ON THE ORDER OF CONVOLUTION CONSISTENCE OF THE ANALYTIC FUNCTIONS WITH NEGATIVE COEFFICIENTS

Grigore S. Sălăgean, Cluj-Napoca, Adela Venter, Oradea

Received May 4, 2015. First published February 2, 2017.
Communicated by Dagmar Medková

Abstract

Making use of a modified Hadamard product, or convolution, of analytic functions with negative coefficients, combined with an integral operator, we study when a given analytic function is in a given class. Following an idea of U. Bednarz and J. Sokół, we define the order of convolution consistence of three classes of functions and determine a given analytic function for certain classes of analytic functions with negative coefficients.

Keywords: analytic function with negative coefficients; univalent function; extreme point; order of convolution consistence; starlikeness; convexity

MSC 2010: 30C45, 30C50

1. Introduction and preliminaries

Let \mathcal{A} be the class of analytic functions in the unit $\operatorname{disc} \mathcal{U}=\{z:|z|<1\}$ normalized by $f(0)=f^{\prime}(0)-1=0$ and let $\mathbb{N}=\{0,1,2, \ldots\}$.

Definition 1 ([4]). We define the operator $D^{n}: A \rightarrow A, n \in \mathbb{N}$ for $z \in U$ by:
a) $D^{0} f(z)=f(z)$,
b) $D^{1} f(z)=D f(z)=z f^{\prime}(z)$,
c) $D^{n} f(z)=D\left(D^{n-1} f(z)\right)$.

Definition $2([4])$. Let $\alpha \in[0,1)$ and let $n \in \mathbb{N}$. We define the class $\mathcal{S}_{n}(\alpha)$ of n-starlike functions of order α by

$$
\begin{equation*}
\mathcal{S}_{n}(\alpha)=\left\{f \in A: \operatorname{Re} \frac{D^{n+1} f(z)}{D^{n} f(z)}>\alpha, \quad z \in U\right\} . \tag{1.1}
\end{equation*}
$$

Denote by \mathcal{S}_{n} the class $\mathcal{S}_{n}(0)$. We note that $\mathcal{S}_{0}=\mathcal{S T}$ is the class of starlike functions and $\mathcal{S}_{1}=\mathcal{C} \mathcal{V}$ is the class of convex functions.

The convolution, or the Hadamard product, of two functions f and g in \mathcal{A} of the form

$$
f(z)=z+\sum_{j=2}^{\infty} a_{j} z^{j} \quad \text { and } \quad g(z)=z+\sum_{j=2}^{\infty} b_{j} z^{j}
$$

is the function $(f * g)$ defined as

$$
(f * g)(z)=z+\sum_{j=2}^{\infty} a_{j} b_{j} z^{j}
$$

Let us consider the integral operator (see [2], [1], [4]) $\mathcal{I}^{s}: \mathcal{A} \rightarrow \mathcal{A}, s \in \mathbb{R}$, such that

$$
\begin{equation*}
\mathcal{I}^{s} f(z)=\mathcal{I}^{s}\left(z+\sum_{j=2}^{\infty} a_{j} z^{j}\right)=z+\sum_{j=2}^{\infty} \frac{a_{j}}{j^{s}} z^{j} \tag{1.2}
\end{equation*}
$$

Definition 3 ([2]). Let \mathcal{X}, \mathcal{Y} and \mathcal{Z} be subsets of \mathcal{A}. We say that the triple $(\mathcal{X}, \mathcal{Y}, \mathcal{Z})$ is S-closed under the convolution if there exists a number $S(\mathcal{X}, \mathcal{Y}, \mathcal{Z})$ such that

$$
\begin{equation*}
S(\mathcal{X}, \mathcal{Y}, \mathcal{Z})=\min \left\{s \in \mathbb{R}: \mathcal{I}^{s}(f * g) \in \mathcal{Z}, f \in \mathcal{X}, g \in \mathcal{Y}\right\} \tag{1.3}
\end{equation*}
$$

The number $S(\mathcal{X}, \mathcal{Y}, \mathcal{Z})$ is called the order of convolution consistence of the triple $(\mathcal{X}, \mathcal{Y}, \mathcal{Z})$.

Bednarz and Sokòł in [2] obtained the order of convolution consistence for certain classes of univalent functions (starlike, convex, uniform-starlike or uniform-convex functions). For example they proved the following statement.

Theorem 1 ([2]). We have the following orders of convolution consistence:
(i) $S(\mathcal{S T}, \mathcal{S T}, \mathcal{S T})=1$,
(ii) $S(\mathcal{C V}, \mathcal{C V}, \mathcal{S T})=-1$,
(iii) $S(\mathcal{C V}, \mathcal{S T}, \mathcal{S T})=0$,
(iv) $S(\mathcal{S T}, \mathcal{S T}, \mathcal{C V})=2$,
(v) $S(\mathcal{C V}, \mathcal{C V}, \mathcal{C V})=0$,
(vi) $S(\mathcal{C V}, \mathcal{S T}, \mathcal{C V})=1$.

Let \mathcal{N} denote the subclass of \mathcal{A} consisting of analytic functions of the form

$$
\begin{equation*}
f(z)=z-\sum_{j=2}^{\infty} a_{j} z^{j}, \quad a_{j} \geqslant 0, j \in\{2,3,4, \ldots\} . \tag{1.4}
\end{equation*}
$$

Then $\mathcal{T}_{n}(\alpha)=\mathcal{S}_{n}(\alpha) \cap \mathcal{N}$ is the class of n-starlike functions of order α with negative coefficients. In particular, $\mathcal{T}_{0}(\alpha)$ and $\mathcal{T}_{1}(\alpha)$ are the class of starlike functions of order α with negative coefficients and the class of convex functions of order α with negative coefficients, respectively, introduced by Silverman [8]. We denote $\mathcal{T}_{n}(0)$ by \mathcal{T}_{n}.

The modified Hadamard product, or \circledast-convolution, of two functions f and g in \mathcal{N} of the form

$$
\begin{equation*}
f(z)=z-\sum_{j=2}^{\infty} a_{j} z^{j} \quad \text { and } \quad g(z)=z-\sum_{j=2}^{\infty} b_{j} z^{j}, \quad a_{j}, b_{j} \geqslant 0 \tag{1.5}
\end{equation*}
$$

is the function $(f \circledast g)$ defined as (see [7])

$$
(f \circledast g)(z)=z-\sum_{j=2}^{\infty} a_{j} b_{j} z^{j}
$$

As in Definition 3, we define the order of \circledast-convolution consistence of the triple $(\mathcal{X}, \mathcal{Y}, \mathcal{Z})$, where \mathcal{X}, \mathcal{Y} and \mathcal{Z} are subsets of \mathcal{N}, denoted S_{\circledast} by

$$
\begin{equation*}
S_{\circledast}(\mathcal{X}, \mathcal{Y}, \mathcal{Z})=\min \left\{s \in \mathbb{R}: \mathcal{I}^{s}(f \circledast g) \in \mathcal{Z}, f \in \mathcal{X}, g \in \mathcal{Y}\right\} \tag{1.6}
\end{equation*}
$$

In this paper we obtain similar results as in Theorem 1 but for the class \mathcal{T}_{n} and for \circledast-convolution.

We need the following characterization of the class \mathcal{T}_{n}.

Theorem 2. Let $n \in \mathbb{N}$ and let $f \in \mathcal{N}$ be a function of the form (1.4). Then f belongs to \mathcal{T}_{n} if and only if

$$
\sum_{j=2}^{\infty} j^{n+1} a_{j} \leqslant 1
$$

The result is sharp and the extremal functions are

$$
\begin{equation*}
f_{j}(z)=z-\frac{1}{j^{n+1}} z^{j}, \quad j \in\{2,3, \ldots\} \tag{1.7}
\end{equation*}
$$

A proof of this theorem in the particular cases $n=0$ and $n=1$ is given by Silverman in [8] and by Gupta and Jain in [3]. In a more general form (for $\mathcal{T}_{n}(\alpha)$) it is given in [5] and [6].

2. Main Results

Theorem 3. If $f \in \mathcal{T}_{n+p}$ and $g \in \mathcal{T}_{n+q}$, then $\mathcal{I}^{s}(f \circledast g) \in T_{n+r}$, where $p, q, r, n \in \mathbb{N}$ and when

$$
\begin{equation*}
s=r-p-q-n-1 \tag{2.1}
\end{equation*}
$$

The result is sharp.
Proof. Since $f \in \mathcal{T}_{n+p}$ and $g \in \mathcal{T}_{n+q}$, if f and g have the form (1.5), then from Theorem 1 we have

$$
\sum_{j=2}^{\infty} j^{n+p+1} a_{j} \leqslant 1 \quad \text { and } \quad \sum_{j=2}^{\infty} j^{n+q+1} b_{j} \leqslant 1
$$

and by the Cauchy-Schwarz inequality we deduce

$$
\begin{equation*}
\sum_{j=2}^{\infty} j^{n+(p+q) / 2+1} \sqrt{a_{j} b_{j}} \leqslant 1 . \tag{2.2}
\end{equation*}
$$

We need to find conditions on s, r, p, q, n such that

$$
\sum_{j=2}^{\infty} j^{n+r+1-s} a_{j} b_{j} \leqslant 1 .
$$

Thus it is sufficient to show that

$$
j^{n+r+1-s} a_{j} b_{j} \leqslant j^{n+(p+q) / 2+1} \sqrt{a_{j} b_{j}},
$$

that is, that

$$
\sqrt{a_{j} b_{j}} \leqslant j^{s-r+(p+q) / 2}, \quad j \in\{2,3, \ldots\} .
$$

But from (2.2) we know that

$$
\sqrt{a_{j} b_{j}} \leqslant j^{-n-(p+q) / 2-1}, \quad j \in\{2,3, \ldots\} .
$$

Consequently, it is sufficient to show that

$$
j^{-n-(p+q) / 2-1} \leqslant j^{s-r+(p+q) / 2}, \quad j \in\{2,3, \ldots\},
$$

or, equivalently, that

$$
\begin{equation*}
j^{r-s-n-p-q-1} \leqslant 1, \quad j \in\{2,3, \ldots\}, \tag{2.3}
\end{equation*}
$$

but the inequalities (2.3) hold for s, r, p, q, n satisfying (2.1).

Finally, by using the extremal functions (see (1.7)) $f_{2}(z)=z-z^{2} / 2^{n+p+1} \in \mathcal{T}_{n+p}$ and $g_{2}(z)=z-z^{2} / 2^{n+q+1} \in \mathcal{T}_{n+q}$ we can see that

$$
\mathcal{I}^{s}\left(f_{2} \circledast g_{2}\right)=z-\frac{z^{2}}{2^{2 n+s+p+q+2}} .
$$

But from (2.1) we deduce

$$
\begin{equation*}
\mathcal{I}^{s}\left(f_{2} \circledast g_{2}\right)=z-\frac{z^{2}}{2^{n+r+1}} \in \mathcal{T}_{n+r} \tag{2.4}
\end{equation*}
$$

and this shows that the result in Theorem 3 is sharp.

Theorem 4. Let $p, q, r, n \in \mathbb{N}$ and let s be given by (2.1). Then the order of \circledast-convolution consistence

$$
\begin{equation*}
S_{\circledast}\left(\mathcal{T}_{n+p}, \mathcal{T}_{n+q}, \mathcal{T}_{n+r}\right)=s=r-p-q-n-1 . \tag{2.5}
\end{equation*}
$$

Proof. Theorem 3 shows that $S_{\circledast}\left(\mathcal{T}_{n+p}, \mathcal{T}_{n+q}, \mathcal{T}_{n+r}\right) \leqslant s$ and from (2.4) we have $S_{\circledast}\left(\mathcal{T}_{n+p}, \mathcal{T}_{n+q}, \mathcal{T}_{n+r}\right) \geqslant s$.

Corollary 1. We have the following orders of \circledast-convolution consistence:
(a) $S_{\circledast}\left(\mathcal{T}_{0}, \mathcal{T}_{0}, \mathcal{T}_{0}\right)=-1$,
(b) $S_{\circledast}\left(\mathcal{T}_{0}, \mathcal{T}_{0}, \mathcal{T}_{1}\right)=0$,
(c) $S_{\circledast}\left(\mathcal{T}_{1}, \mathcal{T}_{0}, \mathcal{T}_{0}\right)=-2$,
(d) $S_{\circledast}\left(\mathcal{T}_{1}, \mathcal{T}_{1}, \mathcal{T}_{0}\right)=-3$,
(e) $S_{\circledast}\left(\mathcal{T}_{1}, \mathcal{T}_{0}, \mathcal{T}_{1}\right)=-1$,
(f) $S_{\circledast}\left(\mathcal{T}_{1}, \mathcal{T}_{1}, \mathcal{T}_{1}\right)=-2$.

We note that $\mathcal{T}_{0}=\mathcal{S} \mathcal{T} \cap \mathcal{N}$ and $\mathcal{T}_{1}=\mathcal{C} \mathcal{V} \cap \mathcal{N}$ and it is easy to compare the results of Theorem 1 to those of Corollary 1.

References

[1] C. M. Bălăeţi: An integral operator associated with differential superordinations. An. Ştiinţ. Univ. "Ovidius" Constanţa Ser. Mat. 17 (2009), 37-44.
[2] U. Bednarz, J. Sokót. On order convolution consistence of the analytic functions. Stud. Univ. Babeş-Bolyai Math. 55 (2010), 45-51.
[3] V. P. Gupta, P. K. Jain: Certain classes of univalent functions with negative coefficients. Bull. Aust. Math. Soc. 14 (1976), 409-416.
[4] G.S. Sălăgean: Subclasses of univalent functions. Complex Analysis, Proceedings 5th Rom.-Finn. Semin., Bucharest 1981, Part 1 (C. Andreian Cazacu at al., eds.). Lecture Notes in Math. 1013. Springer, Berlin, 1983, pp. 362-372.
[5] G.S. Sălăgean: Classes of univalent functions with two fixed points. Itinerant Seminar on Functional Equations, Approximation and Convexity, Cluj-Napoca, 1984. Univ. "Babeş-Bolyai", 1984, pp. 181-184.
[6] G.S.Sălăgean: On univalent functions with negative coefficients. Prepr., "Babeş-Bolyai" Univ., Fac. Math. Phys., Res. Semin. 7 (1991), 47-54.

MR
[7] A.Schild, H. Silverman: Convolutions of univalent functions with negative coefficients. Ann. Univ. Mariae Curie-Skłodowska, Sect. A (1975) 29 (1977), 99-107.
[8] H. Silverman: Univalent functions with negative coefficients. Proc. Am. Math. Soc. 51 (1975), 109-116.
zbl MR doi

Authors' addresses: Grigore S. Sălăgean, Babes-Bolyai University, Faculty of Mathematics and Computer Science, Str. Kogalniceanu Nr. 1, 400084 Cluj-Napoca, Romania, e-mail: salagean@math.ubbcluj.ro; Adela Venter, Faculty of Enviromental Protection, University of Oradea, Str. Universitatii Nr. 1, 410087 Oradea, Romania, e-mail: adela_venter@ yahoo.ro.

