# EPIMORPHISMS BETWEEN FINITE MV-ALGEBRAS 

Aldo V. Figallo, San Juan, Marina B. Lattanzi, La Pampa<br>Received December 5, 2014. First published February 1, 2017. Communicated by Radomír Halaš


#### Abstract

MV-algebras were introduced by Chang to prove the completeness of the infinite-valued Łukasiewicz propositional calculus. Recently, algebraic theory of MV-algebras has been intensively studied. Wajsberg algebras are just a reformulation of Chang MV-algebras where implication is used instead of disjunction. Using these equivalence, in this paper we provide conditions for the existence of an epimorphism between two finite MV-algebras $A$ and $B$. Specifically, we define the mv-functions with domain in the ordered set of prime elements of $B$ and with range in the ordered set of prime elements of $A$, and prove that every epimorphism from $A$ to $B$ can be uniquely constructed from an mv-function.


Keywords: MV-algebras; mv-function; epimorphism
MSC 2010: 06D35, 08A35

## 1. Preliminaries and necessary properties

MV-algebras were originally defined by Chang [4], [5] as algebraic models of Lukasiewicz infinite-valued (also finite-valued) propositional calculi. However, let us recall that Łukasiewicz [13], [14] considered as the main propositional connectives implication $\rightarrow$ and negation $\sim$. Algebras introduced by Chang, instead, contain other operations which do not correspond, for example, to logical connectives MVconjunction or MV-disjunction, to mention some.

Algebraic counterparts of Lukasiewicz propositional calculi (infinite or finitevalued), all of them polynomially equivalent, were originally defined by Komori [12], [11] under the name CN-algebras, and by Rodriguez [17] under the name Wajsberg algebras (see [10], [18] too). In this paper we will adopt the language of Wajsberg algebras (or W-algebras) to describe MV-algebras.

In [16] Luiz Monteiro determined the number of epimorphisms between finite Lukasiewicz algebras (see [3]). It is known that every finite $W$-algebra is a direct
product of finite chains. In this work, we use this fact to find the number of epimorphisms between finite $W$-algebras. This representation for finite $W$-algebras is also used in [2] to find the structure and cardinality of finitely generated algebras in varieties of k-potent hoop residuation algebras.

In this section we review some definitions and properties necessary for what follows (see, for example, [6], [9], [10], [17]). In Section 2 we define the mv-functions between the ordered sets of prime elements of finite MV-algebras and prove that every epimorphism can be uniquely constructed from an mv-function. This results can be also obtained from the duality given by Martínez in [15]. More details on MV-algebras can be found in two very interesting papers [7] and [8].

Let us recall that a W-algebra $\mathcal{A}=\langle A, \rightarrow, \sim, 1\rangle$ is an algebra of type $(2,1,0)$ such that the following identities are satisfied:
(W1) $1 \rightarrow x=x$,
(W2) $(x \rightarrow y) \rightarrow((y \rightarrow z) \rightarrow(x \rightarrow z))=1$,
(W3) $(x \rightarrow y) \rightarrow y=(y \rightarrow x) \rightarrow x$,
(W4) $(\sim y \rightarrow \sim x) \rightarrow(x \rightarrow y)=1$.
The unit real interval $[0,1]$ endowed with the operations $x \rightarrow y:=\min \{1,1-x+y\}$ and $\sim x:=1-x$ is a Wajsberg algebra. For each integer $n \geqslant 1$, we denote by $L_{n+1}$ the subalgebra of $[0,1]$ with the universe $\{0,1 / n, 2 / n, \ldots,(n-1) / n, 1\}$.

In every W -algebra $\mathcal{A}=\langle A, \rightarrow, \sim, 1\rangle$ the following terms can be defined:
(i) $0:=\sim 1$,
(ii) $a \vee b:=(a \rightarrow b) \rightarrow b$,
(iii) $a \wedge b:=\sim(\sim a \vee \sim b)$,
(iv) $a \oplus b:=\sim b \rightarrow a$,
(v) $0 \cdot a:=0,(n+1) \cdot a:=n \cdot a \oplus a$, for every nonnegative integer $n$.

Then $\langle A, \oplus, \sim, 0\rangle$ is an MV-algebra and $\langle A, \vee, \wedge, \sim, 0,1\rangle$ is a Kleene algebra. The following properties hold in every W -algebra $\mathcal{A}$, for all nonnegative integers $n, m$ (see [10], [17]):
(W5) $x \leqslant y$ if and only if $x \rightarrow y=1$,
(W6) $x \rightarrow 0=\sim x$,
(W7) $x \oplus 0=x$,
(W8) $x \oplus y=y \oplus x$,
(W9) $x \vee y \leqslant x \oplus y$,
(W10) $x \leqslant y$ implies $x \oplus z \leqslant y \oplus z$,
$(\mathrm{W} 11) x \oplus(y \vee z)=(x \oplus y) \vee(x \oplus z)$,
(W12) $\bigvee_{i=1}^{n} x_{i} \oplus \bigvee_{h=1}^{m} y_{h}=\bigvee_{i=1}^{n} \bigvee_{h=1}^{m}\left(x_{i} \oplus y_{h}\right)$,
(W13) $(n+m) \cdot x=n \cdot x \oplus m \cdot x$,
(W14) $(n m) \cdot x=n \cdot(m \cdot x)$,
(W15) $x \leqslant y$ implies $n \cdot x \leqslant n \cdot y$,
(W16) $n \leqslant m$ implies $n \cdot x \leqslant m \cdot x$.
Let $\mathcal{A}$ be a W-algebra. The set $B(\mathcal{A})=\{x \in A: \sim x \rightarrow x=x\}$ is a Boolean algebra. Indeed, $B(\mathcal{A})$ is the Boolean algebra of the complemented elements of the bounded distributive lattice reduct of $A$. The elements of $B(\mathcal{A})$ are called the boolean elements of $\mathcal{A}$. For each $a \in B(\mathcal{A})$ the set $[0, a]=\{x \in A: x \leqslant a\}$ is a W-algebra with the operations $(x \rightarrow y) \wedge a$ and $\sim x \wedge a$, for all $x, y \in[0, a]$.

We will denote by $\operatorname{At}(\mathcal{A}), \mathcal{X}(\mathcal{A})$ and $\Pi(\mathcal{A})$ the set of atoms of $\mathcal{A}$ and the ordered sets of all prime filters and prime elements with respect to the lattice structure of $\mathcal{A}$, respectively. The function $\varphi: \mathcal{X}(\mathcal{A}) \rightarrow \mathcal{X}(\mathcal{A})$, defined by $\varphi(P)=\mathcal{X}(\mathcal{A}) \backslash$ $\{\sim x: x \in P\}$ for each $P \in \mathcal{X}(\mathcal{A})$, is an involution and a dual isomorphism.

In what follows $A$ is a finite W -algebra.
Then, it is isomorphic to a direct product of intervals determined by atoms of $B(\mathcal{A})$, i.e.,

$$
\mathcal{A} \simeq \prod_{a \in \operatorname{At}(B(\mathcal{A}))}[0, a]
$$

Moreover, if $a \in \operatorname{At}(B(\mathcal{A}))$ then $[0, a]$ is isomorphic to $L_{r+1}$, for some integer $r \geqslant 1$.
Let $\Psi: \Pi(\mathcal{A}) \rightarrow \Pi(\mathcal{A})$ be the function $\Psi=\mu^{-1} \circ \varphi \circ \mu$, where $\mu$ is the orderisomorphism from $\Pi(\mathcal{A})$ onto the dual of $\mathcal{X}(\mathcal{A})$, which exists because $\mathcal{A}$ is finite.

As an immediate consequence of this representation, we have the following result (see, for example, [17]).

Corollary 1.1. Let $\mathcal{A}$ be a finite W -algebra and let $n=\max _{a \in \operatorname{At}(B(\mathcal{A}))}\{r:[0, a] \simeq$ $\left.L_{r+1}\right\}$. Then the following statements hold:
(i) The ordered set $\Pi(\mathcal{A})$ is the disjoint union of $t_{r}$ chains with $r$ elements, where $t_{n}>0$ and $t_{r} \geqslant 0$ for all $r, 1 \leqslant r \leqslant n$.
(ii) Each element $p \in \Pi(\mathcal{A})$ can be identified with $j \cdot 1 / r$ for some integers $j$, $r$, $j \geqslant 1$ and $1 \leqslant r \leqslant n$.
(iii) The atoms of $B(\mathcal{A})$ are the last elements of the chains and the cardinal number of $\operatorname{At}(B(\mathcal{A}))$ is $t_{1}+t_{2}+\ldots+t_{n}$.
(iv) If $p_{j} \in \Pi(\mathcal{A})$ for all $1 \leqslant j \leqslant r$ and $p_{1}<p_{2}<\ldots<p_{r}$, then $\Psi\left(p_{j}\right)=p_{r-j+1}$ for all $j, 1 \leqslant j \leqslant r$.
(v) If $p \in \Pi(\mathcal{A})$, then $k \cdot p \in \Pi(\mathcal{A})$ for every $k \geqslant 1$.
(vi) If $p \in \Pi(\mathcal{A})$ then $m \cdot p \in \operatorname{At}(B(\mathcal{A}))$ for every integer $m \geqslant n$ and $n \cdot p$ is the last element in the chain which contains $p$.
(vii) Let $p, q \in \Pi(\mathcal{A})$. If $p$ and $q$ are comparable, then $p \oplus q \in \Pi(\mathcal{A})$.
(viii) If $p, q \in \Pi(\mathcal{A})$ are incomparable, then $p \oplus q=p \vee q$.

Therefore, for every finite W -algebra $A$ we will write $A=A_{t_{1} t_{2} \ldots t_{n}}$ to identify the ordered set $\Pi(\mathcal{A})$.

Example 1.1. Let $A=L_{1+1} \times L_{2+1}=\{0, a, b, c, d, 1\}$, where $0=(0,0), a=$ $(1,0), b=\left(0, \frac{1}{2}\right), c=(0,1), d=\left(1, \frac{1}{2}\right)$ and $1=(1,1)$. It is clear that $\Pi(\mathcal{A})=$ $\{a, b, c\}$, with $b \leqslant c ; \mathcal{X}(\mathcal{A})=\{F(a), F(b), F(c)\}$ with $F(c) \subseteq F(b)$, where $F(t)$ is the lattice filter generated by $t \in \Pi(\mathcal{A})$ and $\mu(t)=F(t)$. Moreover, $\varphi(F(a))=F(a)$, $\varphi(F(b))=F(c)$ and $\varphi(F(c))=F(b) ; \Psi(a)=a, \Psi(b)=c$ and $\Psi(c)=b$. In this case $n=2, r \in\{1,2\}, t_{1}=1, t_{2}=1$ and we write $A=A_{11}$.

## 2. mv-FUNCTIONS AND EPIMORPHISMS

Let $\mathcal{A}$ be a finite W -algebra. From Corollary 1.1 (i), the ordered set $\Pi(\mathcal{A})$ is a disjoint union of finite chains; each connected component will be denoted by $C$. Then, if $C \subseteq \Pi(\mathcal{A})$ is a chain with first element $p_{0}$, we will write $C=C\left(p_{0}\right)$.

Definition 2.1. An mv-function is a map $f: \Pi\left(\mathcal{A}^{\prime}\right) \rightarrow \Pi(\mathcal{A})$ which satisfies the following conditions for all $p^{\prime} \in \Pi\left(\mathcal{A}^{\prime}\right)$ :
(F1) $f$ is injective,
(F2) $f\left(k \cdot p^{\prime}\right)=k \cdot f\left(p^{\prime}\right)$ for all $k \geqslant 1$,
(F3) $f\left(\Psi^{\prime}\left(p^{\prime}\right)\right)=\Psi\left(f\left(p^{\prime}\right)\right)$.
Properties (F1), (F2) and (F3) are independent. Indeed, let us consider the functions $f_{1}: \Pi\left(L_{2+1}\right) \rightarrow \Pi\left(L_{3+1}\right), f_{2}: \Pi\left(L_{2+1}\right) \rightarrow \Pi\left(L_{3+1}\right)$ and $f_{3}: \Pi\left(L_{1+1}^{2}\right) \rightarrow$ $\Pi\left(L_{1+1}\right)$, defined by

$$
f_{1}(x)=\left\{\begin{array}{ll}
\frac{2}{3} & \text { if } x=\frac{1}{2}, \\
1 & \text { if } x=1,
\end{array} \quad f_{2}(x)=\left\{\begin{array}{ll}
\frac{1}{3} & \text { if } x=\frac{1}{2}, \\
1 & \text { if } x=1,
\end{array} \quad f_{3}(x)= \begin{cases}1 & \text { if } x=(0,1) \\
1 & \text { if } x=(1,0)\end{cases}\right.\right.
$$

It is easy to see that $f_{1}$ satisfies (F1) and (F2) but not (F3), $f_{2}$ satisfies (F1) and (F3) but not (F2) and $f_{3}$ satisfies (F2) and (F3) but not (F1).

Lemma 2.1. Let $f: \Pi\left(\mathcal{A}^{\prime}\right) \rightarrow \Pi(\mathcal{A})$ be an mv-function. Then, for all $p^{\prime}, q^{\prime} \in$ $\Pi\left(\mathcal{A}^{\prime}\right)$, the following properties hold:
(F4) $p^{\prime} \leqslant q^{\prime}$ implies $f\left(p^{\prime}\right) \leqslant f\left(q^{\prime}\right)$.
(F5) Let $C^{\prime} \subseteq \Pi\left(\mathcal{A}^{\prime}\right)$. If $f^{\prime}$ is the restriction of $f$ to $C^{\prime}$ and $f^{\prime}\left(C^{\prime}\right) \subseteq C \subseteq \Pi(\mathcal{A})$, then $f^{\prime}\left(C^{\prime}\right)=C$.
(F6) $f\left(p^{\prime}\right) \leqslant f\left(q^{\prime}\right)$ implies $p^{\prime} \leqslant q^{\prime}$.
(F7) If $p^{\prime}$ and $q^{\prime}$ are comparable then $f\left(p^{\prime} \oplus q^{\prime}\right)=f\left(p^{\prime}\right) \oplus f\left(q^{\prime}\right)$.

Proof. Let $p^{\prime}, q^{\prime} \in \Pi\left(\mathcal{A}^{\prime}\right)$.
(F4) Suppose that $p^{\prime} \leqslant q^{\prime}$. Let $C^{\prime}\left(p_{0}^{\prime}\right) \subseteq \Pi\left(\mathcal{A}^{\prime}\right)$ be a chain which contains $p^{\prime}$ and $q^{\prime}$. By Corollary 1.1 (ii) there exist integers $j, t \geqslant 1$ such that $p^{\prime}=j \cdot p_{0}^{\prime}$ and $q^{\prime}=t \cdot p_{0}^{\prime}$. If $j>t$, then from (W16) it is clear that $j \cdot p_{0}^{\prime} \geqslant t \cdot p_{0}^{\prime}$, i.e., $p^{\prime} \geqslant q^{\prime}$. Thus $p^{\prime}=q^{\prime}$ and then $f\left(p^{\prime}\right)=f\left(q^{\prime}\right)$. Let us suppose now that $j \leqslant t$. Then from (F2) we have that $f\left(p^{\prime}\right)=f\left(j \cdot p_{0}^{\prime}\right)=j \cdot f\left(p_{0}^{\prime}\right)$ and $f\left(q^{\prime}\right)=f\left(t \cdot p_{0}^{\prime}\right)=t \cdot f\left(p_{0}^{\prime}\right)$. Hence, from (W16) we obtain $f\left(p^{\prime}\right) \leqslant f\left(q^{\prime}\right)$.
(F5) Let $C^{\prime}\left(p_{0}^{\prime}\right) \subseteq \Pi\left(\mathcal{A}^{\prime}\right)$. Then from (F4) we have that $f\left(C^{\prime}\left(p_{0}^{\prime}\right)\right) \subseteq C\left(p_{0}\right)$ for some chain $C\left(p_{0}\right) \subseteq \Pi(\mathcal{A})$. Let $f^{\prime}$ be the restriction of $f$ to $C^{\prime}\left(p_{0}^{\prime}\right)$.

Let $p_{1}^{\prime}$ and $p_{1}$ be the last elements of $C^{\prime}\left(p_{0}^{\prime}\right)$ and $C\left(p_{0}\right)$, respectively. From Corollary 1.1 (vi) and (F2) we have that $p_{1}=n \cdot f\left(p_{1}^{\prime}\right)=f\left(n \cdot p_{1}^{\prime}\right)=f\left(p_{1}^{\prime}\right)$. So, by (F3) we obtain $f\left(p_{0}^{\prime}\right)=p_{0}$.

Let $p \in C\left(p_{0}\right)$. So, $p=j \cdot p_{0}$ for some integer $j \geqslant 1$. Thus, $p=j \cdot p_{0}=j \cdot f\left(p_{0}^{\prime}\right)=$ $f\left(j \cdot p_{0}^{\prime}\right)=f\left(p^{\prime}\right)$, with $p^{\prime} \in C^{\prime}\left(p_{0}^{\prime}\right)$. Hence, $C\left(p_{0}\right) \subseteq f\left(C^{\prime}\left(p_{0}^{\prime}\right)\right)$.
(F6) Suppose that $f\left(p^{\prime}\right) \leqslant f\left(q^{\prime}\right)$. Let $C\left(p_{0}\right) \subseteq \Pi(\mathcal{A})$ be such that $f\left(p^{\prime}\right), f\left(q^{\prime}\right) \in$ $C\left(p_{0}\right)$. If we suppose that $p^{\prime}$ and $q^{\prime}$ belong to different connected components, let us say $p^{\prime} \in C_{1}^{\prime}\left(p_{0}^{\prime}\right), q^{\prime} \in C_{2}^{\prime}\left(q_{0}^{\prime}\right)$, then by applying (F5) we obtain $f\left(p_{0}^{\prime}\right)=f\left(q_{0}^{\prime}\right)=p_{0}$ which is a contradiction because $f$ is injective. Thus, let $C^{\prime}\left(p_{0}^{\prime}\right) \subseteq \Pi\left(\mathcal{A}^{\prime}\right)$ be such that $p^{\prime}, q^{\prime} \in C^{\prime}\left(p_{0}^{\prime}\right)$. Then there exist integers $j, t \geqslant 1$ such that $f\left(p^{\prime}\right)=j \cdot p_{0}$ and $f\left(q^{\prime}\right)=t \cdot p_{0}$. If $j>t$ then $f\left(p^{\prime}\right) \geqslant f\left(q^{\prime}\right)$, so $f\left(p^{\prime}\right)=f\left(q^{\prime}\right)$ and we have $p^{\prime}=q^{\prime}$ because $f$ is injective. Let us suppose now $j \leqslant t$. From (F2) and (F5) we have $f\left(p^{\prime}\right)=j \cdot p_{0}=j \cdot f\left(p_{0}^{\prime}\right)=f\left(j \cdot p_{0}^{\prime}\right)$ and $f\left(q^{\prime}\right)=t \cdot p_{0}=t \cdot f\left(p_{0}^{\prime}\right)=f\left(t \cdot p_{0}^{\prime}\right)$. Then $p^{\prime}=j \cdot p_{0}^{\prime}$ and $q^{\prime}=t \cdot p_{0}^{\prime}$ because $f$ is injective. Hence, $p^{\prime} \leqslant q^{\prime}$ follows from (W16).
(F7) Suppose that $p^{\prime}$ and $q^{\prime}$ are comparable. Let $C^{\prime}\left(p_{0}^{\prime}\right) \subseteq \Pi\left(\mathcal{A}^{\prime}\right)$ be such that $p^{\prime}, q^{\prime} \in C^{\prime}\left(p_{0}^{\prime}\right)$. From Corollary 1.1 (vii) and (ii) it is clear that $p^{\prime} \oplus q^{\prime} \in C^{\prime}\left(p_{0}^{\prime}\right)$, $p^{\prime}=j \cdot p_{0}^{\prime}$ and $q^{\prime}=t \cdot p_{0}^{\prime}$, for some integers $j, t \geqslant 1$. Then by applying (W13) and (F2) we get $f\left(p^{\prime} \oplus q^{\prime}\right)=f\left(j \cdot p_{0}^{\prime} \oplus t \cdot p_{0}^{\prime}\right)=f\left((j+t) \cdot p_{0}^{\prime}\right)=(j+t) \cdot f\left(p_{0}^{\prime}\right)=$ $j \cdot f\left(p_{0}^{\prime}\right) \oplus t \cdot f\left(p_{0}^{\prime}\right)=f\left(p^{\prime}\right) \oplus f\left(q^{\prime}\right)$.

Notice that by (F5) in Lemma 2.1 there exists an mv-function between $\Pi\left(L_{n+1}\right)$ and $\Pi\left(L_{m+1}\right)$ (the identity function) if and only if $m=n$.

Theorem 2.1. Let $f: \Pi\left(\mathcal{A}^{\prime}\right) \rightarrow \Pi(\mathcal{A})$ be an mv-function. For each $x \in A$ let $A_{x}^{\prime}=\left\{p^{\prime} \in \Pi\left(\mathcal{A}^{\prime}\right): f\left(p^{\prime}\right) \leqslant x\right\}$. If we define the function $h: A \rightarrow A^{\prime}$ by

$$
h(x)= \begin{cases}0 & \text { if } A_{x}^{\prime}=\emptyset \\ \bigvee_{p^{\prime} \in A_{x}^{\prime}} p^{\prime} & \text { otherwise }\end{cases}
$$

then $h$ is an epimorphism. We will say that $h$ is the epimorphism induced by the mv-function $f$.

Proof. Let $x, y \in A$. To prove that $h$ is a homomorphism it is enough to show that $h(\sim x)=\sim h(x)$ and $h(x \oplus y)=h(x) \oplus h(y)$, because $x \rightarrow y=\sim x \oplus y$. The proof of the first equality is an exact analogue of that given in [1]. In order to prove the second equality, let us suppose that $x \neq 0$ and $y \neq 0$ (the cases $x=0$ or $y=0$ are trivial). Let us consider the sets

$$
\begin{aligned}
A_{x}^{\prime} & =\left\{p^{\prime} \in \Pi\left(\mathcal{A}^{\prime}\right): f\left(p^{\prime}\right) \leqslant x\right\}, \\
A_{y}^{\prime} & =\left\{q^{\prime} \in \Pi\left(\mathcal{A}^{\prime}\right): f\left(q^{\prime}\right) \leqslant y\right\}, \\
A_{x \oplus y}^{\prime} & =\left\{r^{\prime} \in \Pi\left(\mathcal{A}^{\prime}\right): f\left(r^{\prime}\right) \leqslant x \oplus y\right\} .
\end{aligned}
$$

Then by applying (W12) we have

$$
\begin{equation*}
h(x) \oplus h(y)=\bigvee_{p^{\prime} \in A_{x}^{\prime}} p^{\prime} \oplus \bigvee_{q^{\prime} \in A_{y}^{\prime}} q^{\prime}=\bigvee_{p^{\prime} \in A_{x}^{\prime}} \bigvee_{q^{\prime} \in A_{y}^{\prime}}\left(p^{\prime} \oplus q^{\prime}\right) \tag{2.1}
\end{equation*}
$$

Let $B_{x, y}$ be the set $\left\{s^{\prime} \in \Pi\left(\mathcal{A}^{\prime}\right): s^{\prime} \leqslant p^{\prime} \oplus q^{\prime}, p^{\prime} \in A_{x}^{\prime}, q^{\prime} \in A_{y}^{\prime}, p^{\prime}, q^{\prime}\right.$ comparable $\}$. We claim that

$$
\begin{equation*}
A_{x \oplus y}^{\prime}=A_{x}^{\prime} \cup A_{y}^{\prime} \cup B_{x, y} . \tag{2.2}
\end{equation*}
$$

Indeed, since

$$
x=\bigvee\{p \in \Pi(\mathcal{A}): p \leqslant x\} \quad \text { and } \quad y=\bigvee\{q \in \Pi(\mathcal{A}): q \leqslant y\}
$$

by applying (W12) we obtain $x \oplus y=\bigvee_{p \leqslant x} \bigvee_{q \leqslant y}(p \oplus q)$.
Hence, if $r^{\prime} \in A_{x \oplus y}^{\prime}$, then $f\left(r^{\prime}\right) \leqslant x \oplus y$, so there exist $p, q \in \Pi(\mathcal{A}), p \leqslant x, q \leqslant y$ such that

$$
\begin{equation*}
f\left(r^{\prime}\right) \leqslant p \oplus q \tag{2.3}
\end{equation*}
$$

There are two cases to consider:
(i) If $p$ and $q$ are comparable, then from Corollary 1.1 (vii), (2.3), (F5) and (F6) we have that $p \oplus q \in \Pi(\mathcal{A})$ and there exists $s^{\prime} \in \Pi\left(\mathcal{A}^{\prime}\right), r^{\prime} \leqslant s^{\prime}$, such that $p \oplus q=f\left(s^{\prime}\right)$, $s^{\prime} \in \Pi\left(\mathcal{A}^{\prime}\right)$.

Similarly, since $p, q \leqslant p \oplus q$, there exist $p^{\prime}, q^{\prime} \in \Pi\left(\mathcal{A}^{\prime}\right)$ such that $p=f\left(p^{\prime}\right)$ and $q=f\left(q^{\prime}\right)$, where $p^{\prime}$ and $q^{\prime}$ are comparable. Then $f\left(s^{\prime}\right)=p \oplus q=f\left(p^{\prime}\right) \oplus f\left(q^{\prime}\right)=$ $f\left(p^{\prime} \oplus q^{\prime}\right)$. Thus, $s^{\prime}=p^{\prime} \oplus q^{\prime}$ because $f$ is injective. Hence, $r^{\prime} \in B_{x, y}$. Then in this case we conclude $A_{x \oplus y}^{\prime} \subseteq B_{x, y}$.
(ii) If $p$ and $q$ are incomparable then $p \oplus q=p \vee q$ by Corollary 1.1 (viii). So, from (2.3) we obtain $f\left(r^{\prime}\right) \leqslant p \leqslant x$ or $f\left(r^{\prime}\right) \leqslant q \leqslant y$; i.e., $r^{\prime} \in A_{x}^{\prime}$ or $r^{\prime} \in A_{y}^{\prime}$.

From (i) and (ii) we have proved $A_{x \oplus y}^{\prime} \subseteq A_{x}^{\prime} \cup A_{y}^{\prime} \cup B_{x, y}$.
Conversely, let $r^{\prime} \in A_{x}^{\prime} \cup A_{y}^{\prime} \cup B_{x, y}$. If $r^{\prime} \in A_{x}^{\prime}$ then $f\left(r^{\prime}\right) \leqslant x \leqslant x \oplus y$; so $r^{\prime} \in A_{x \oplus y}^{\prime}$. Analogously if $r^{\prime} \in A_{y}^{\prime}$. If $r^{\prime} \in B_{x, y}$ then there exist $p^{\prime} \in A_{x}^{\prime}$ and $q^{\prime} \in A_{y}^{\prime}$, where $p^{\prime}$ and $q^{\prime}$ are comparable, such that $r^{\prime} \leqslant p^{\prime} \oplus q^{\prime}$. Hence, by applying Corollary 1.1 (vii), (F7), (W10) and (F4) we have that

$$
f\left(r^{\prime}\right) \leqslant f\left(p^{\prime} \oplus q^{\prime}\right)=f\left(p^{\prime}\right) \oplus f\left(q^{\prime}\right) \leqslant x \oplus y
$$

i.e., $r^{\prime} \in A_{x \oplus y}^{\prime}$.

Therefore, $A_{x}^{\prime} \cup A_{y}^{\prime} \cup B_{x, y} \subseteq A_{x \oplus y}^{\prime}$.
Now we claim that

$$
\begin{equation*}
\bigvee_{r^{\prime} \in A_{x \oplus y}^{\prime}} r^{\prime}=\bigvee_{p^{\prime} \in A_{x}^{\prime}} \bigvee_{q^{\prime} \in A_{y}^{\prime}}\left(p^{\prime} \oplus q^{\prime}\right) \tag{2.4}
\end{equation*}
$$

Indeed, let $r^{\prime} \in A_{x}^{\prime} \cup A_{y}^{\prime} \cup B_{x, y}$.
If $r^{\prime} \in A_{x}^{\prime}$ then $r^{\prime} \leqslant r^{\prime} \oplus q^{\prime} \leqslant \bigvee_{q^{\prime} \in A_{y}^{\prime}}\left(r^{\prime} \oplus q^{\prime}\right) \leqslant \underset{r^{\prime} \in A_{x}^{\prime}}{ } \bigvee_{q^{\prime} \in A_{y}^{\prime}}\left(r^{\prime} \oplus q^{\prime}\right)$ for every $q^{\prime} \in A_{y}^{\prime}$, so

$$
\begin{equation*}
\bigvee_{r^{\prime} \in A_{x}^{\prime}} r^{\prime} \leqslant \bigvee_{r^{\prime} \in A_{x}^{\prime}} \bigvee_{q^{\prime} \in A_{y}^{\prime}}\left(r^{\prime} \oplus q^{\prime}\right) \tag{2.5}
\end{equation*}
$$

In a similar way, if $r^{\prime} \in A_{y}^{\prime}$ then

$$
\begin{equation*}
\bigvee_{r^{\prime} \in A_{y}^{\prime}} r^{\prime} \leqslant \bigvee_{p^{\prime} \in A_{x}^{\prime}} \bigvee_{r^{\prime} \in A_{y}^{\prime}}\left(p^{\prime} \oplus r^{\prime}\right) \tag{2.6}
\end{equation*}
$$

Finally, if $r^{\prime} \in B_{x, y}$ then $r^{\prime} \leqslant p^{\prime} \oplus q^{\prime}, p^{\prime} \in A_{x}^{\prime}, q^{\prime} \in A_{y}^{\prime}$, hence $r^{\prime} \leqslant p^{\prime} \oplus q^{\prime} \leqslant$ $\underset{p^{\prime} \in A_{x}^{\prime}}{\bigvee} \underset{q^{\prime} \in A_{y}^{\prime}}{\bigvee}\left(p^{\prime} \oplus q^{\prime}\right)$, so

$$
\begin{equation*}
\bigvee_{r^{\prime} \in B_{x, y}} r^{\prime} \leqslant \bigvee_{p^{\prime} \in A_{x}^{\prime}} \bigvee_{q^{\prime} \in A_{y}^{\prime}}\left(p^{\prime} \oplus q^{\prime}\right) \tag{2.7}
\end{equation*}
$$

Then from (2.2), (2.5), (2.6) and (2.7) we obtain

$$
\bigvee_{r^{\prime} \in A_{x \oplus y}^{\prime}} r^{\prime} \leqslant \bigvee_{p^{\prime} \in A_{x}^{\prime}} \bigvee_{q^{\prime} \in A_{y}^{\prime}}\left(p^{\prime} \oplus q^{\prime}\right)
$$

In order to prove the other inequality, let $p^{\prime} \in A_{x}^{\prime}$ and $q^{\prime} \in A_{y}^{\prime}$. If $p^{\prime}$ and $q^{\prime}$ are comparable then $p^{\prime} \oplus q^{\prime} \in B_{x, y}$, thus

$$
\begin{equation*}
p^{\prime} \oplus q^{\prime} \leqslant \bigvee_{r^{\prime} \in B_{x, y}} r^{\prime} \leqslant \bigvee_{r^{\prime} \in A_{x}^{\prime} \cup A_{y}^{\prime} \cup B_{x, y}} r^{\prime} \tag{2.8}
\end{equation*}
$$

If $p^{\prime}$ and $q^{\prime}$ are incomparable then $p^{\prime} \oplus q^{\prime}=p^{\prime} \vee q^{\prime}$, hence

$$
\begin{equation*}
p^{\prime} \oplus q^{\prime}=p^{\prime} \vee q^{\prime} \leqslant \bigvee_{p^{\prime} \in A_{x}^{\prime}} p^{\prime} \vee \bigvee_{q^{\prime} \in A_{y}^{\prime}} q^{\prime}=\bigvee_{r^{\prime} \in A_{x}^{\prime} \cup A_{y}^{\prime}} r^{\prime} \leqslant \bigvee_{r^{\prime} \in A_{x}^{\prime} \cup A_{y}^{\prime} \cup B_{x, y}} r^{\prime} \tag{2.9}
\end{equation*}
$$

From (2.8), (2.9) and (2.2) we have

$$
\bigvee_{p^{\prime} \in A_{x}^{\prime}} \bigvee_{q^{\prime} \in A_{y}^{\prime}}\left(p^{\prime} \oplus q^{\prime}\right) \leqslant \bigvee_{r^{\prime} \in A_{x \oplus y}^{\prime}} r^{\prime}
$$

Therefore, equality $h(x \oplus y)=h(x) \oplus h(y)$ follows from (2.1) and (2.4).
So it remains to prove that $h$ is surjective. Let $y \in A^{\prime}, y \neq 0$. Let $x \in A$ be the element defined by

$$
\begin{equation*}
x=\bigvee\left\{f\left(p^{\prime}\right): p^{\prime} \leqslant y, p^{\prime} \in \Pi\left(\mathcal{A}^{\prime}\right)\right\} \tag{2.10}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
A_{x}^{\prime}=\left\{p^{\prime} \in \Pi\left(\mathcal{A}^{\prime}\right): p^{\prime} \leqslant y\right\} \tag{2.11}
\end{equation*}
$$

Indeed, if $q^{\prime} \in A_{x}^{\prime}$ then $f\left(q^{\prime}\right) \leqslant x$. From (2.10) we have that there exists $p^{\prime} \in \Pi\left(\mathcal{A}^{\prime}\right)$, $p^{\prime} \leqslant y$ such that $f\left(q^{\prime}\right) \leqslant f\left(p^{\prime}\right)$, because $f\left(q^{\prime}\right)$ is a prime element of $A$. Hence, by (F6) we have $q^{\prime} \leqslant p^{\prime} \leqslant y$, i.e., $q^{\prime} \in\left\{p^{\prime} \in \Pi\left(\mathcal{A}^{\prime}\right): p^{\prime} \leqslant y\right\}$.

Conversely, let $q^{\prime} \in\left\{p^{\prime} \in \Pi\left(\mathcal{A}^{\prime}\right): p^{\prime} \leqslant y\right\}$. Then $f\left(q^{\prime}\right) \leqslant x$ which implies $q^{\prime} \in A_{x}^{\prime}$. From (2.11) we conclude $h(x)=y$.

Lemma 2.2. If $f$ is an mv-function and $h$ is the epimorphism induced by $f$, then for each $p \in \Pi(\mathcal{A})$ we have either $h(p)=0$ or $h(p)=r^{\prime} \in \Pi\left(\mathcal{A}^{\prime}\right)$, with $f\left(r^{\prime}\right)=p$.

Proof. Let $p \in C \subseteq \Pi(\mathcal{A})$. If $h(p) \neq 0$ then $A_{p}^{\prime} \neq \emptyset$. Let $p^{\prime} \in A_{p}^{\prime}$. Suppose that $p^{\prime} \in C^{\prime} \subseteq \Pi\left(\mathcal{A}^{\prime}\right)$. Since $f\left(p^{\prime}\right) \leqslant p$ we have that $f\left(p^{\prime}\right) \in C$. Then, by Corollary 1.1 and (F5), $f\left(C^{\prime}\right)=C$. If there exists $q^{\prime} \in A_{p}^{\prime} \backslash C^{\prime}$ then $f\left(q^{\prime}\right) \in C$, which is a contradiction because $f$ is injective. Thus, $A_{p}^{\prime} \subseteq C^{\prime}$. Let $r^{\prime}=\bigvee_{p^{\prime} \in A_{p}^{\prime}} p^{\prime}$. Therefore, $r^{\prime} \in C^{\prime} \subseteq A_{p}^{\prime}$ and $h(p)=r^{\prime}$. To complete the proof we must show that $f\left(r^{\prime}\right)=p$. Indeed, there exists $t^{\prime} \in C^{\prime}$ such that $f\left(t^{\prime}\right)=p$. If $f\left(r^{\prime}\right)<p$ then $r^{\prime}<t^{\prime}$, which is a contradiction because $t^{\prime} \in A_{p}^{\prime}$ implies $t^{\prime} \leqslant r^{\prime}$. Therefore $f\left(r^{\prime}\right)=p$.

Let us denote by $\operatorname{Epi}\left(\mathcal{A}, \mathcal{A}^{\prime}\right)$ the set of all epimorphisms from $\mathcal{A}$ to $\mathcal{A}^{\prime}$.
Lemma 2.3. Let $h \in \operatorname{Epi}\left(\mathcal{A}, \mathcal{A}^{\prime}\right)$. Then for each $p^{\prime} \in \Pi\left(\mathcal{A}^{\prime}\right)$ there exists a unique element $p \in \Pi(\mathcal{A})$ such that $h(p)=p^{\prime}$.

Proof. Let $p^{\prime} \in \Pi\left(\mathcal{A}^{\prime}\right)$. Suppose that $h^{-1}\left(\left\{p^{\prime}\right\}\right)=\left\{x_{1}, x_{2}, \ldots, x_{t}\right\}$ and let $q=$ $\bigwedge_{i=1}^{t} x_{i}$. It is easy to see that $q \in h^{-1}\left(\left\{p^{\prime}\right\}\right)$ and $q \neq 0$. Besides, $q \in \Pi(\mathcal{A})$ and $h^{-1}\left(\left\{p^{\prime}\right\}\right) \cap \Pi(\mathcal{A})=\{q\}$. Indeed, suppose that $q=a \vee b$ for some $a, b \in A$. Then $h(q)=h(a) \vee h(b)=p^{\prime}$. Since $p^{\prime}$ is join-irreducible we have $h(a)=p^{\prime}$ or $h(b)=p^{\prime}$. Hence, $a \in h^{-1}\left(p^{\prime}\right)$ or $b \in h^{-1}\left(p^{\prime}\right)$, i.e., $q=a$ or $q=b$, which proves $q \in \Pi(\mathcal{A})$. On the other hand, let $p \in h^{-1}\left(p^{\prime}\right) \cap \Pi(\mathcal{A})$. Then $q \leqslant p$. Let $C \subseteq \Pi(\mathcal{A})$ be the chain which contains $q$ and $p$ and suppose that $C \simeq \Pi\left(L_{r+1}\right)$ for some integer $r \geqslant 1$. If $q<p$ then we can write $q=j \cdot 1 / r$ and $p=k \cdot 1 / r$, for some integers $j, k$ such that $1 \leqslant j<k \leqslant r$. Let $z=\sim(p \rightarrow q)=(k-j) \cdot 1 / r$. Then $h(z)=(k-j) \cdot h(1 / r)$. If $h(z)=0$ then $h(1 / r)=0$ wherefrom we have $p^{\prime}=h(q)=h(j / r)=j \cdot h(1 / r)=0$, which is a contradiction. Hence, $h(z) \neq 0$, which contradicts $h(z)=\sim(h(p) \rightarrow$ $h(q))=\sim\left(p^{\prime} \rightarrow p^{\prime}\right)=0$. Therefore $q=p$.

The above result allows us to define, for each $h \in \operatorname{Epi}\left(\mathcal{A}, \mathcal{A}^{\prime}\right)$, a function $f: \Pi\left(\mathcal{A}^{\prime}\right) \rightarrow \Pi(\mathcal{A})$ by $f\left(p^{\prime}\right)=p$ if only if $h^{-1}\left(\left\{p^{\prime}\right\}\right)=\{p\}$. We will say that $f$ is the function induced by the epimorphism $h$.

Lemma 2.4. Let $h \in \operatorname{Epi}\left(\mathcal{A}, \mathcal{A}^{\prime}\right)$. Then the function induced by the epimorphism $h$ is an mv-function.

Proof. Let $h \in \operatorname{Epi}\left(\mathcal{A}, \mathcal{A}^{\prime}\right)$. Let $f: \Pi\left(\mathcal{A}^{\prime}\right) \rightarrow \Pi(\mathcal{A})$ be defined by $f\left(p^{\prime}\right)=p$ if and only if $h^{-1}\left(\left\{p^{\prime}\right\}\right)=\{p\}$, for each $p^{\prime} \in A^{\prime}$. We must show that conditions (F1), (F2) and (F3) in Definition 2.1 hold. Condition (F1) follows by definition. Let $p^{\prime} \in \Pi\left(\mathcal{A}^{\prime}\right)$ and let $k$ be an integer, $k \geqslant 1$. Let us consider the elements $p_{1}=f\left(k \cdot p^{\prime}\right)$ and $p_{2}=f\left(p^{\prime}\right)$. Since $h\left(k \cdot p_{2}\right)=k \cdot h\left(p_{2}\right)=k \cdot p^{\prime}=h\left(p_{1}\right) \in \Pi(\mathcal{A})$, we conclude $p_{1}=k \cdot p_{2}$ by applying Corollary 1.1 (v) and Lemma 2.3. This proves (F2). In order to prove (F3), note that the following properties hold:
( P 1 ) $f$ preserves the order (it is a consequence of ( F 2 )).
(P2) If $f\left(C^{\prime}\left(p_{0}^{\prime}\right)\right) \subseteq C\left(p_{0}\right)$ then $f\left(p_{0}^{\prime}\right)=p_{0}$.
Indeed, let us consider the elements $q=f\left(p_{0}^{\prime}\right)$ and $p \in C\left(p_{0}\right) \subseteq \Pi(\mathcal{A})$ such that $p \leqslant q$. Then $h(p) \leqslant h(q)=p_{0}^{\prime}$ which implies $p_{0}^{\prime}=h(p)$. Hence, by Lemma 2.3, we have that $p=q$.
(P3) If $f^{\prime}$ is the restriction of $f$ to $C^{\prime} \subseteq \Pi\left(\mathcal{A}^{\prime}\right)$ and $f^{\prime}\left(C^{\prime}\right) \subseteq C \subseteq \Pi(\mathcal{A})$, then $f^{\prime}\left(C^{\prime}\right)=C$ (this is a consequence of (P1), (F2) and (P2)).

We prove now (F3). Let $p^{\prime} \in C^{\prime}\left(p_{0}^{\prime}\right) \subseteq \Pi\left(\mathcal{A}^{\prime}\right)$. Suppose that $C^{\prime} \simeq \Pi\left(L_{r+1}\right)$ for some integer $r \geqslant 1$. Thus, there exists an integer $i, 1 \leqslant i \leqslant r$, such that $p^{\prime}=i \cdot p_{0}^{\prime}$. Then $\Psi^{\prime}\left(p^{\prime}\right)=\Psi^{\prime}\left(i \cdot p_{0}^{\prime}\right)=(r-i+1) \cdot p_{0}^{\prime}$ which implies $f\left(\Psi^{\prime}\left(p^{\prime}\right)\right)=(r-i+1) \cdot f\left(p_{0}^{\prime}\right)$. Moreover, $f\left(p^{\prime}\right)=i \cdot f\left(p_{0}^{\prime}\right)$ and then by applying (P2) we have that $f\left(p_{0}^{\prime}\right)$ is the first element in the chain. Then $\Psi\left(f\left(p^{\prime}\right)\right)=(r-i+1) \cdot f\left(p_{0}^{\prime}\right)$, which completes the proof.

Let $F_{\mathrm{mv}}\left(\mathcal{A}^{\prime}, \mathcal{A}\right)$ denote the set of all mv-functions from $\Pi\left(\mathcal{A}^{\prime}\right)$ to $\Pi(\mathcal{A})$.

Theorem 2.2. The sets $F_{\mathrm{mv}}\left(\mathcal{A}^{\prime}, \mathcal{A}\right)$ and $\operatorname{Epi}\left(\mathcal{A}, \mathcal{A}^{\prime}\right)$ have the same cardinal number.

Proof. Let $\varphi: F_{\mathrm{mv}}\left(\mathcal{A}^{\prime}, \mathcal{A}\right) \rightarrow \operatorname{Epi}\left(\mathcal{A}, \mathcal{A}^{\prime}\right)$ be the map defined by $\varphi(f)=h_{f}$ where $h_{f}$ is the epimorphism induced by $f$, for each $f \in F_{\mathrm{mv}}\left(\mathcal{A}^{\prime}, \mathcal{A}\right)$. Let $f, g \in F_{\mathrm{mv}}\left(\mathcal{A}^{\prime}, \mathcal{A}\right)$. Suppose that $f \neq g$. Then there exists $p^{\prime} \in \Pi\left(\mathcal{A}^{\prime}\right)$ such that $f\left(p^{\prime}\right) \neq g\left(p^{\prime}\right)$. Let $p, q \in \Pi(\mathcal{A})$ be such that $f\left(p^{\prime}\right)=p$ and $g\left(p^{\prime}\right)=q$. Then $g\left(p^{\prime}\right) \neq p$ and $h_{f}(p)=p^{\prime}$. Therefore $h_{f} \neq h_{g}$, so $\varphi$ is injective.

Let $h \in \operatorname{Epi}\left(\mathcal{A}, \mathcal{A}^{\prime}\right)$. Let $f$ be the function induced by $h$, that is $f\left(p^{\prime}\right)=p$ if and only if $h(p)=p^{\prime}$. From Lemma 2.4 we have that $f \in F_{\mathrm{mv}}\left(\mathcal{A}^{\prime}, \mathcal{A}\right)$. We claim $h_{f}=h$, which proves that $\varphi$ is surjective. Indeed, let $p \in \Pi(\mathcal{A})$. If $h_{f}(p) \neq 0$ then from Lemma 2.2 we have $h_{f}(p)=p^{\prime} \in \Pi\left(\mathcal{A}^{\prime}\right)$ and $f\left(p^{\prime}\right)=p$. Thus $h(p)=p^{\prime}$ wherefrom we conclude $h_{f}(p)=h(p)$. Suppose now that $h_{f}(p)=0$, that is, $A_{p}^{\prime}=\left\{p^{\prime} \in \Pi\left(\mathcal{A}^{\prime}\right): f\left(p^{\prime}\right) \leqslant p\right\}=\emptyset$. If $h(p) \neq 0$ then there exists an element $q^{\prime} \in \Pi\left(\mathcal{A}^{\prime}\right)$ which satisfies $q^{\prime} \leqslant h(p)$. By Lemma 2.3 there exists a unique $q \in \Pi(\mathcal{A})$ such that $h(q)=q^{\prime}$. Then $h(q)=q^{\prime}=q^{\prime} \wedge h(p)=h(q) \wedge h(p)=h(q \wedge p)$ which implies $q=q \wedge p$. Hence, we get $q=f\left(q^{\prime}\right) \leqslant p$, that is, $q^{\prime} \in A_{p}^{\prime}$, which contradicts $A_{p}^{\prime}=\emptyset$.

Suppose that $\mathcal{A}=\mathcal{A}_{t_{1} t_{2} \ldots t_{n}}$ and $\mathcal{A}^{\prime}=\mathcal{A}_{r_{1} r_{2} \ldots r_{m}}^{\prime}$, with $n \geqslant m$.
If $n>m$ then, taking $r_{j}=0$ for all $m+1 \leqslant j \leqslant n$, we can write $\mathcal{A}^{\prime}=\mathcal{A}_{r_{1} r_{2} \ldots r_{m}}^{\prime}=$ $\mathcal{A}_{r_{1} r_{2} \ldots r_{n}}^{\prime}$. Thus, it is clear that $F_{\mathrm{mv}}\left(\mathcal{A}^{\prime}, \mathcal{A}\right) \neq \emptyset$ if and only if $r_{i} \leqslant t_{i}$ for all $i$, $1 \leqslant i \leqslant n$. In this case, the cardinal number of $F_{\mathrm{mv}}\left(\mathcal{A}^{\prime}, \mathcal{A}\right)$ is $V_{t_{1}}^{r_{1}} \cdot V_{t_{2}}^{r_{2}} \cdot \ldots \cdot V_{t_{n}}^{r_{n}}$, where

$$
V_{t_{i}}^{r_{i}}= \begin{cases}\frac{t_{i}!}{\left(t_{i}-r_{i}\right)!} & \text { if } r_{i}>0, t_{i}>0 \\ 1 & \text { if } r_{i}=0, t_{i} \geqslant 0\end{cases}
$$

It is clear that the function induced by $h \in \operatorname{Epi}\left(\mathcal{A}, \mathcal{A}^{\prime}\right)$ is surjective whenever $h$ is injective. Conversely, if $f: \Pi\left(\mathcal{A}^{\prime}\right) \rightarrow \Pi(\mathcal{A})$ is a surjective mv-function then the epimorphism induced by $f$ is injective. Let $F_{\mathrm{mv}}^{*}\left(\mathcal{A}^{\prime}, \mathcal{A}\right)$ denote the set of all mvfunctions from $\Pi\left(\mathcal{A}^{\prime}\right)$ onto $\Pi(\mathcal{A})$. Then $F_{\mathrm{mv}}^{*}\left(\mathcal{A}^{\prime}, \mathcal{A}\right) \neq \emptyset$ if and only if $n=m$ and $t_{i}=r_{i}$ for all $i, 1 \leqslant i \leqslant n$. In this case, the cardinal number of $F_{\mathrm{mv}}^{*}$ is $t_{1}!\cdot t_{2}!\cdot \ldots \cdot t_{n}!$.

Corollary 2.1. If $\mathcal{A}$ is a finite W -algebra and $\mathcal{A}=\mathcal{A}_{t_{1} t_{2} \ldots t_{n}}$, then the number of automorphisms of $\mathcal{A}$ is $t_{1}!\cdot t_{2}!\cdot \ldots \cdot t_{n}!$.

## References

[1] M. Abad, A. Figallo: On Łukasiewicz Homomorphisms. Facultad de Filosofía, Humanidades y Artes, Universidad Nacional de San Juan, 1992.
[2] J. Berman, W. J. Blok: Free Łukasiewicz and hoop residuation algebras. Stud. Log. 77 (2004), 153-180.
zbl MR doi
[3] V. Boicescu, A. Filipoiu, G. Georgescu, S. Rudeanu: Łukasiewicz-Moisil Algebras. Annals of Discrete Mathematics 49. North-Holland, Amsterdam, 1991.
[4] C. C. Chang: Algebraic analysis of many valued logics. Trans. Am. Math. Soc. 88 (1958), 467-490.
[5] C. C. Chang,: A new proof of the completeness of Łukasiewicz axioms. Trans. Am. Math. Soc. 93 (1959), 74-80.
zbl MR doi
[6] R. Cignoli, I. M. L. D'Ottaviano, D. Mundici: Algebraic Foundations of Many-Valued Reasoning. Trends in Logic-Studia Logica Library 7. Kluwer Academic Publishers, Dordrecht, 2000.
zbl MR doi
[7] R. Cignoli, E. J. Dubuc, D. Mundici: Extending Stone duality to multisets and locally finite MV-algebras. J. Pure Appl. Algebra 189 (2004), 37-59.
zbl MR doi
[8] R. Cignoli, V. Marra: Stone duality for real-valued multisets. Forum Math. 24 (2012), 1317-1331.
zbl MR doi
A. V. Figallo: Algebras implicativas de Łukasiewicz $(n+1)$-valuadas con diversas operaciones adicionales. Tesis Doctoral. Univ. Nac. del Sur, 1990.
[10] J. M. Font, A. J. Rodríguez, A. Torrens: Wajsberg algebras. Stochastica 8 (1984), 5-31. zbl MR
[11] Y. Komori: Super-Łukasiewicz implicational logics. Nagoya Math. J. 72 (1978), 127-133.
[12] Y. Komori: Super Łukasiewicz propositional logics. Nagoya Math. J. 84 (1981), 119-133.
[13] J. Łukasiewicz: On three-valued logics. Ruch filozoficzny 5 (1920), 169-171. (In Polish.)
[14] J. Łukasiewicz, A. Tarski: Untersuchungen über den Aussagenkalkül. C. R. Soc. Sc. Varsovie 23 (1930), 30-50.
[15] N. G. Martínez: The Priestley duality for Wajsberg algebras. Stud. Log. 49 (1990), 31-46. zbl MR doi
[16] L. F. Monteiro: Number of epimorphisms between finite Łukasiewicz algebras. Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 49(97) (2006), 177-187.
zbl MR
[17] A. J. Rodríguez: Un studio algebraico de los cálculos proposicionales de Łukasiewicz. Ph. Doc. Diss. Universitat de Barcelona (1980).
[18] A. J. Rodríguez, A. Torrens, V. Verdú: Łukasiewicz logic and Wajsberg algebras. Bull. Sect. Log., Pol. Acad. Sci. 19 (1990), 51-55.
zbl MR

Authors' addresses: Aldo V. Figallo, Instituto de Ciencias Básicas, Universidad Nacional de San Juan, Av. Ignacio de la Roza 230 Oeste, 5400 San Juan, Argentina, e-mail: avfigallo @gmail.com; Marina B. Lattanzi, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, Av. Uruguay 151, 6300 Santa Rosa, Argentina, e-mail: mblatt@ exactas.unlpam.edu.ar.

