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Abstract. Let F be a class of entire functions represented by Dirichlet series with complex

frequencies
∑

ake
〈λk,z〉 for which (|λk|/e)|λ

k|k!|ak| is bounded. Then F is proved to be a
commutative Banach algebra with identity and it fails to become a division algebra. F is
also proved to be a total set. Conditions for the existence of inverse, topological zero divisor
and continuous linear functional for any element belonging to F have also been established.
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1. Introduction

Consider a series of the form

(1.1) f(z) =

∞
∑

k=1

ake
〈λk,z〉, z ∈ C

n,

where {λk}, k ∈ N and λk = (λk1 , λ
k
2 , . . . , λ

k
n), is a sequence of complex vectors in C

n

and 〈λk, z〉 = λk1z1 + λk2z2 + . . . + λknzn. If ak ∈ C for k ∈ N and {λk} satisfies the

condition |λk| → ∞ as k → ∞ and

lim sup
k→∞

log |ak|

|λk|
= −∞(1.2)

lim sup
k→∞

log k

|λk|
= D <∞,(1.3)
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then from [1] the series (1.1) represents an entire function. Let F be the set of se-

ries (1.1) for which (|λk|/e)|λ
k|k! |ak| is bounded. Then every element of F represents

an entire function.

Various results have been proved for different classes of entire Dirichlet series
∞
∑

n=1
ane

λns, where few of them may be found in [3], [2], [7], [8]. Very recently Kumar

and Manocha in [4] established several results on a class of entire functions repre-

sented by Dirichlet series having complex frequencies (1.1). In the present article

we establish certain results, namely Banach algebra, topological zero divisor, divi-

sion algebra, continuous linear functional and total set for the Dirichlet series of the

form (1.1). If

f(z) =

∞
∑

k=1

ake
〈λk,z〉 and g(z) =

∞
∑

k=1

bke
〈λk,z〉,

define binary operation, i.e. addition and scalar multiplication in F as

f(z) + g(z) =

∞
∑

k=1

(ak + bk)e
〈λk,z〉,

αf(z) =

∞
∑

k=1

(αak)e
〈λk,z〉,

f(z)g(z) =

∞
∑

k=1

( |λk|

e

)|λk|

k! akbke
〈λk,z〉.

The norm in F is defined as

(1.4) ‖f‖ =

∞
∑

k=1

( |λk|

e

)|λk|

k! |ak|.

In the sequel, following definitions are required for proving the main results.

Definition 1. Let F be a normed algebra. Then x ∈ F is said to be a left (right)

topological zero divisor if there exists a sequence {yk} ⊂ F such that ‖yk‖ = 1, k ∈ N

and lim
k

‖xyk‖ = 0 (or lim
k

‖ykx‖ = 0). If the algebra F is commutative, then the

notions of left and right topological zero divisors are identical and in this case we

shall speak only of topological zero divisors.

Definition 2. Let F be an algebra with identity. If each x ∈ F (x 6= 0) is

regular, then F is said to be a division algebra.

Definition 3. Let F be a locally convex topological vector space. A set E′ ⊂ F

is said to be total if and only if for any ψ ∈ F ∗ with ψ(E′) = 0 we have ψ = 0.
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2. Main Results

In this section, main results are proved. For the definitions of terms used refer

to [5]–[6].

Theorem 1. F is a commutative Banach algebra with identity.

P r o o f. Let {fp1
} be a Cauchy sequence in F . For given ε > 0 find p such that

‖fp1
− fp2

‖ < ε, where p1, p2 > p.

This implies that

∞
∑

k=1

( |λk|

e

)|λk|

k! |ap1k
− ap2k

| < ε, where p1, p2 > p.

This shows that {ap1k
} forms a Cauchy sequence in the set of complex numbers for

every value of k > 1 and hence it converges and say to ak. Therefore fp1
→ f =

∞
∑

k=1

ake
〈λk,z〉. Also

∞
∑

k=1

( |λk|

e

)|λk|

k! |ak| 6

∞
∑

k=1

( |λk|

e

)|λk|

k! |ap1k
− ak|+

∞
∑

k=1

( |λk|

e

)|λk|

k! |ap1k
|.

Hence f(z) ∈ F . Thus, F is complete under the norm defined by (1.4).

If f(z), g(z) ∈ F , then

‖fg‖ =

∞
∑

k=1

( |λk|

e

)|λk|

k!
∣

∣

∣
akbk

( |λk|

e

)|λk|

k!
∣

∣

∣

6

∞
∑

k=1

( |λk|

e

)|λk|

k! |ak|
∞
∑

k=1

( |λk|

e

)|λk|

k! |bk| = ‖f‖‖g‖.

The identity element in F is

e(z) =
∞
∑

k=1

( |λk|

e

)−|λk| 1

k!
e〈λ

k,z〉.

This completes the proof of the theorem. �

Theorem 2. The function f(z) =
∞
∑

k=1

ake
〈λk,z〉 is invertible in F if and only if

{∣

∣

∣
a−1
k

( |λk|

e

)−|λk| 1

k!

∣

∣

∣

}

is a bounded sequence.
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P r o o f. Let f(z) be invertible and g(z) =
∞
∑

k=1

bke
〈λk,z〉 be its inverse. Then

f(z)g(z) = e(z) implies that

( |λk|

e

)|λk|

k! akbk =
( |λk|

e

)−|λk| 1

k!
.

Thus,
( |λk|

e

)|λk|

k! |bk| =
∣

∣

∣
a−1
k

( |λk|

e

)−|λk| 1

k!

∣

∣

∣
.

Since g(z) ∈ F , {|a−1
k (|λk|/e)−|λk|(k!)−1|} is a bounded sequence.

Conversely, suppose {|a−1
k (|λk|/e)−|λk|(k!)−1|} is a bounded sequence. Define g(z)

such that

g(z) =

∞
∑

k=1

a−1
k

( |λk|

e

)−2|λk| 1

(k!)2
e〈λ

k,z〉.

Obviously g(z) ∈ F. Moreover,

f(z)g(z) =

∞
∑

k=1

( |λk|

e

)|λk|

k!aka
−1
k

( |λk|

e

)−2|λk| 1

(k!)2
e〈λ

k,z〉 = e(z).

Hence the theorem. �

Theorem 3. A necessary and a sufficient condition that an element f(z) of F is

a topological zero divisor is

(2.1) lim
k→∞

( |λk|

e

)|λk|

k! |ak| = 0.

P r o o f. Let (2.1) hold. Construct a sequence {gk} such that

gk(z) =

∞
∑

k=1

( |λk|

e

)−|λk| 1

k!
e〈λ

k,z〉.

Thus, for all k > 1, gk ∈ F and ‖gk‖ = 1. Then

gk(z)f(z) = f(z)gk(z)

=

∞
∑

k=1

( |λk|

e

)|λk|

k! ak

( |λk|

e

)−|λk| 1

k!
e〈λ

k,z〉 =

∞
∑

k=1

ake
〈λk,z〉.

Therefore

‖gkf‖ = ‖fgk‖ =
∞
∑

k=1

( |λk|

e

)|λk|

k! |ak|.
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As k → ∞,

‖gkf‖ = ‖fgk‖ → 0.

Thus, f(z) is a topological zero divisor by Definition 1.

Conversely, suppose if possible (2.1) is not true, that is

lim
k→∞

( |λk|

e

)|λk|

k! |ak| = µ > 0.

Then given ν with 0 < ν < µ find an integer k0 > 1 such that for all k > k0

( |λk|

e

)|λk|

k! |ak| > µ− ν

holds true. Also since f(z) is a topological zero divisor, there exists an arbitrary

sequence {gt} of elements in F with unit norm such that for all k > 1 one has

gt(z) =

∞
∑

k=1

bkt
e〈λ

kt ,z〉.

This implies
∞
∑

k=1

( |λkt |

e

)|λkt |

(kt!)|bkt
| = 1.

Next, for given ε satisfying 0 < ε < 1 there exists an integer Kt and a subse-

quence {kt} of the sequence of indices {k} such that

( |λkt |

e

)|λkt |

kt! |bkt
| > 1− ε for all k = kt > Kt.

Hence,

‖fgt‖ 9 0,

which is a contradiction. Thus, the proof of the theorem is completed. �

Theorem 4. F is not a division algebra.

P r o o f. Let

p(z) =

∞
∑

k=1

k−1
( |λk|

e

)−|λk| 1

k!
e〈λ

k,z〉.

Then p(z) ∈ F and it does not possess inverse in F . Let, if possible,

q(z) =
∞
∑

k=1

dke
〈λk,z〉
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be its inverse. Hence,

p(z)q(z) = e(z).

This implies

( |λk|

e

)|λk|

k! k−1
( |λk|

e

)−|λk| 1

k!
dk =

( |λk|

e

)−|λk| 1

k!
,

which further implies that

dk = k
( |λk|

e

)−|λk| 1

k!
does not belong to F.

Clearly by Definition 2, F fails to become a division algebra. This proves the theorem.

�

Theorem 5. Every continuous linear functional ϕ : F → C is of the form

ϕ(f) =

∞
∑

k=1

akpk

( |λk|

e

)|λk|

k!,

where

f(z) =

∞
∑

k=1

ake
〈λk,z〉

and {pk} is a bounded sequence in C.

P r o o f. Let ϕ : F → C be a continuous linear functional. Since ϕ is continuous,

ϕ(f) = ϕ
(

lim
N→∞

f (N)
)

,

where

f (N)(z) =

N
∑

k=1

ake
〈λk,z〉.

This implies

ϕ(f) = ϕ

(

lim
N→∞

N
∑

k=1

ake
〈λk,z〉

)

.

Define a sequence {fk} ⊆ F as

fk =
( |λk|

e

)−|λk| 1

k!
e〈λ

k,z〉.
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Then

ϕ(f) = ϕ

(

lim
N→∞

N
∑

k=1

ak

( |λk|

e

)|λk|

k! fk

)

= lim
N→∞

N
∑

k=1

ak

( |λk|

e

)|λk|

k!ϕ(fk).

Since ϕ is a linear functional,

ϕ(fk) = pk.

This implies

ϕ(f) =

∞
∑

k=1

akpk

( |λk|

e

)|λk|

k!.

Now

|pk| = |ϕ(fk)| 6M‖fk‖

and ‖fk‖ = 1. This implies |pk| 6M. Thus, {pk} is a bounded sequence in C.

Conversely, let {pk} be a bounded sequence in C satisfying

ϕ(f) =

∞
∑

k=1

akpk

( |λk|

e

)|λk|

k!.

Then ϕ is well defined and linear. Also

|ϕ(f)| =

∞
∑

k=1

|akpk|
( |λk|

e

)|λk|

k! =

∞
∑

k=1

|ak||pk|
( |λk|

e

)|λk|

k! 6M‖f‖.

Thus, ϕ is a continuous linear functional. This completes the proof of the theorem.

�

Theorem 6. Let f(z) =

∞
∑

k=1

ake
〈λk,z〉 ∈ F , where ak 6= 0 for every k > 1. Let

K ∈ C
n be a set having at least one finite limit point. Define

(2.2) fτ (z) =
∞
∑

k=1

ak

( |λk|

e

)−|λk| 1

k!
e〈λ

k,z+τ〉.

Then the set Af = {fτ : τ ∈ K} is a total set with respect to the family of continuous

linear transformations ϕ : F → C.
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P r o o f. We have

fτ (z) =

∞
∑

k=1

ak

( |λk|

e

)−|λk| 1

k!
e〈λ

k,z+τ〉.

Note that for all τ ∈ C
n

‖fτ‖ =
∞
∑

k=1

( |λk|

e

)|λk|

k!
∣

∣

∣
ak

( |λk|

e

)−|λk| 1

k!
e〈λ

k,τ〉
∣

∣

∣
=

∞
∑

k=1

|ak|e
Re〈λk,τ〉.

Since f(z) is an entire Dirichlet series which converges absolutely in the whole com-

plex plane, for every τ ∈ K the series on the right-hand side of the above equation

is clearly convergent. Hence, fτ (z) ∈ F for every τ ∈ K.

Let ϕ ∈ F ∗ be a continuous linear transformation such that ϕ(Af ) ≡ 0, that is

ϕ(fτ ) = 0 for all τ ∈ K. Then by Theorem 5,

∞
∑

k=1

( |λk|

e

)|λk|

k! ak

( |λk|

e

)−|λk| 1

k!
e〈λ

k,τ〉pk = 0

⇒

∞
∑

k=1

akpke
〈λk,τ〉 = 0(2.3)

for all τ ∈ K. Now define h(z) =
∞
∑

k=1

akpke
〈λk,z〉. Since {pk} is a bounded sequence

in C and f(z) =
∞
∑

k=1

ake
〈λk,z〉 ∈ F , h(z) also belongs to F . But

h(τ) =

∞
∑

k=1

akpke
〈λk,τ〉 = 0 for all τ ∈ K.

Since K has a finite limit point, this means that h ≡ 0. This however implies that

akpk = 0 for all k > 1

and as ak 6= 0 for every k, pk = 0 for all k > 1. Thus, ϕ = 0 and hence the theorem.

�
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