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1. Introduction, definitions and results

In this paper, by meromorphic functions we shall always mean meromorphic func-

tions in the complex plane.

Let f and g be two non-constant meromorphic functions and let a be a finite

complex number. We say that f and g share a CM provided that f − a and g − a

have the same zeros with the same multiplicities. Similarly, we say that f and g

share a IM provided that f −a and g−a have the same zeros ignoring multiplicities.

In addition, we say that f and g share ∞ CM if 1/f and 1/g share 0 CM, and we

say that f and g share ∞ IM if 1/f and 1/g share 0 IM.

We adopt the standard notations of value distribution theory (see [6]). We denote

by T (r) the maximum of T (r, f) and T (r, g). The notation S(r) denotes any quantity

satisfying S(r) = o(T (r)) as r → ∞, outside of a possible exceptional set of finite

linear measure.
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A finite value z0 is said to be a fixed point of f(z) if f(z0) = z0. Throughout this

paper, we need the following definition:

Θ(a; f) = 1− lim sup
r→∞

N(r, a; f)

T (r, f)
,

where a is a value in the extended complex plane.

In 1959, Hayman (see [5], Corollary of Theorem 9) proved the following theorem.

Theorem A. Let f be a transcendental meromorphic function and n ∈ N with

n > 3. Then fnf ′ = 1 has infinitely many solutions.

In 1997, Yang and Hua obtained the following uniqueness result corresponding to

Theorem A.

Theorem B ([16]). Let f and g be two non-constant meromorphic functions,

n ∈ N with n > 11. If fnf ′ and gng′ share 1 CM, then either f(z) = c1e
cz,

g(z) = c2e
−cz, where c1, c2 and c are three constants satisfying (c1c2)

n+1c2 = −1,

or f ≡ tg for a constant t such that tn+1 = 1.

In 2002, using the idea of sharing fixed points, Fang and Qiu further generalized

and improved Theorem B in the following manner.

Theorem C ([3]). Let f and g be two non-constant meromorphic functions and

let n ∈ N with n > 11. If fnf ′−z and gng′−z share 0 CM, then either f(z) = c1e
cz2

,

g(z) = c2e
−cz2

, where c1, c2 and c are three nonzero complex numbers satisfying

4(c1c2)
n+1c2 = −1, or f = tg for a complex number t such that tn+1 = 1.

During the last couple of years a handful number of astonishing results have been

obtained regarding the value sharing of nonlinear differential polynomials which are

mainly the kth derivative of some linear expression of f and g.

In 2010, Xu, Lü and Yi studied the analogous problem corresponding to Theo-

rem C, where in addition to the fixed point sharing problem, sharing of poles are

also taken under supposition. Thus, the research has somehow been shifted towards

the following direction.

Theorem D ([13]). Let f and g be two non-constant meromorphic functions

and let n, k ∈ N with n > 3k + 10. If (fn)(k) and (gn)(k) share z CM, f and g

share ∞ IM, then either f(z) = c1e
cz2

, g(z) = c2e
−cz2

, where c1, c2 and c are three

constants satisfying 4n2(c1c2)
nc2 = −1, or f ≡ tg for a constant t such that tn = 1.
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Theorem E ([13]). Let f and g be two non-constant meromorphic functions

satisfying Θ(∞, f) > 2/n and let n, k ∈ N with n > 3k + 12. If (fn(f − 1))(k) and

(gn(g − 1))(k) share z CM, f and g share ∞ IM, then f ≡ g.

Recently Zhang and Xu (see [20]) further generalized as well as improved the

results of [13] as follows.

Theorem F ([20]). Let f and g be two transcendental meromorphic functions, let

p(z) be a nonzero polynomial with deg(p) = l 6 5, n, k,m ∈ N with n > 3k+m+7.

Let P (w) = amwm + am−1w
m−1 + . . . + a1w + a0 be a nonzero polynomial. If

(fnP (f))(k) and (gnP (g))(k) share p CM, f and g share ∞ IM, then one of the

following three cases holds:

(1) f(z) ≡ tg(z) for a constant t such that td = 1, where d = GCD(n + m, . . . ,

n+m− i, . . . , n), am−i 6= 0 for some i = 1, 2, . . . ,m;

(2) f and g satisfy the algebraic equation R(f, g) ≡ 0, where R(ω1, ω2) =

ωn
1 (amωm

1 + am−1ω
m−1
1 + . . .+ a0)− ωn

2 (amωm
2 + am−1ω

m−1
2 + . . .+ a0);

(3) P (z) reduces to a nonzero monomial, namely P (z) = aiz
i 6≡ 0 for some

i ∈ {0, 1, . . . ,m};

if p(z) is not a constant, then f(z) = c1e
cQ(z), g(z) = c2e

−cQ(z), where Q(z) =
∫ z

0
p(t) dt, c1, c2 and c are constants such that a2i (c1c2)

n+i((n+ i)c)2 = −1,

if p(z) is a nonzero constant b, then f(z) = c3e
cz, g(z) = c4e

−cz, where c3, c4

and c are constants such that (−1)ka2i (c3c4)
n+i((n+ i)c)2k = b2.

Zhang and Xu made the following comment in Remark 1.2 in [20]:

“From the proof of Theorem 1.3, we can see that the computation will be very

complicated when deg(p) becomes large, so we are not sure whether Theorem 1.3

holds for the general polynomial p(z).”

Also at the end of the paper, the following open problem was posed by the authors

in [20].

O p e n p r o b l e m. What happens to Theorem 1.3 (see [20]) if the condition

“l 6 5” is removed?

One of our objectives is to solve this open problem. Now observing the above

results, the following question is inevitable.

Q u e s t i o n 1.1. Can the lower bound of n be further reduced in Theorem F?

Before going to our main result we explain the following definition and notation

which is used in the paper.

Definition 1.1 ([8], [9]). Let k ∈ N ∪ {∞}. For a ∈ C ∪ {∞} we denote by

Ek(a; f) the set of all a-points of f , where an a-point of multiplicity m is counted
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m times if m 6 k and k + 1 times if m > k. If Ek(a; f) = Ek(a; g), we say that f , g

share the value a with weight k.

The definition implies that if f , g share a value a with weight k, then z0 is an

a-point of f with multiplicity m (6 k) if and only if it is an a-point of g with

multiplicity m (6 k) and z0 is an a-point of f with multiplicity m (> k) if and only

if it is an a-point of g with multiplicity n (> k), where m is not necessarily equal

to n.

We write f , g share (a, k) to mean that f , g share the value a with weight k.

Clearly if f , g share (a, k), then f , g share (a, p) for any integer p, 0 6 p < k. Also

we note that f , g share a value a IM or CM if and only if f , g share (a, 0) or (a,∞),

respectively.

In this paper, taking the possible answer of the above question into consideration

we obtain the following result.

Theorem 1.1. Let f and g be two transcendental meromorphic functions and

let n, k ∈ N and m ∈ N ∪ {0} such that n > 3k + m + 6. Let p(z) be a nonzero

polynomial such that deg(p) 6= (n + i)s, where s ∈ N, i ∈ {0, 1, . . . ,m} and P (w)

be defined as in Theorem F. If (fnP (f))(k), (gnP (g))(k) share (p, k1), where k1 =

(3+k)(n+m−k−1)−1+3 and f , g share (∞, 0), then the conclusion of Theorem F

holds.

We now further explain the following definitions and notations, which are used in

the paper.

Definition 1.2 ([7]). Let a ∈ C ∪ {∞}. For p ∈ N we denote by N(r, a; f |6 p)

the counting function of those a-points of f (counted with multiplicities) whose

multiplicities are not greater than p. By N(r, a; f |6 p) we denote the corresponding

reduced counting function.

In an analogous manner we can define N(r, a; f |> p) and N(r, a; f |> p).

Definition 1.3 ([9]). Let k ∈ N ∪ {∞}. We denote by Nk(r, a; f) the counting

function of a-points of f , where an a-point of multiplicity m is counted m times if

m 6 k and k times if m > k. Then

Nk(r, a; f) = N(r, a; f) +N(r, a; f |> 2) + . . .+N(r, a; f |> k).

Clearly N1(r, a; f) = N(r, a; f).

Definition 1.4 ([2]). Let f and g be two non-constant meromorphic functions

such that f and g share the value a IM for a ∈ C ∪ {∞}. Let z0 be an a-point

of f with multiplicity p and also an a-point of g with multiplicity q. We denote
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by NL(r, a; f) and NL(r, a; g) the reduced counting function of those a-points of f

and g, respectively, where p > q > 1 (q > p > 1). Also we denote by N
(1

E (r, a; f) the

reduced counting function of those a-points of f and g, where p = q > 1.

Definition 1.5 ([8], [9]). Let f and g be two non-constant meromorphic func-

tions such that f and g share the value a IM. We denote by N∗(r, a; f, g) the reduced

counting function of those a-points of f whose multiplicities differ from the multi-

plicities of the corresponding a-points of g. Clearly N∗(r, a; f, g) = N∗(r, a; g, f) and

N∗(r, a; f, g) = NL(r, a; f) +NL(r, a; g).

Definition 1.6 ([10]). Let a, b1, b2, . . . , bq ∈ C ∪ {∞}. We denote by N(r, a;

f | g 6= b1, b2, . . . , bq) the counting function of those a-points of f , counted according

to multiplicity, which are not the bi-points of g for i = 1, 2, . . . , q.

2. Lemmas

Let F and G be two non-constant meromorphic functions defined in C. We denote

by H and V the functions as:

(2.1) H =
(F ′′

F ′
−

2F ′

F − 1

)

−
(G′′

G′
−

2G′

G− 1

)

and

(2.2) V =
( F ′

F − 1
−

F ′

F

)

−
( G′

G− 1
−

G′

G

)

.

Lemma 2.1 ([15]). Let f be a non-constant meromorphic function and let an(z)

(6≡ 0), an−1(z), . . . , a0(z) be meromorphic functions such that T (r, ai(z)) = S(r, f)

for i = 0, 1, 2, . . . , n. Then

T (r, anf
n + an−1f

n−1 + . . .+ a1f + a0) = nT (r, f) + S(r, f).

Lemma 2.2 ([19]). Let f be a non-constant meromorphic function and p, k ∈ N.

Then

Np(r, 0; f
(k)) 6 T (r, f (k))− T (r, f) +Np+k(r, 0; f) + S(r, f),(2.3)

Np(r, 0; f
(k)) 6 kN(r,∞; f) +Np+k(r, 0; f) + S(r, f).(2.4)

255



Lemma 2.3 ([11]). If N(r, 0; f (k) | f 6= 0) denotes the counting function of those

zeros of f (k) which are not the zeros of f , where a zero of f (k) is counted according

to its multiplicity, then

N(r, 0; f (k) | f 6= 0) 6 kN(r,∞; f) +N(r, 0; f |< k) + kN(r, 0; f |> k) + S(r, f).

Lemma 2.4 ([6], Theorem 3.10). Suppose that f is a non-constant meromorphic

function, k ∈ N \ {1}. If

N(r,∞; f) +N(r, 0; f) +N(r, 0; f (k)) = S
(

r,
f ′

f

)

,

then f(z) = eaz+b, where a 6= 0, b are constants.

Lemma 2.5 ([4]). Let f(z) be a non-constant entire function and let k ∈ N \ {1}.

If f(z)f (k)(z) 6= 0, then f(z) = eaz+b, where a 6= 0, b are constant.

Lemma 2.6 ([17], Theorem 1.24). Let f be a non-constant meromorphic function

and let k ∈ N. Suppose that f (k) 6≡ 0. Then

N(r, 0; f (k)) 6 N(r, 0; f) + kN(r,∞; f) + S(r, f).

Lemma 2.7 ([20]). Let f and g be two non-constant meromorphic functions, let

P (w) be defined as in Theorem F and n, k ∈ N, m ∈ N ∪ {0} with n > 2k +m+ 1.

If (fnP (f))(k) = (gnP (g))(k), then fnP (f) = gnP (g).

Lemma 2.8 ([18], Lemma 6). If H = 0, then F , G share 1 CM. If further F , G

share ∞ IM, then F , G share ∞ CM.

Lemma 2.9 ([20]). Let f , g be non-constant meromorphic functions, let n, k ∈ N

with n > k + 2, and let P (w) be defined as in Theorem F. Let α(z) (6≡ 0,∞)

be a small function with respect to f with finitely many zeros and poles. If

(fnP (f))(k)(gnP (g))(k) = α2, f and g share ∞ IM, then P (w) is reduced to a

nonzero monomial, namely P (w) = aiw
i 6≡ 0 for some i ∈ {0, 1, . . . ,m}.

Lemma 2.10 ([17]). Let fj , j = 1, 2, 3 be meromorphic and f1 be non-constant.

Suppose that

3
∑

j=1

fj = 1 and

3
∑

j=1

N(r, 0; fj) + 2

3
∑

j=1

N(r,∞; fj) < (λ+ o(1))T (r),

as r → ∞, r ∈ I, λ < 1 and T (r) = max
16j63

T (r, fj). Then f2 = 1 or f3 = 1.
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Lemma 2.11. Let f , g be two transcendental meromorphic functions and let

P (w) be defined as in Theorem F. Let F = (fnP (f))(k)p−1, G = (gnP (g))(k)p−1,

where p(z) is a nonzero polynomial and n, k ∈ N,m ∈ N∪{0} such that n > 3k+m+3.

If f, g share ∞ IM and H = 0, then either (fnP (f))(k)(gnP (f))(k) = p2, where

(fnP (f))(k) and (gnP (f))(k) share p CM, or fnP (f) = gnP (g).

P r o o f. SinceH ≡ 0, by Lemma 2.8 we get F and G share 1 CM. On integration

we get

(2.5)
1

F − 1
=

bG+ a− b

G− 1
,

where a, b are constants and a 6= 0. We now consider the following cases:

Case 1. Let b 6= 0 and a 6= b. If b = −1, then from (2.5) we have

F =
−a

G− a− 1
.

Therefore

N(r, a+ 1;G) = N(r,∞;F ) = N(r,∞; f) + S(r, f).

So in view of Lemmas 2.1 and 2.2 for p = 1 and using the second fundamental

theorem we get

(n+m)T (r, g) 6 T (r,G) +Nk+1(r, 0; g
nP (g))−N(r, 0;G)

6 N(r,∞;G) +N(r, 0;G) +N(r, a+ 1;G)

+Nk+1(r, 0; g
nP (g))−N(r, 0;G) + S(r, g)

6 N(r,∞; g) +Nk+1(r, 0; g
nP (g)) +N(r,∞; f) + S(r, g)

6 N(r,∞; f) +N(r,∞; g) +Nk+1(r, 0; g
n)

+Nk+1(r, 0;P (g)) + S(r, g)

6 2N(r,∞; g) + (k + 1)N(r, 0; g) + T (r, P (g)) + S(r, g)

6 (k + 3 +m)T (r, g) + S(r, g),

which is a contradiction since n > k + 3. If b 6= −1, from (2.5) we obtain that

F −
(

1 +
1

b

)

=
−a

b2(G+ (a− b)/b)
.

So

N
(

r,
b− a

b
;G

)

= N(r,∞;F ) = N(r,∞; f) + S(r, f).

Using Lemmas 2.1, 2.2 and the same argument as in the case when b = −1 we can

get a contradiction.

257



Case 2. Let b 6= 0 and a = b. If b = −1, then from (2.5) we have

FG = 1,

i.e.

(fnP (f))(k)(gnP (g))(k) = p2,

where (fnP (f))(k) and (gnP (g))(k) share p CM.

If b 6= −1, from (2.5) we have

1

F
=

bG

(1 + b)G− 1
.

Therefore

N
(

r,
1

1 + b
;G

)

= N(r, 0;F ).

So in view of Lemmas 2.1 and 2.2 for p = 1 and using the second fundamental

theorem we get

(n+m)T (r, g) 6 N(r,∞;G) +N(r, 0;G) +N
(

r,
1

1 + b
;G

)

+Nk+1(r, 0; g
nP (g))−N(r, 0;G) + S(r, g)

6 N(r,∞; g) + (k + 1)N(r, 0; g) + T (r, P (g)) +N(r, 0;F ) + S(r, g)

6 N(r,∞; g) + (k + 1)N(r, 0; g) + T (r, P (g)) + (k + 1)N(r, 0; f)

+ T (r, P (f)) + kN(r,∞; f) + S(r, f) + S(r, g)

6 (k + 2 +m)T (r, g) + (2k + 1 +m)T (r, f) + S(r, f) + S(r, g).

Without loss of generality, we suppose that there exists a set I with infinite measure

such that T (r, f) 6 T (r, g) for r ∈ I. So for r ∈ I we have

(n− 3k − 3−m)T (r, g) 6 S(r, g),

which is a contradiction since n > 3k + 3 +m.

Case 3. Let b = 0. From (2.5) we obtain

(2.6) F =
G+ a− 1

a
.

If a 6= 1, then from (2.6) we obtain

N(r, 1 − a;G) = N(r, 0;F ).

We can similarly deduce a contradiction as in Case 2. Therefore a = 1 and from (2.6)

we obtain F = G, i.e. (fnP (f))(k) = (gnP (g))(k). Then by Lemma 2.7 we have

fnP (f) = gnP (g). This completes the proof. �
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Lemma 2.12. Let f and g be two transcendental entire functions such that

f(z) = h1(z)e
α(z) and g(z) = h2(z)e

β(z), where h1, h2 are nonzero polynomials

and α, β are two non-constant polynomials such that α(z) + β(z) = C0, C0 ∈ C.

Let n, k ∈ N such that n > k and p(z) be a non-constant polynomial such that

deg(p) 6= ns, where s ∈ N. If (fn)(k) = peγ and (gn)(k) = pe−γ , where γ is a

non-constant entire function, then both h1 and h2 must be nonzero constants.

P r o o f. By the given condition either both h1 and h2 are non-constant polyno-

mials or both are nonzero constants.

First we suppose both h1 and h2 are non-constant polynomials. Also we have

α + β = C0, i.e. α
′ ≡ −β′. This shows that deg(α) = deg(β) and deg(α(i)) =

deg(β(i)), where i ∈ N. We claim that for all l, t ∈ N with t > l,

(f t)(l) = ht−l
1

(

tlhl
1(α

′)l + ltlhl−1
1 h′

1(α
′)l−1 +

l(l− 1)

2
tl−1hl

1(α
′)l−2α′′(2.7)

+ Pl−1(h1, h
′

1, α
′)
)

etα,

where Pl−1(h1, h
′

1, α
′) is a differential polynomial in h1, h

′

1 and α′. Also we define

P0 = 0. We will use the mathematical induction to prove the claim. Since f(z) =

h1(z)e
α(z), we deduce that

(f t)′ = ht−1
1 (th1α

′ + th′

1)e
tα,

(f t)′′ = ht−2
1 (t2h2

1(α
′)2 + 2t2h1h

′

1α
′ + th2

1(α
′)2−2α′′ + t(t− 1)(h′

1)
2 + th1h

′′

1 )e
tα

and

(f t)′′′ = ht−3
1 (t3h3

1(α
′)3 + 3t3h3−1

1 h′

1(α
′)3−1 + 3t2h3

1(α
′)3−2α′′

+ 3t2(t− 1)h1(h
′

1)
2α′ + . . . )etα.

Therefore the claim is true for l = 1 with t > 1, l = 2 with t > 2 and l = 3 with

t > 3, respectively. We assume that the claim is true for l = l∗ with t > l∗, i.e.

(f t)(l
∗) = ht−l∗

1 (tl
∗

hl∗

1 (α′)l
∗

+ l∗tl
∗

hl∗−1
1 h′

1(α
′)l

∗

−1 +
l∗(l∗ − 1)

2
tl

∗

−1hl∗

1 (α′)l
∗

−2α′′

+ Pl∗−1(h1, h
′

1, α
′))etα.

Now we prove that the claim is also true for l = l∗ + 1 with t > l∗ + 1. By

differentiation we have

(f t)(l
∗+1) =

(

tl
∗+1ht

1(α
′)l

∗+1 + tl
∗+1ht−1

1 h′

1(α
′)l

∗

+ l∗tl
∗

ht
1(α

′)l
∗

−1α′′

+ l∗tl
∗+1ht−1

1 h′

1(α
′)l

∗

+ . . .+
l∗(l∗ − 1)

2
tl

∗

ht
1(α

′)l
∗

−1α′′

+ . . .+ ht−l∗−1
1 h′

1Pl∗−1(h1, h
′

1, α
′) + ht−l∗

1 P ′

l∗−1(h1, h
′

1, α
′)
)

etα
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= h
t−(l∗+1)
1

(

tl
∗+1hl∗+1

1 (α′)l
∗+1 + (l∗ + 1)tl

∗+1hl∗

1 h′

1(α
′)l

∗

+
l∗(l∗ + 1)

2
tl

∗

hl∗+1
1 (α′)l

∗

−1α′′ + Pl∗(h1, h
′

1, α
′)
)

etα.

So we complete the proof of the claim. Since n > k, we have

(fn)(k) = hn−k
1

(

nkhk
1(α

′)k + knkhk−1
1 h′

1(α
′)k−1(2.8)

+
k(k − 1)

2
nk−1hk

1(α
′)k−2α′′ + Pk−1(h1, h

′

1, α
′)
)

enα.

Similarly we get

(2.9) (gn)(k) = hn−k
2

(

nkhk
2(β

′)k + knkhk−1
2 h′

2(β
′)k−1 +

k(k − 1)

2
nk−1hk

2(β
′)k−2β′′

+ Pk−1(h2, h
′

2, β
′)
)

enβ

= hn−k
2

(

(−1)knkhk
2(α

′)k + (−1)k−1knkhk−1
2 h′

2(α
′)k−1

+ (−1)k−1 k(k − 1)

2
nk−1hk

2(α
′)k−2α′′ + Pk−1(h2, h

′

2,−α′)
)

enβ .

Here we see that every term of Pk−1(h1, h
′

1, α
′) has the form

Khl0
1 (h

′

1)
l1 . . . (h

(k)
1 )lk(α′)m0(α′′)m1 . . . (α(k))mk ,

where l0, . . . , lk,m0, . . . ,mk ∈ N ∪ {0} and K is a suitably positive integer.

Note that deg(hk
1(α

′)k) > deg(hk−1
1 h′

1(α
′)k−1) = deg(hk

1(α
′)k−2α′′). Also

deg(hl0
1 (h

′

1)
l1 . . . (h

(k)
1 )lk(α′)m0(α′′)m1 . . . (α(k))mk) < deg(hk

1(α
′)k−2α′′).

Let
h1(z) = a1pz

p + a1p−1z
p−1 + . . .+ a10,

h2(z) = b1qz
q + b1q−1z

q−1 + . . .+ b10

and

(α(z))′ = c1rz
r + c1r−1z

r−1 + . . .+ c10,

where a1p, b1q, c1r ∈ C \ {0}. Then we have

(h1(z))
i = ai1pz

ip + iai−1
1p a1p−1z

ip−1 + . . . ,

(h2(z))
i = bi1qz

iq + ibi−1
1q b1q−1z

iq−1 + . . . ,

and

((α(z))′)i = ci1rz
ir + ici−1

1r c1r−1z
ir−1 + . . . ,
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where i ∈ N. Then

(fn)(k) =
(

nkan1pc
k
1rz

np+kr + nkan−1
1p ck−1

1r (ka1pc1r−1 + na1p−1c1r)z
np+kr−1

+
(

pknkan1pc
k−1
1r +

k(k − 1)

2
nk−1an1pc

k−1
1r r

)

znp+r(k−1)−1 + . . .
)

enα

and

(gn)(k) =
(

(−1)knkbn1qc
k
1rz

nq+kr + (−1)knkbn−1
1q ck−1

1r (kb1qc1r−1 + nb1q−1c1r)z
nq+kr−1

+ (−1)k−1
(

qknkbn1qc
k−1
1r +

k(k − 1)

2
nk−1bn1qc

k−1
1r r

)

znq+r(k−1)−1 + . . .
)

enβ .

Since (fn)(k) = peγ and (gn)(k) = pe−γ , it follows that

nkan1pc
k
1rz

np+kr + nkan−1
1p ck−1

1r (ka1pc1r−1 + na1p−1c1r)z
np+kr−1(2.10)

+
(

pknkan1pc
k−1
1r +

k(k − 1)

2
nk−1an1pc

k−1
1r r

)

znp+r(k−1)−1 + . . .

≡ d1p(z)(2.11)

and

(−1)knkbn1qc
k
1rz

nq+kr + (−1)knkbn−1
1q ck−1

1r (kb1qc1r−1 + nb1q−1c1r)z
nq+kr−1(2.12)

+ (−1)k−1
(

qknkbn1qc
k−1
1r +

k(k − 1)

2
nk−1bn1qc

k−1
1r r

)

znq+r(k−1)−1 + . . .

≡ d2p(z),(2.13)

where d1, d2 ∈ C \ {0}. From (2.10) and (2.12) it is clear that p = q.

Now we consider the following two cases.

Case 1. Let deg(α′) = r ∈ N. If np + kr = ns, where s ∈ N, then we arrive

at a contradiction from (2.10) and (2.12). Next we suppose np + kr 6= ns. Then

from (2.10) and (2.12) we get

nkan1pc
k
1rz

np+kr + nkan−1
1p ck−1

1r (ka1pc1r−1 + na1p−1c1r)z
np+kr−1(2.14)

+
(

pknkan1pc
k−1
1r +

k(k − 1)

2
nk−1an1pc

k−1
1r r

)

znp+r(k−1)−1 + . . .

≡ d
(

(−1)knkbn1qc
k
1rz

nq+kr

+ (−1)knkbn−1
1q ck−1

1r (kb1qc1r−1 + nb1q−1c1r)z
nq+kr−1

+ (−1)k−1
(

qknkbn1qc
k−1
1r +

k(k − 1)

2
nk−1bn1qc

k−1
1r r

)

znq+r(k−1)−1 + . . .
)

,
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where d ∈ C \ {0}. Note that

pknkan1pc
k−1
1r +

k(k − 1)

2
nk−1an1pc

k−1
1r r =

2np+ (k − 1)r

2
knk−1an1pc

k−1
1r 6= 0

and

qknkbn1qc
k−1
1r +

k(k − 1)

2
nk−1bn1qc

k−1
1r r =

2nq + (k − 1)r

2
knk−1bn1qc

k−1
1r 6= 0.

Since p = q, from (2.14) we get

an1p = (−1)kdbn1p,(2.15)

an−1
1p (ka1pc1r−1 + na1p−1c1r) = (−1)kdbn−1

1p (kb1pc1r−1 + nb1p−1c1r)(2.16)

and

pknkan1pc
k−1
1r +

k(k − 1)

2
nk−1an1pc

k−1
1r r(2.17)

= (−1)k−1d
(

pknkbn1pc
k−1
1r +

k(k − 1)

2
nk−1bn1pc

k−1
1r r

)

.

Then (2.15) and (2.17) yield

pn+
k − 1

2
r = 0,

which is impossible.

Case 2. Let deg(α′) = r = 0. Now from (2.10) we get deg(p) = np, which is a

contradiction. Hence, both h1 and h2 must be nonzero constants. This completes

the proof. �

Lemma 2.13. Let f , g be two transcendental meromorphic functions and n, k ∈ N

such that n > k. Suppose p(z) be a nonzero polynomial such that deg(p) 6= ns,

where s ∈ N. Suppose (fn)(k), (gn)(k) share p CM and f , g share ∞ IM. Now when

(fn)(k)(gn)(k) = p2,

(i) if p(z) is not a constant, then f(z) = c1e
cQ(z), g(z) = c2e

−cQ(z), where Q(z) =
∫ z

0 p(t) dt, c1, c2 and c are constants such that (nc)2(c1c2)
n = −1;

(ii) if p(z) is a nonzero constant b, then f(z) = c3e
dz, g(z) = c4e

−dz, where c3, c4

and d are constants such that (−1)k(c3c4)
n(nd)2k = b2.

P r o o f. Suppose

(2.18) (fn)(k)(gn)(k) = p2.
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Since f and g share∞ IM, from (2.18) one can easily say that f and g are transcen-

dental entire functions. We consider the following cases.

Case 1. Let deg(p(z)) = l ∈ N. Since n > k, it follows that N(r, 0; f) = O(log r)

and N(r, 0; g) = O(log r).

Let

(2.19) F1 =
(fn)(k)

p
and G1 =

(gn)(k)

p
.

From (2.18) we get

(2.20) F1G1 = 1.

If F1 = c∗1G1, where c
∗

1 ∈ C\{0}, then by (2.20) F1 is constant and so f is polynomial,

which contradicts our assumption. Hence F1 6= c∗1G1.

Let

(2.21) Φ =
(fn)(k) − p

(gn)(k) − p
.

We deduce from (2.21) that

(2.22) Φ = eγ1 ,

where γ1 is an entire function.

Let f1 = F1, f2 = −eγ1G1 and f3 = eγ1 . Here f1 is transcendental. Now

from (2.22) we have

f1 + f2 + f3 = 1.

Hence, by Lemma 2.6 we get

3
∑

j=1

N(r, 0; fj) + 2
3

∑

j=1

N(r,∞; fj) 6 N(r, 0;F1) +N(r, 0; eγ1G1) +O(log r)

6 (λ+ o(1))T (r),

as r → ∞, r ∈ I, λ < 1 and T (r) = max
16j63

T (r, fj).

So by Lemma 2.10 we get either eγ1G1 = −1 or eγ1 = 1. But here the only

possibility is that eγ1G1 = −1, i.e. (gn)(k) = −e−γ1p(z) and so from (2.18) we get

(2.23) (fn)(k) = c∗2e
γ1p, (gn)(k) = c∗2e

−γ1p,
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where c∗2 = ±1. Since N(r, 0; f) = O(log r) and N(r, 0; g) = O(log r), we can take

(2.24) f(z) = h1(z)e
α(z), g(z) = h2(z)e

β(z),

where h1 and h2 are nonzero polynomials and α, β are two non-constant entire

functions.

We deduce from (2.18) and (2.24) that either both α and β are transcendental

entire functions or both are polynomials. We consider the following subcases.

Subcase 1.1. Let k ∈ N \ {1}. First we suppose both α and β are transcendental

entire functions. Let α1 = α′ + h′

1/h1 and β1 = β′ + h′

2/h2. Clearly both α1 and β1

are transcendental functions.

Note that

S(r, nα1) = S
(

r,
(fn)′

fn

)

, S(r, nβ1) = S
(

r,
(gn)′

gn

)

.

Moreover, we see that

N(r, 0; (fn)(k)) 6 N(r, 0; p2) = O(log r),

N(r, 0; (gn)(k)) 6 N(r, 0; p2) = O(log r).

From these and using (2.24) we have

(2.25) N(r,∞; fn) +N(r, 0; fn) +N(r, 0; (fn)(k)) = S(r, nα1) = S
(

r,
(fn)′

fn

)

and

(2.26) N(r,∞; gn) +N(r, 0; gn) +N(r, 0; (gn)(k)) = S(r, nβ1) = S
(

r,
(gn)′

gn

)

.

Then from (2.25), (2.26) and Lemma 2.4 we must have

(2.27) f(z) = ea
∗

3
z+b∗

3 , g(z) = ec
∗

3
z+d∗

3 ,

where a∗3 6= 0, b∗3, c
∗

3 6= 0 and d∗3 are constants. But these types of f and g do not

agree with relation (2.18).

Next we suppose α and β are both non-constant polynomials, since otherwise f , g

reduce to polynomials contradicting that they are transcendental. Also from (2.18)

we get α + β = C1, i.e. α
′ = −β′. Therefore deg(α) = deg(β). By Lemma 2.12 we

conclude that both h1 and h2 are nonzero constants. So we can rewrite f and g as:

(2.28) f(z) = eγ(z), g(z) = eδ(z),

264



where γ(z) + δ(z) = C2 and deg(γ) = deg(δ). Clearly γ′ = −δ′. If deg(γ) =

deg(δ) = 1, then we again get a contradiction from (2.18). Next we suppose deg(γ) =

deg(δ) > 2. Now using (2.8) and (2.9) one can easily deduce from (2.28) that

(fn)(k) =
(

nk(γ′)k +
k(k − 1)

2
nk−1(γ′)k−2γ′′ + Pk−1(γ

′)
)

enγ

and

(gn)(k) =
(

nk(δ′)k +
k(k − 1)

2
nk−1(δ′)k−2δ′′ + Pk−1(δ

′)
)

enδ

=
(

(−1)knk(γ′)k −
k(k − 1)

2
nk−1(−1)k−2(γ′)k−2γ′′ + Pk−1(−γ′)

)

enδ.

Since deg(γ) > 2, we observe that deg((γ′)k) > k deg(γ′) and so (γ′)k−2γ′′ is either

a nonzero constant or deg((γ′)k−2γ′′) > (k − 1) deg(γ′)− 1. Also we see that

deg((γ′)k) > deg((γ′)k−2γ′′) > deg(Pk−2(γ
′)) (or deg(Pk−2(−γ′))).

Let

(γ(z))′ = etz
t + et−1z

t−1 + . . .+ e0,

where et ∈ C \ {0}. Then we have

((γ(z))′)i = eitz
it + iei−1

t et−1z
it−1 + . . . ,

where i ∈ N. Therefore we have

(fn)(k) = (nkekt z
kt + knkek−1

t et−1z
kt−1 + . . .+ (D1 +D2)z

kt−t−1 + . . .)enγ

and
(gn)(k) = ((−1)knkekt z

kt + (−1)kknkek−1
t et−1z

kt−1 + . . .

+ ((−1)kD1 + (−1)k−1D2)z
kt−t−1 + . . .)enδ,

where D1, D2 ∈ C such that D2 = 1
2k(k− 1)tnk−1ek−1

t . Now from (2.23) we see that

(2.29) nkekt z
kt + knkek−1

t et−1z
kt−1 + . . .+ (D1 +D2)z

kt−t−1 + . . . = d∗4p(z)

and

(−1)knkekt z
kt + (−1)kknkek−1

t et−1z
kt−1(2.30)

+ . . .+ ((−1)kD1 + (−1)k−1D2)z
kt−t−1 + . . . = d∗5p(z),
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where d∗4, d
∗

5 ∈ C \ {0}. Now from (2.29) and (2.30) it is clear that

nkekt z
kt + knkek−1

t et−1z
kt−1 + . . .+ (D1 +D2)z

kt−t−1 + . . .(2.31)

= d∗6((−1)knkekt z
kt + (−1)kknkek−1

t et−1z
kt−1 + . . .

+ ((−1)kD1 + (−1)k−1D2)z
kt−t−1 + . . .),

where d∗6 ∈ C \ {0}. From (2.31) we get D2 = 0, i.e.

k(k − 1)

2
tnk−1ek−1

t = 0,

which is impossible for k > 2.

Subcase 1.2. Let k = 1. Now from (2.18) we get

(2.32) fn−1f ′gn−1g′ = p21,

where p21 = n−2p2. First we suppose both α and β are transcendental entire func-

tions.

Let h = fg and we consider the following subcases.

Subcase 1.2.1. Suppose that h is a nonzero polynomial. Then from (2.24) it is

clear that h = Ah1h2, where A = eC1 and α + β = C1. Therefore α
′ = −β′. Now

from (2.32) we see that

Aα′(−h′

1h2 + h1h
′

2 − h1h2α
′) = e−(n−1)C p21

(h1h2)n−1
−Ah′

1h
′

2,

where p21(h1h2)
1−n is a polynomial. From this it is clear that

N(r, 0;α′) = O(log r), N(r, 0;−h′

1h2 + h1h
′

2 − h1h2α
′) = O(log r).

By the second fundamental theorem for small functions (see [14]) we have

T (r, α′) 6 N(r,∞;α′) +N(r, 0;α′) +N(r, 0;−h′

1h2 + h1h
′

2 − h1h2α
′)

+ (ε+ o(1))T (r, α′)

6 O(log r) + (ε+ o(1))T (r, α′)

for all ε > 0. This shows that α′ is a polynomial and so is α, which is a contradiction.

Subcase 1.2.2. Suppose that h is a transcendental entire function. Now from (2.32)

we get

(2.33)
(g′

g
−

1

2

h′

h

)2

=
1

4

(h′

h

)2

− h−np21.
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Let

α2 =
g′

g
−

1

2

h′

h
.

From (2.33) we get

(2.34) α2
2 =

1

4

(h′

h

)2

− h−np21.

First we suppose α2 = 0. Then we get h−np21 = 1
4 (h

′/h)2 and so T (r, h) = S(r, h),

which is impossible. Next we suppose that α2 6= 0. Differentiating (2.34) we get

2α2α
′

2 =
1

2

h′

h

(h′

h

)

′

+ nh′h−n−1p21 − 2h−np1p
′

1.

Applying (2.34) we obtain

(2.35) h−n
(

−n
h′

h
p21 + 2p1p

′

1 − 2
α′

2

α2
p21

)

=
1

2

h′

h

((h′

h

)

′

−
h′

h

α′

2

α2

)

.

First we suppose

−n
h′

h
p21 + 2p1p

′

1 − 2
α′

2

α2
p21 = 0.

Then there exists a nonzero constant c8 such that α
2
2 = c8h

−np21 and so from (2.34)

we get

(c8 + 1)h−np21 =
1

4

(h′

h

)2

.

If c8 = −1, then h will be a constant. If c8 6= −1, then we have T (r, h) = S(r, h),

which is impossible. Next we suppose that

−n
h′

h
p21 + 2p1p

′

1 − 2
α′

2

α2
p21 6= 0.

Then by (2.35) we have

nT (r, h) = nm(r, h)(2.36)

6 m
(

r, hn 1

2

h′

h

((h′

h

)

′

−
h′

h

α′

2

α2

))

+m
(

r,
(1

2

h′

h

((h′

h

)

′

−
h′

h

α′

2

α2

))

−1)

+O(1)

6 T
(

r,
1

2

h′

h

((h′

h

)

′

−
h′

h

α′

2

α2

))

+m
(

r, n
h′

h
p21 + 2p1p

′

1 − 2
α′

2

α2
p21

)

6 N(r, 0;α2) + S(r, h) + S(r, α2).
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From (2.34) we get

T (r, α2) 6
1

2
nT (r, h) + S(r, h).

Now from (2.36) we get
1

2
nT (r, h) 6 S(r, h),

which is impossible.

Thus, α and β are both polynomials. Also from (2.18) we can conclude that

α(z) + β(z) = C1 and so α′(z) + β′(z) = 0. By Lemma 2.12 we conclude that

both h1 and h2 are nonzero constants. So we can rewrite f and g as:

(2.37) f(z) = eγ2(z), g(z) = eδ2(z).

Now from (2.18) we get

(2.38) n2γ′

2δ
′

2e
n(γ2+δ2) = p2.

Also from (2.38) we can conclude that γ2(z) + δ2(z) = C3 for a constant C3 and

so γ′

2(z) + δ′2(z) = 0. Thus, from (2.38) we get n2enC3γ′

2(z)δ
′

2(z) = p2(z). By

computation we get

(2.39) γ′

2(z) = cp(z), δ′2(z) = −cp(z).

Hence,

(2.40) γ2(z) = cQ(z) + b1, δ2(z) = −cQ(z) + b2,

where Q(z) =
∫ z

0
p(t) dt and b1, b2 are constants. Finally we take f and g as

f(z) = c1e
cQ(z), g(z) = c2e

−cQ(z),

where c1, c2 and c are constants such that (nc)2(c1c2)
n = −1.

Case 2. Let p(z) be a nonzero constant b. In this case we see that f and g have

no zeros and so we can take f and g as:

(2.41) f(z) = eα(z), g(z) = eβ(z),

where α(z), β(z) are two non-constant entire functions. We now consider the follow-

ing subcases.

Subcase 2.1. Let k > 2. We see that

N(r, 0; (fn)(k)) = 0.
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From this and using (2.41) we have

(2.42) fn(z)(fn(z))(k) 6= 0 and gn(z)(gn(z))(k) 6= 0.

Then from (2.42) and Lemma 2.5 we must have

(2.43) f(z) = ea
∗

9
z+b∗

9 , g(z) = ec
∗

9
z+d∗

9 ,

where a∗9 6= 0, b∗9, c
∗

9 6= 0 and d∗9 are constants.

Subcase 2.1. Let k = 1. Considering Subcase 1.2 one can easily get

f(z) = ea
∗

10
z+b∗

10 , g(z) = ec
∗

10
z+d∗

10 ,

where a∗10 6= 0, b∗10, c
∗

10 6= 0 and d∗10 are constants. Finally, we can take f and g as

f(z) = c3e
dz, g(z) = c4e

−dz,

where c3, c4 and d are nonzero constants such that (−1)k(c3c4)
n(nd)2k = b2. This

completes the proof. �

Lemma 2.14. Let f and g be two transcendental meromorphic functions and

n, k ∈ N, m ∈ N ∪ {0} with n > k + 2. Let p(z) be a nonzero polynomial such

that deg(p) 6= (n + i)s, where s ∈ N, i ∈ {0, 1, . . . ,m}. Let P (w) be defined as in

Theorem F and (fnP (f))(k), (gnP (g))(k) share p CM and also f , g share ∞ IM.

Suppose (fnP (f))(k)(gnP (g))(k) = p2. Then P (z) reduces to a nonzero monomial,

namely P (z) = aiz
i 6≡ 0 for some i ∈ {0, 1, . . . ,m};

if p(z) is not a constant, then f(z) = c1e
cQ(z), g(z) = c2e

−cQ(z), where Q(z) =
∫ z

0 p(t) dt, c1, c2 and c are constants such that a2i (c1c2)
n+i((n+ i)c)2 = −1,

if p(z) is a nonzero constant b, then f(z) = c3e
cz, g(z) = c4e

−cz, where c3, c4
and c are constants such that (−1)ka2i (c3c4)

n+i((n+ i)c)2k = b2.

P r o o f. The proof follows from Lemmas 2.9 and 2.13. �

Lemma 2.15 ([1]). Let f and g be two non-constant meromorphic functions

sharing (1, k1), where 2 6 k1 6 ∞. Then

N(r, 1; f |= 2) + 2N(r, 1; f |= 3) + . . .+ (k1 − 1)N(r, 1; f |= k1) + k1NL(r, 1; f)

+ (k1 + 1)NL(r, 1; g) + k1N
(k1+1

E (r, 1; g) 6 N(r, 1; g)−N(r, 1; g).
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Lemma 2.16. Suppose that f and g are two non-constant meromorphic functions.

Let F = (fnP (f))(k), G = (gnP (g))(k), where n, k ∈ N, m ∈ N ∪ {0} and P (w) be

defined as in Theorem F. If f , g share ∞ IM and V = 0, then F = G.

P r o o f. Suppose V = 0. Then by integration we obtain

1−
1

F
= A

(

1−
1

G

)

.

It is that if z0 is a pole of f , then it is a pole of g. Hence, from the definition of F

and G we have 1/F (z0) = 0 and 1/G(z0) = 0. So A = 1 and hence F = G. �

Lemma 2.17. Suppose that f and g are two non-constant meromorphic functions.

Let F , G be defined as in Lemma 2.16 and H 6= 0. If f , g share (∞, 0) and F , G

share (1, k1), where 0 6 k1 6 ∞, then

(

n+m− k − 1
)

N(r,∞; f) 6 (k +m+ 1)(T (r, f) + T (r, g)) +N∗(r, 1;F,G)

+ S(r, f) + S(r, g).

P r o o f. Suppose∞ is an e.v.P of f and g. Then the result follows immediately.

Next suppose ∞ is not an e.v.P of f and g. Since H 6= 0, from Lemma 2.16 we

have V 6= 0. We suppose that z0 is a pole of f with multiplicity q and a pole of g

with multiplicity r. Clearly z0 is a pole of F with multiplicity (n +m)q + k and a

pole of G with multiplicity (n + m)r + k. Noting that f , g share (∞, 0), from the

definition of V it is clear that z0 is a zero of V with multiplicity at least n+m+k−1.

Now using the Milloux theorem [6], page 55, and Lemma 2.1, we obtain from the

definition of V that m(r, V ) = S(r, f) + S(r, g). Thus, using Lemma 2.1 and (2.4)

we get

(

n+m+ k − 1
)

N(r,∞; f)

6 N(r, 0;V ) 6 T (r, V ) +O(1)

6 N(r,∞;V ) +m(r, V ) +O(1)

6 N(r, 0;F ) +N(r, 0;G) +N∗(r, 1;F,G) + S(r, f) + S(r, g)

6 Nk+1(r, 0; f
nP (f)) +Nk+1(r, 0; g

nP (g)) + kN(r,∞; f)

+ kN(r,∞; g) +N∗(r, 1;F,G) + S(r, f) + S(r, g)

6 Nk+1(r, 0; f
n) +Nk+1(r, 0;P (f)) +NK+1(r, 0; g

n)

+Nk+1(r, 0;P (g)) + 2kN(r,∞; f) +N∗(r, 1;F,G)

+ S(r, f) + S(r, g)
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6 (k + 1)N(r, 0; f) +N(r, 0;P (f)) + (k + 1)N(r, 0; g)

+N(r, 0;P (g)) + 2kN(r,∞; f) +N∗(r, 1;F,G)

+ S(r, f) + S(r, g).

This gives
(

n+m− k − 1
)

N(r,∞; f) 6 (k +m+ 1)(T (r, f) + T (r, g)) +N∗(r, 1;F,G)

+ S(r, f) + S(r, g).

This completes the proof of the lemma. �

3. Proof of the theorem

P r o o f of Theorem 1.1. Let F = (fnP (f))(k)/p(z) and G = (gnP (g))(k)/p(z).

Note that since f and g are transcendental meromorphic functions, p(z) is a small

function with respect to both (fnP (f))(k) and (gnP (g))(k). Also F , G share (1, k1)

except the zeros of p(z) and f , g share (∞, 0).

Case 1. Let H 6= 0. From (2.1) it can be easily calculated that the possible

poles of H occur at (i) multiple zeros of F and G, (ii) those 1 points of F and G

whose multiplicities are different, (iii) those poles of F and G whose multiplicities are

different, (iv) zeros of F ′ (or G′) which are not the zeros of F (F − 1) (or G(G− 1)).

Since H has only simple poles, we get

N(r,∞;H) 6 N∗(r,∞;F,G) +N∗(r, 1;F,G) +N(r, 0;F |> 2)(3.1)

+N(r, 0;G |> 2) +N0(r, 0;F
′) +N0(r, 0;G

′) + S(r, f) + S(r, g),

where N0(r, 0;F
′) is the reduced counting function of those zeros of F ′ which are

not the zeros of F (F − 1), and N0(r, 0;G
′) is similarly defined.

Let z0 be a simple zero of F − 1 but p(z0) 6= 0. Then z0 is a simple zero of G− 1

and a zero of H . So

(3.2) N(r, 1;F |= 1) 6 N(r, 0;H) 6 N(r,∞;H) + S(r, f) + S(r, g).

Using (3.1) and (3.2) we get

N(r, 1;F )(3.3)

6 N(r, 1;F |= 1) +N(r, 1;F |> 2)

6 N∗(r,∞; f, g) +N(r, 0;F |> 2) +N(r, 0;G |> 2) +N∗(r, 1;F,G)

+N(r, 1;F |> 2) +N0(r, 0;F
′) +N0(r, 0;G

′) + S(r, f) + S(r, g)

6 N(r,∞; f) +N(r, 0;F |> 2) +N(r, 0;G |> 2) +N∗(r, 1;F,G)

+N(r, 1;F |> 2) +N0(r, 0;F
′) +N0(r, 0;G

′) + S(r, f) + S(r, g).
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Now in view of Lemmas 2.6 and 2.3 we get

N0(r, 0;G
′) +N(r, 1;F |> 2) +N∗(r, 1;F,G)(3.4)

6 N0(r, 0;G
′) +N(r, 1;F |= 2)

+N(r, 1;F |= 3) + . . .+N(r, 1;F |= k1) +N
(k1+1

E (r, 1;F )

+NL(r, 1;F ) +NL(r, 1;G) +N∗(r, 1;F,G)

6 N0(r, 0;G
′)−N(r, 1;F |= 3)− . . .− (k1 − 2)N(r, 1;F |= k1)

− (k1 − 1)NL(r, 1;F )− k1NL(r, 1;G)− (k1 − 1)N
(k1+1

E (r, 1;F )

+N(r, 1;G)−N(r, 1;G) +N∗(r, 1;F,G)

6 N0(r, 0;G
′) +N(r, 1;G)−N(r, 1;G)− (k1 − 2)NL(r, 1;F )

− (k1 − 1)NL(r, 1;G)

6 N(r, 0;G′ | G 6= 0)− (k1 − 2)NL(r, 1;F )− (k1 − 1)NL(r, 1;G)

6 N(r, 0;G) +N(r,∞; g)− (k1 − 2)N∗(r, 1;F,G) −NL(r, 1;G).

Hence, using (3.3), (3.4), Lemmas 2.2 and 2.17 we get from the second fundamental

theorem that

(n+m)T (r, f) 6 T (r, F ) +Nk+2(r, 0; f
nP (f))−N2(r, 0;F ) + S(r, f)(3.5)

6 N(r, 0;F ) +N(r,∞;F ) +N(r, 1;F ) +Nk+2(r, 0; f
nP (f))

−N2(r, 0;F )−N0(r, 0;F
′) + S(r, f)

6 N(r,∞; f) +N(r,∞; g) +N(r, 0;F ) +Nk+2(r, 0; f
nP (f))

+N(r, 0;F |> 2) +N(r, 0;G |> 2) +N(r, 1;F |> 2) +N∗(r, 1;F,G)

+N0(r, 0;G
′)−N2(r, 0;F ) + S(r, f) + S(r, g)

6 3N(r,∞; f) +Nk+2(r, 0; f
nP (f)) +N2(r, 0;G)

− (k1 − 2)N∗(r, 1;F,G) −NL(r, 1;G) + S(r, f) + S(r, g)

6 3N(r,∞; f) +Nk+2(r, 0; f
nP (f)) + kN(r,∞; g)

+Nk+2(r, 0; g
nP (g))− (k1 − 2)N∗(r, 1;F,G) + S(r, f) + S(r, g)

6 (3 + k)N(r,∞; f) + (k + 2)N(r, 0; f) + T (r, P (f)) + (k + 2)N(r, 0; g)

+ T (r, P (g))− (k1 − 2)N∗(r, 1;F,G) + S(r, f) + S(r, g)

6 (k +m+ 2)(T (r, f) + T (r, g)) + (3 + k)N(r,∞; f)

− (k1 − 2)N∗(r, 1;F,G) + S(r, f) + S(r, g)

6 (k +m+ 2)(T (r, f) + T (r, g))

+
(3 + k)(k +m+ 1)

n+m− k − 1
(T (r, f) + T (r, g)) +

3 + k

n+m− k − 1
N∗(r, 1;F,G)

− (k1 − 2)N∗(r, 1;F,G) + S(r, f) + S(r, g)
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6

(

k +m+ 2 +
(3 + k)(k +m+ 1)

n+m− k − 1

)

(T (r, f) + T (r, g)) + S(r, f) + S(r, g).

In a similar way we can obtain

(n+m)T (r, g) 6
(

k +m+ 2 +
(3 + k)(k +m+ 1)

n+m− k − 1

)

(T (r, f) + T (r, g))(3.6)

+ S(r, f) + S(r, g).

Adding (3.5) and (3.6) we get

(

n−m− 2k − 4−
(6 + 2k)(k +m+ 1)

n+m− k − 1

)

(T (r, f) + T (r, g)) 6 S(r, f) + S(r, g).

Since the quantity in the first bracket can be written as

(3.7)
(n+m− k − 1)2 − (2m+ k + 3)(n+m− k − 1)− 2(k + 3)(k +m+ 1)

n+m− k − 1
,

by a simple computation one can easily verify that when

n+m− k − 1 > 2m+ 2k + 5

>
2m+ k + 3 +

√

(2m+ k + 3)2 + 8(k + 3)(k +m+ 1)

2
,

i.e. when n > 3k +m+ 6, we obtain a contradiction from (3.7).

Case 2. Let H = 0. Then by Lemma 2.11 we have either

(3.8) (fnP (f))(k)(gnP (g))(k) = p2,

or

(3.9) fnP (f) = gnP (g).

From (3.9) we get

(3.10) fn(amfm + am−1f
m−1 + . . .+ a0) = gn(amgm + am−1g

m−1 + . . .+ a0).

Let h = f/g. If h is a constant, then substituting f = gh into (3.10) we deduce that

amgn+m(hn+m − 1) + am−1g
n+m−1(hn+m−1 − 1) + . . .+ a0g

n(hn − 1) = 0,

which implies hd = 1, where d = GCD(n + m, . . . , n + m − i, . . . , n), am−i 6= 0

for some i = 0, 1, . . . ,m. Thus, f = tg for a constant t such that td = 1, where

d = GCD(n+m, . . . , n+m− i, . . . , n), am−i 6= 0 for some i = 0, 1, . . . ,m.
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If h is not a constant, then we know by (3.10) that f and g satisfy the algebraic

equation R(f, g) = 0, where

R(ω1, ω2) = ωn
1 (amωm

1 + am−1ω
m−1
1 + . . .+ a0)−ωn

2 (amωm
2 + am−1ω

m−1
2 + . . .+ a0).

The remaining part of the theorem follows from (3.8) and Lemma 2.14. This

completes the proof of the theorem. �
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