduction

A Hilbert algebra (also called a positive implication algebra) is a structure H =

〈H ;→, 1〉 of type (2,0) that satisfies for all a, b, c ∈ H the following:

a → (b → a) = 1;(1)

(a → (b → c)) → ((a → b) → (a → c)) = 1;(2)

a → b = 1 and b → a = 1 imply a = b.(3)

Here is an important example of Hilbert algebras (see [2]): For a poset 〈X,6〉,

the set of its increasing subsets is denoted by Pi(X). Then Pi(X) := 〈Pi(X);⇒, X〉

with the operation ⇒ defined by the prescription

(4) U ⇒ V := (U ∩ V ∁]∁ = {x : [x) ∩ U ⊆ V }

is a Hilbert algebra. Hilbert algebras represent the algebraic counterparts of the

implicative fragment of Intuitionistic Propositional Logics. Diego in [6] proves that
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the class of Hilbert algebras forms a variety. The binary relation 6 defined on H by

a 6 b if and only if a → b = 1 is a partial order on H with last element 1. If the

underlying set H of the Hilbert algebra H is a join-semilattice with respect to the

order 6, then it is possible to form a new algebra by adding the binary operation ∨

to the usual operations of H. In this way, we arrive at the notion of Hilbert algebra

with supremum. More precisely, a Hilbert algebra with supremum or H∨-algebra is

an algebra 〈H ;→,∨, 1〉 of type (2, 2, 0) if 〈H ;→, 1〉 is a Hilbert algebra, 〈H ;∨, 1〉 is

a join semilattice with last element 1 and a → b = 1 if and only if a ∨ b = b. Every

Tarski algebra, for example, can be turned into a H∨-algebra since a Tarski algebra

is a Hilbert algebra 〈H ;→, 1〉 such that (a → b) → b = (b → a) → a for all a, b ∈ H

and it is known that H with the operation ∨ defined by a ∨ b = (a → b) → b is a

join semilattice.

In [5] a duality for H∨-algebra is developed. It is the purpose of this paper to

introduce and justify a slight modification to the condition (ii) of the definition of an

H-partial function given therein. We think this modification makes the concept more

precise. As an application of the mentioned duality we show that certain important

family of H∨-algebras are determined by the monoid of their endomorphisms.

2. Preliminaries

It is known (see [10]) that Hilbert algebras and positive implicative BCK-algebras

are dual isomorphic. For the basic facts about BCK-algebras in general and positive

implicative BCK-algebras in particular we refer the reader to [9]. A BCK-algebra is

an algebra A := 〈A;→, 1〉 of type (2, 0) that satisfies the following axioms:

(a → b) → ((a → c) → (b → c)) = 1;(5)

a → ((a → b) → b) = 1;(6)

a → a = 1;(7)

a → 1 = 1;(8)

a → b = 1 and b → a = 1 imply a = b.(9)

This presentation of BCK-algebras given in [8] is dual to the original presentation

given in [9] and we adopt such a presentation since it serves our purpose better. For

Hilbert algebras as well as for BCK-algebras, the relation 6 given by the prescription

a 6 b if and only if a → b = 1, defines a partial order on the underlying set of the

algebra. Let A be a BCK-algebra or a Hilbert algebra such that the underlying set A

of the algebra is a join-semilattice with respect to the partial order defined above.

Consider then the new algebra A∨ := 〈A;→,∨, 1〉 of type (2, 2, 0) such that 〈A;∨, 1〉
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is a join semilattice with last element 1. Observe that by the condition imposed

on the underlying set we have that a → b = 1 if and only if a ∨ b = b. If A is a

BCK-algebra, the algebra A∨ is called an upper BCK-semilattice. If A is a Hillbert

algebra, A∨ is called a Hilbert algebra with supremum.

Proposition 1 ([8]). The class of upper BCK-semilattices is a variety. The equa-

tions

a → (a ∨ b) = 1;(10)

a ∨ ((a → b) → b) = (a → b) → b;(11)

a ∨ a = a;(12)

a ∨ b = b ∨ a;(13)

(a ∨ b) ∨ c = a ∨ (b ∨ c);(14)

1 → a = a,(15)

together with (5) and (8) constitute an equational basis of this variety.

We recall here that a positive implicative BCK-algebra is a BCK-algebra satisfying

the additional identity

(a → b) → (a → c) = a → (b → c).(16)

Having in mind Proposition 1 and the fact that Hilbert algebras are dual isomorphic

to positive implicative BCK-algebras, it can be shown that the class of Hilbert al-

gebras with supremum forms a variety defined by the identities that define Hilbert

algebras, the identities that define join semi-lattices, (10) above and

(a → b) → ((a ∨ b) → b) = 1.(17)

Proposition 2 ([5]). A = 〈A;→ ∨, 1〉 of type (2, 2, 0) is a Hilbert algebra with

supremum (H∨-algebra) if and only if 〈A;→, 1〉 is a Hilbert algebra (H-algebra),

〈A;∨, 1〉 is a join semilattice with last element 1 and A satisfies the identities (10)

and (17).
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3. Duality for H∨-algebras

In this section we collect the basic facts about the simplified topological represen-

tation of Hilbert algebras with supremum given in [5] and [3] and we introduce a

slight modification to the definition of the H-partial function that we think makes

it more precise.

First we recall some topological concepts. Let X = 〈X, τ〉 be a topological space.

For a set Y ⊆ X , cl(Y ) will denote the closure of Y . The specialization order on X is

defined by x � y if and only if x ∈ cl(y) = cl({y}). It is easy to see that the relation �

is reflexive and transitive and it is a partial order if X is T0. The dual relation of �

will be denoted by 6 and defined by x 6 y if and only if y ∈ cl(x). Notice that

cl(x) = {y ∈ X : x 6 y} = [x) and that an open subset of X is decreasing whereas

a closed one is increasing with respect to 6, the dual relation of the specialization

order �. An arbitrary set Y ⊆ X is said to be irreducible if Y ⊆ Z ∪W for closed

subsets Z and W of X implies Y ⊆ Z or Y ⊆ W . The space X is said to be

sober if for every closed irreducible subset Y of X there exists a unique x ∈ X such

that Y = cl(x). A sober space is obviously T0. A saturated set is an intersection

of open sets which is an equivalent to saying that it is decreasing. The smallest

saturated set containing a given subset Y of X will be denoted by sat(Y ). Observe

that sat(Y ) = (Y ].

A Hilbert space or H-space for short is a sober topological space X := 〈X, τK〉

such that

(i) K is a base of compact-open subsets of X for a topology τK on X ,

(ii) for every A,B ∈ K, (A ∩B∁] ∈ K.

If additionally X satisfies

(iii) U ∩ V ∈ K for all U, V ∈ K,

X is called an H∨-space, i.e. an H∨-space is an H-space for which (iii) holds.

A nonempty subset D of an H-algebra A is called a deductive system if

(i) 1 ∈ D, and

(ii) a, a → b ∈ D imply b ∈ D.

We denote the set of deductive systems of an H-algebra A by Ds(A). A deductive

systemD is said to be irreducible or prime if from D = D1∩D2 with D1, D2 ∈ Ds(A)

it always follows that D1 = D or D2 = D. In [3], Theorem 5, it is shown that D

(deductive system) is irreducible if and only if for a, b 6∈ D there exists c 6∈ D such

that a 6 c, b 6 c. The set of all irreducible deductive systems of A is denoted

by X(A). It is easy to prove that D ∈ Ds(A) is irreducible if and only if for all

a, b ∈ A such that a ∨ b ∈ D, a ∈ D or b ∈ D. It can be shown that

Pi(X(A)) := 〈Pi(X(A)),⇒,∪, X〉
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is an H∨-algebra and if A is an H∨-algebra, then the mapping ϕ : A → Pi(X(A))

given by

ϕ(a) = {P ∈ X(A) : a ∈ P}(18)

is an injective homomorphism of H∨-algebras ([5], Lemma 5.1). Moreover,

KA := {ϕ(a) : a ∈ A}(19)

is a basis for a topology τKA
on X(A) and X(A) := 〈X(A), τKA

〉 is an H∨-space

([5], Theorem 5.6). Observe that the dual of the specialization order given by this

topology on X(A) is the set-theoretical inclusion.

If X := 〈X, τK〉 is an H∨-space, then D(X) := 〈D(X);⇒,∪, X〉, where

D(X) := {U∁ : U ∈ K}

and the operation ⇒ given by the formula (4) is an H∨-algebra, see [5], Proposi-

tion 5.3. The image of the mapping ϕ given by formula (18) is D(X(A)), so

ϕ : A ∼= D(X(A)).

Let X be an H∨-space. Then the mapping εX : X → X(D(X)) given by

εX(x) := {U ∈ D(X) : x ∈ U}(20)

is a homeomorphism between topological spaces ([5], Proposition 5.7).

Let X1 := 〈X, τK1
〉 and X2 := 〈X, τK2

〉 be two H-spaces. A relation R ⊆ X1×X2

is said to be an H-relation provided that

(i) R−1(U) ∈ K1 for every U ∈ K2,

(ii) R(x) is a closed subset of X2 for all x ∈ X1.

If additionally

(iii) (x, y) ∈ R implies [y) = R(z) for some z > x,

R is said to be an H-functional relation (remember that here 6 is the dual of the

specialization order given by the topology). The relation R is said to be irreducible

if for x ∈ X1 with R(x) 6= ∅, R(x) is a closed irreducible subset of X2.

It is proved (see [4] and [5]) thatH∨-spaces as objects and irreducibleH-functional

relations as arrows form a category denoted by SF∨.
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If X1 and X2 are H
∨-spaces and R ⊆ X1 × X2 is an irreducible H-functional

relation, then the mapping hR : D(X2) → D(X1) given by

(21) hR(U) = {x ∈ X1 : R(x) ⊆ U}

is a homomorphism of H∨-algebras (Theorem 5.12 and Corollary 5.13 of [5]).

Let A and B be two H∨-algebras and h : A → B a homomorphism. Consider the

relation Rh ⊆ X(B)×X(A) given by the prescription

(P,Q) ∈ Rh if and only if h−1(P ) ⊆ Q.(22)

Then Rh is an irreducible H-functional relation.

Proposition 3. Rh is irreducible if and only if for all P ∈ X(B), h−1(P ) ∈ X(A)

or h−1(P ) = A.

P r o o f. See Theorem 5.10 of [5]. �

Let HH∨ be the category of H∨-algebras with morphisms the algebraic homo-

morphisms. It follows from the above results that the categories HH∨ and SF∨ are

dually equivalent (see [5], page 248).

WhenX(B) is a sober space, it happens that, since the relationRh ⊆ X(B)×X(A)

(corresponding to the map h, see (21)), is irreducible for each P ∈ X(B) with

Rh(P ) 6= ∅, there is a unique Q ∈ X(B) such that Rh(P ) = [Q). Then a partial

function fh may be defined from the H
∨-space X(B) to the H∨-space X(A), having

the domain {P ∈ X(B) : Rh(P ) 6= ∅} and the prescription P 7→ Q. By the definition

of Rh, see (22), Rh(P ) = {Q ∈ X(A) : h−1(P ) ⊆ Q}. By Proposition 3, h−1(P ) ∈

X(A) or h−1(P ) = A. So, if P is in the domain of the mentioned partial function,

then the mapping should be P 7→ h−1(P ). Next, observe that if P 6∈ dom(fh), i.e. if

h−1(P ) = A, then [P )∩dom(fh) = ∅, whereas if P ∈ dom(fh), then (P ] ⊆ dom(fh).

We think this discussion justifies the following modification of Definition 6.1 in [5].

Let X1 := 〈X, τK1
〉 and X2 := 〈X, τK2

〉 be two H∨-spaces. Let f : X1 → X2 be

a partial function with the domain denoted by dom(f). Then f is said to be an

H-partial function if the following conditions are satisfied:

(i) [f(x)) = f([x)) for each x ∈ dom(f);

(ii) [x) ∩ dom(f) = ∅ for each x 6∈ dom(f) and (x] ⊆ dom(f) if x ∈ dom(f);

(iii) (f−1(U)] ∈ K1 for each U ∈ K2.

A bijective correspondence between irreducible H∨-functional relations and H-

partial functions can now be established as follows: for a given H∨-functional re-

lation R consider the map fR : X1 → X2 with the domain {t ∈ X1 : R(t) 6= ∅}
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and defined by fR(x) = y, where y ∈ X2 is the unique element of X2 such that

R(x) = [y). Since the spaces we are considering are sober spaces, f is well defined

and it can be proved that f is an H-partial function. Conversely, if f : X1 → X2 is

an H-partial function, then Rf := {(x, y) : x ∈ dom(f) and f(x) 6 y} ⊆ X1 ×X2 is

an irreducible H-functional relation.

The above comments allow us to consider the category SF∨ with morphisms, the

H-partial functions instead of H∨-functional relations and the equivalence between

the categories HH∨ and SF∨ is described now as follows: Let h : A1 → A2 be a

homomorphism of H∨-algebras. Then hX : X(A2) → X(A1) given by the formula

hX(P ) = h−1(P )

is an H-partial function with the domain {P ∈ X(A2) : h−1(P ) ∈ X(A1)}.

Let f : X1 → X2 be an H-partial function. Then fD : D(X2) → D(X1) given by

the formula

fD(U) = (f−1(U∁)]∁

is a homomrphism of H∨-algebras.

More precisely, the correspondence X from the category HH∨ of H∨-algebras

with morphisms the algebraic homomorphisms to the category SF∨ of H∨-spaces

now with morphisms the H-partial functions given by the diagram

A1

h

��

X // X(A1)

A2
X

// X(A2)

hX

OO

defines a contra-variant functor from the category HH∨ to the category SF∨. Like-

wise, the correspondence D from the category SF∨ to the category HH∨ given by

the diagram

X1

f

��

D // D(X1)

X2
D

// D(X2)

fD

OO

defines a contra-variant functor from the category SF∨ to the category HH∨. More-

over, XD is the identity (up to homeomorphisms) in the category SF∨ and DX is

the identity in the category HH∨.

We summarize the above in the following theorem:

Theorem 4. There exists a dual equivalence between the category ofH∨-algebras

with homomorphisms and the category of H∨-spaces with H-partial functions.
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An H-partial endomorphism of an H∨-spaceX is an H-partial function fromX to

itself. Denote the set of H-partial endomorphisms of an H∨-space X by pEnd(X).

This set with a composition of H-partial functions is a monoid. Likewise, the set

End(A) of endomorphisms of an H∨-algebra with a composition of functions is a

monoid and, as an obvious consequence of the equivalence in Theorem 4, we have

the following:

Corollary 5. Let A be an H∨-algebra andX an H∨-space. Then End(A) is anti-

isomorphic to pEnd(X(A)). Likewise, pEnd(X) is anti-isomorphic to End(D(X)).

4. Dual space of a pure H∨-algebra

Let A be a Hilbert algebra. An element p ∈ A \ {1} is called irreducible if for all

a ∈ A, a → p = 1 or a → p = p. It follows that {p ∈ A : p is irreducible } ∪ {1} is

a sub-universe of A; A Hilbert algebra such that all of its elements are irreducible

is said to be given by the order. This kind of Hilbert algebras is named in [1] pure

Hilbert algebras. In [3], Lemma 13 it is proved that p ∈ A is irreducible if and only

if (p]∁ ∈ X(A). In fact, it is proved in [7] that if A is finite, then D ∈ X(A)) if and

only if D = (p]∁ for some irreducible element p ∈ A. Another important fact we will

use is that if X := 〈X, τK〉 is a finite H-space, then (x] ∈ KX for all x ∈ X , see [4],

Lemma 4.1.

Let 〈X 6〉 be a finite poset such that the poset 〈X ⊕{1},6d〉, being 6d the order

dual of 6, is a ∨-semilattice. Observe that in the poset 〈X 6〉, for x, y ∈ X either

x ∧ y = z ∈ X or (x] ∩ (y] = ∅. Consider the Hilbert algebra with the universe

P := X ⊕ {1} and → given by the order 6d. Clearly, P is a pure H
∨-algebra with

dual H∨-space X(P) := 〈X,KX〉, where

KX := {(x] : x ∈ X}.

Notice that all the H∨-Hilbert algebras A having P as a subalgebra and being

subalgebras of Pi(X) are such that the carrier of their dual H∨-space is X ; in other

words, X(A) = 〈X, τKA}〉, where the base KA depends onA. The fact that the order

on A given by the basic binary operation of A has a minimum means that X ∈ KA.

For Pi(X) we have that

KPi(X) = {Z ⊆ X : Z∁ is increasing}.

Proposition 6. The number of join irreducible elements of the H∨-Hilbert al-

gebra Pi(X) (X is a finite poset) is the number of its irreducible elements (see the

definition above) or, which is the same, it is |X |.
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P r o o f. Let m ∈ X . Clearly, (m]∁ ∈ Pi(X). Since U ∈ Pi(X) is ∨-irreducible if

and only if U = [p) for some p ∈ X , it will be enough to show that (m]∁ is irreducible;

let us prove that: we want to prove that for all U ∈ Pi(X),

U ⇒ (m]∁ = (U ∩ (m]]∁ =

{

(m]∁ or,

X.

This is equivalent to proving that

(U ∩ (m]] =

{

(m] or,

∅.

With such a purpose suppose that (U ∩ (m]] 6= ∅, that is U ∩ (m] 6= ∅. Clearly,

U ∩ (m] ⊆ (m] and since (m] is decreasing, (U ∩ (m]] ⊆ (m]. Pick x ∈ U ∩ (m],

i.e. x ∈ A and x 6 m. Since U ∈ Pi(X), it is increasing, so m ∈ A. Let us see that

(m] ⊆ (U ∩ (m]]. Let z ∈ (m]. Then z 6 m ∈ U ∩ (m]; that means, z ∈ (U ∩ (m]] as

desired.

�

5. Special H∨-partial endomorphism

Throughout this section, 〈X,6〉 (the carrier setX with subindices if necessary) will

represent a finite poset such that for x, y ∈ X either x∧y = z ∈ X or (x]∩(y] = ∅; in

other words, 〈{0}∪X,6a〉, where for x, y ∈ X , x 6a y if and only if x 6 y and 0 6a x

for all x ∈ X , is a meet-semilattice. So X := 〈X,KX〉, where KX = {(x] : x ∈ X} is

the dual H∨-space of a pure H∨-algebra. We will call this kind of H∨-spaces pure

H∨-spaces.

Denote by Max(X) the set of maximal elements of X and for each x ∈ X let

Mx := {m ∈ Max(X) : x 6 m}. For each x ∈ X consider a mapping fx : X → X

with the domain ([x)] = (Mx] such that

fx(z) = z ∨ x.

Indeed, if z ∈ (Mx], let m1,m2, . . . ,mk ∈ Mx such that z 6 mi, 1 6 i 6 k; then

m1 ∧ m2 ∧ . . . ∧ mk > fx(z) = x ∨ z. It is easy to check that fx is an H-partial

function (or more precisely, an H-partial endomorphism of X). Observe that fx = id

in [x) = Im(fx) and fx ◦ fx = fx; further x 6 y implies fx ◦ fy = fy. Moreover,

if x ∈ Max(X), then fy ◦ fx = fx (if y 6 x); otherwise, fy ◦ fx = ∅. Further, in

the poset 〈X,6〉, if x ∨ y = sup{x, y} exists (that occurs if Mx ∩ My 6= ∅), then

fx ◦ fy = fx∨y.
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There is another important family of H-partial endomorphisms. Let us describe

this family as follows: for each pair (m,x) ∈ Max(X) × X define fm,x with the

domain (x] and just a single value m. It happens that this family is a submonoid of

the monoid of all partial endomorphisms of X. It is easy to check that

g ◦ fm,x =

{

fg(m),x if m ∈ dom(g),

∅ otherwise,
fm,x ◦ g =

{

fm,y if (y] = g−1((x]) 6= ∅,

∅ otherwise.

Observe that fm coincides with fm,m for m ∈ Max(X).

Proposition 7. For any H-partial idempotent endomorphism f (f2 = f ◦ f = f)

we have that if x ∈ Im(f), then dom(f ◦ fx) = dom(fx) = ([x)] and Im(f ◦ fx) = [x);

that is, f ◦ fx = fx. If x 6∈ dom(f), then f ◦ fx = ∅.

P r o o f. Straightforward. Just observe that since f is idempotent, Im(f) ⊆

dom(f) and f(x) = x. �

Proposition 8. LetX1 andX2 be two finite pureH
∨-spaces and Γ : pEnd(X1) →

pEnd(X2) be a monoid isomorphism. Then for m ∈ Max(X1), Γ(fm) = fm′ for some

m′ ∈ Max(X2).

P r o o f. Set σ = Γ(fm). As fm 6= ∅, σ 6= ∅. Let x ∈ dom(σ), say, σ(x) = y.

Since σ([x)) = [y), we may choose m′ ∈ My and x′ ∈ [x) such that σ(x′) = m′.

Indeed, f2
m = fm implies σ

2 = σ so σ(m′) = m′. By the formulas given before

Proposition 7, fm′ ◦ σ = fc′,m′ , where (c′] = σ−1((m′]). It follows from this that

Γ−1(fm′) ◦ fm = Γ−1(fm′,c′). Setting g := Γ−1(fm′) and g1 := Γ−1(fm′,c′) we have

that g ◦ fm = g1. On the other hand, again using the formulas before Proposition 7,

we have that g ◦ fm = fg(m),m; so g1 = Γ−1(fm′,c′) = fg(m),m. Now remember that

(c′] = σ−1((m′]). Then m′ ∈ (c′] and since m′ ∈ Max(X2), m
′ = c′, so fm′,c′ = f ′

m.

Finally, since f2
m′ = fm′ , we have that g(m) = m and σ = fm′ . �

Corollary 9. In the previous proposition, if m 6= x ∈ X1, then Γ(fm,x) = fm′,y

for some y ∈ X2, y 6= m′.

P r o o f. Set Γ(fm,x) := σ. Clearly fm ◦ fm,x = fm,x. Then by the previous

proposition, fm′ ◦ σ = σ; so m′ ∈ Im(σ). On the other hand, by the formulas before

Proposition 7, fm′ ◦ σ = fm′,y, where (y] = σ−1((m′]). The desired result now

follows. �

Proposition 10. With the hypothesis of the previous proposition, if m is an

isolated point of X1 and Γ(fm) = fm′ , then m′ is an isolated point of X2.
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P r o o f. Observe that for all χ ∈ pEnd(X1) we have
{

dom(χ ◦ fm) = {m} and Im(χ ◦ fm) = {χ(m)} if m ∈ dom(χ),

∅ otherwise.

Likewise,
{

dom(fm ◦ χ) = (s] and Im(χ ◦ fm) = {m} if m ∈ Im(χ),

∅ otherwise.

(Notice that (s] = χ−1((m])). If additionally χ is idempotent, then fm ◦ χ = fm ⇒

χ = fm since in this case χ2 = χ implies Im(χ) ⊆ dom(χ) and if m ∈ Im(χ),

m ∈ dom(χ), that is m ∈ (s].

Let Γ(fm) = fm′ , where m′ ∈ Max(X2); this we may write by virtue of Propo-

sition 8. Since monoid isomorphisms preserve idempotent endomorphisms, fm′

must satisfy the above condition, namely, fm′ ◦ χ′ = fm′ ⇒ χ′ = fm′ , where

χ′ ∈ pEnd(X2), with χ′ idempotent. But this is not true if m′ is not isolated.

To see this just take a t ∈ X2, an element in X2 covered by m′, i.e. t < m′ with

nothing in between and observe that ft is idempotent and fm′ ◦ ft = fm′ . �

Proposition 11. Let X1 and X2 be two finite pure H-spaces such that

〈Xi ⊕ {1},6up〉, i = 1, 2 is a ∨-semilattice, where 6up is the dual of the specializa-

tion order. This means that KXi
= {(x] : x ∈ Xi}, i = 1, 2. Let Γ: pEnd(X1) →

pEnd(X2) be a monoid isomorphism. Then for x ∈ X1, Im(Γ(fx)) has a minimum

value.

P r o o f. Let us proceed by induction on the height of x and the number of

maximal elements that cover it. The first step of the induction is the case when x

is maximal and the result in this case follows from Proposition 8. Suppose now

that x ∈ X1 is co-maximal and it is covered by just one maximal element of X1, i.e.

[x) = {x,m}, wherem ∈ Max(X1). Observe that dom(fx) = (m] and fm◦fx = fm =

fx ◦ fm. Moreover, for every other maximal element z of X1, fx ◦ fz = ∅ = fz ◦ fx.

Set σ = Γ(fx). By Proposition 8 we may write Γ(fm) = fm′ , m′ being a maximal

element of X2. Suppose that Im(σ) has two minimals t1 and t2. Then since σ
2 = σ,

fm′ ◦ σ = σ ◦ fm′ = fm′ , σ ◦ fti = fti , i = 1, 2.

The last equality above is due to Proposition 7. Let δi := Γ−1(fti), i = 1, 2 such

that fx ◦ δi = δi. Clearly, Im(δi) ⊆ [x), so Im(δi) = {m} or Im(δi) = {x,m}.

Case I. Im(δ1) = Im(δ2) = {x,m}: in this case, δ1 = δ2 = fx (since necessarily by

the definition of H-partial functions, dom(δi) = (m]), so ft1 = ft2 , a contradiction.

Case II. Im(δ1) = {m} and Im(δ2) = {x,m}: this leads to δ1 = fm and δ2 = fx,

that is ft1 = fm′ , again, a contradiction.
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The other cases are treated in a similar way. So Im(σ) cannot have two minimals.

The next step of the induction is the case when x, co-maximal in X1, is covered ex-

actly by two maximals m1 and m2. Let m
′
1,m

′
2 ∈ Max(X2) such that Γ(fmi

) = fm′

i
,

i = 1, 2. Let σ = Γ(fx) as above and suppose again that Im(σ) has two minimals t1
and t2 with δi := Γ−1(fti), i = 1, 2. We have that fx ◦ δi = δi because certainly

σ ◦ fti = fti , i = 1, 2. Then Im(δi) ⊆ [x) = {x,m1,m2}, i = 1, 2.

Case Im(δi) = {mi}, i = 1, 2: in this case we have that ti = m′
i, i = 1, 2 because

Γ(δi) = fti , whence Im(σ) = {m′
1,m

′
2} (since t1, t2 are the minimal elements of

Im(σ)) and consequently, fti = fm′

i
, i = 1, 2. Observe that (m′

1,m
′
2] ⊆ Im(σ) ⊆

dom(σ). Indeed, (m′
1,m

′
2] = dom(σ) because if there existed t ∈ dom(σ) such that

Mt ∩ {m′
i,m

′
2} = ∅ and σ(t) = m′

1, for example, then as σ
−1((m′

1]) = (m′
1] (by

condition (iii) of the definition of an H-partial function), we have that t ∈ (m′
1],

a contradiction. Then if (m′
1,m

′
2] has a minimum z = m′

1 ∧ m′
2, σ cannot satisfy

condition (i) in the definition of the H-partial function for z. So (m′
1] ∩ (m′

2] = ∅.

It could not happen (m′
i] = {m′

i} because if that happened, then by Proposition 10

mi would be isolated and certainly, it is not.

For i ∈ {1, 2} let zi ∈ X2 such that m
′
i is one of its covers. Clearly, σ ◦ fzi = fm′

i

(remember that dom(fzi) = ([zi)], Im(fzi) = [zi), fzi = id in Im(fzi), (m
′
1,m

′
2] =

dom(σ) and σ(zi) = m′
i because (m

′
1] ∩ (m′

2] = ∅), so fx ◦ ̺i = fmi
, where ̺i =

Γ−1(fzi). It follows from this that dom(̺i) ⊇ (mi], ̺i(mi) = mi. We have also

that fzi ◦ σ = fm′

i
, so ̺i ◦ fx = fmi

and it follows from this that ̺i(x) = mi; now

since ̺i([x)) = [̺i(x)) = [mi), it follows that Im(̺i) = {mi} and this implies that

̺i = fmi
(because dom(̺i) has to be (mi]) and this is a contradiction.

Case Im(δi) = {m1,m2}, i ∈ {1, 2}: since δ2i = δi, Im(δi) = {m1,m2} ⊆ dom(δi)

and consequently (m1,m2] ⊆ dom(δi), so x ∈ dom(δi) with, say, δi(x) = mi. But

then this violates the property δi([x)) = [δi(x) = mi) since necessarily δi(mj) = mj .

The last case leads to δi = fx which is a contradiction.

Suppose now that the result is true for the elements of X1 above x. Looking

for a contradiction, suppose that σ = Γ(fx) has more than one minimal element,

say, ti, i = 1, 2, . . . , k, k > 1. Let ̺i = Γ−1(fti). Clearly σ ◦ fti = fti ◦ σ = fti , so

fx ◦ ̺i = ̺i ◦ fx = ̺i. This means that Im(̺i) ⊆ [x). If Im(̺i) = [x), then ̺i = fx

which is not true. So Im(̺i)  [x). We assert that Im(̺i) has a minimum and in

fact, ̺i = fdi
for some di > x. For if Im(̺i) has two minimals r1 and r2, as x 6 r1,

x 6 r2 then r1 ∧ r2 exists and it must belong to dom(̺i), which makes impossible

condition (i) of the definition of an H-partial function to be satisfied. Notice that

(ti] ∩ (tj ] = ∅ if i 6= j since

dom(σ) = ({m′
i ∈ Max(X2) : fm′

i
= Γ−1(fmi

) with mi ∈ Max(X1), x 6 mi}]
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and Im(σ) = [t1, t2, . . . , tk) ⊆ dom(σ). Observe now that for each m ∈ Max(X1)

there are exactly |[x)|H-partial endomorphisms of the form fm,y such that fm,y◦fx =

fm,y (indeed, fm,y ◦ fx = fm,y if and only if x 6 y). Now since the partial endomor-

phisms fm,y are preserved under monoid isomorphism (Corollary 9), we have that the

same is true for σ. But there are exactly |[t1, t2, . . . , tk)| H-partial endomorphisms

of the form fm′,t such that fm′,t ◦σ = fm′,t and it can be proved, using the induction

hypothesis, that |[t1, t2, . . . , tk)| = |[d1, d2, . . . , dk)| = |(x]| − 1 (indeed, d1, . . . , dk are

all the covers of x in X1). This ends the proof. �

Theorem 12. Let X1 and X2 and Γ be as in the previous proposition. Then the

mapping σ : X1 → X2 given by the rule

σ(x) = y if and only if y = min(Γ(fx))

is an H-function, so X1
∼= X2.

P r o o f. It is clear that σ is a well defined one to one and onto mapping. SinceXi

is the dual space of a pure Hilbert algebra, KXi
= {(x] : x ∈ Xi}. Due to the

properties of the H-partial functions of the form fx (see the observations on the

H-partial functions fx given at the beginning of this section) the mapping σ satisfies

properties (i) and (iii) of the definition ofH-partial functions. Let us see, for example,

that σ((x]) = (σ(x)]: Let t ∈ σ((x]). Then t = σ(y) for some y > x. We observed

before that this implies fy ◦ fx = fx and from this it follows Γ(fy) ◦ Γ(fx) = Γ(fx),

i.e. fσ(y) ◦ fσ(x) = fσ(x) and, as mentioned before, this means t = σ(x) > σ(x); so

t ∈ [σ(x)), as wanted. Conversely, if t ∈ [σ(x)), t > σ(x). Observe that dom(σ) = X1

and Im(σ) = X2; so t = σ(y) for some y and it is easy to see that σ(y) > σ(x) which

in turn implies y > x and this means that t ∈ σ([x)). Let us now check that σ

satisfies property (iii): For y ∈ X2 there is a unique x ∈ X1 such that y = σ(x). It

is routine to check that σ−1((y]) = (x].

Property (ii) is readily satisfied because σ is actually a total function, i.e.

dom(σ) = X1. This concludes the proof. �

Corollary 13. Two pure finite H∨-algebras share the same monoid of endomor-

phisms if and only if they are isomorphic.

P r o o f. It follows from Corollary 5 and the previous theorem. �
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