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Abstract. The purpose of the paper is to study the uniqueness problems of linear differen-
tial polynomials of entire functions sharing a small function and obtain some results which
improve and generalize the related results due to J. T. Li and P. Li (2015). Basically we pay
our attention to the condition λ(f) 6= 1 in Theorems 1.3, 1.4 from J. T. Li and P. Li (2015).
Some examples have been exhibited to show that conditions used in the paper are sharp.
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1. Introduction, definitions and results

In this paper, by a meromorphic or entire function we shall always mean mero-

morphic or entire, respectively, function in the complex plane C. We denote by

n(r,∞; f) the number of poles of f lying in |z| < r; the poles are counted according

to their multiplicities. The quantity

N(r,∞; f) =

∫ r

0

n(t,∞; f)− n(0,∞; f)

t
dt+ n(0,∞; f) log r

is called the integrated counting function or simply the counting function of poles

of f .

Also m(r,∞; f) = 1
2π

−1
∫ 2π

0
log+ |f(reiθ)| dθ is called the proximity function of

poles of f , where log+ x = log x for x > 1 and log+ x = 0 for 0 6 x < 1.

The sum T (r, f) = m(r,∞; f)+N(r,∞; f) is called the Nevanlinna characteristic

function of f . We denote by S(r, f) any quantity satisfying S(r, f) = o{T (r, f)}

as r → ∞ except possibly a set of finite linear measure. We denote by T (r) the

maximum of T (r, f) and T (r, g). The notation S(r) denotes any quantity satisfying
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S(r) = o(T (r)) as r → ∞, outside of a possible exceptional set of finite linear

measure.

For a ∈ C, we put N(r, a; f) = N(r,∞; (f − a)−1) and m(r, a; f) = m(r,∞;

(f − a)−1).

Let us denote by n(r, a; f) the number of distinct a-points of f lying in |z| < r,

where a ∈ C ∪ {∞}. The quantity

N(r, a; f) =

∫ r

0

n(t, a; f)− n(0, a; f)

t
dt+ n(0, a; f) log r

denotes the reduced counting function of a-points of f (see, e.g. [2], [13]).

The order of f is defined by

λ(f) = lim sup
r→∞

logT (r, f)

log r
.

Let k be a positive integer and a ∈ C ∪ {∞}. We use Nk)(r, a; f) to denote the

counting function of a-points of f with multiplicity not greater than k, N(k+1(r, a; f)

to denote the counting function of a-points of f with multiplicity greater than k.

Similarly, Nk)(r, a; f) and N (k+1(r, a; f) are their reduced functions, respectively.

For a ∈ C ∪ {∞} and a positive integer p we denote by Np(r, a; f) the sum

N (1(r, a; f) +N (2(r, a; f) + . . .+N (p(r, a; f).

For a ∈ C ∪ {∞} and p ∈ N we put

δp(a; f) = 1− lim sup
r→∞

Np(r, a; f)

T (r, f)
.

Clearly,

0 6 δ(a; f) 6 δp(a; f) 6 δp−1(a; f) 6 . . . 6 δ2(a; f) 6 δ1(a; f) = Θ(a; f).

A meromorphic function a is said to be a small function of f provided that

T (r, a) = S(r, f), that is T (r, a) = o(T (r, f)) as r → ∞ except possibly a set of

finite linear measure.

Let f(z) and g(z) be two non-constant meromorphic functions. Let a(z) be a small

function with respect to f(z) and g(z). We say that f(z) and g(z) share a(z) CM

(counting multiplicities) if f(z)− a(z) and g(z)− a(z) have the same zeros with the

same multiplicities and we say that f(z), g(z) share a(z) IM (ignoring multiplicities)

if we do not consider the multiplicities.

In 1976, Yang [11] posed the following question:
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What can be said about the relationship between two non-constant entire func-

tions f and g if f and g share the value 0 CM and f ′ and g′ share the value 1 CM?

The above problem has been studied by Shibazaki [10], Yi [15], [14], Yang and

Yi [12], Hua [4], Muse-Reinders [9] and Lahiri [5]. And Yi [14] proved the following

theorem.

Theorem A ([14]). Let f and g be two non-constant entire functions and let k

be a non-negative integer. If f and g share the value 0 CM, f (k) and g(k) share the

value 1 CM and δ(0; f) > 1
2 , then f ≡ g unless f (k)g(k) ≡ 1.

R em a r k 1.1. The following example shows that in Theorem A the condition

δ(0; f) > 1
2 is sharp.

E x am p l e 1.2 ([14]). Let

f(z) = −
1

2k
e2z +

(−1)k+1

2k
ez and g(z) =

(−1)k+1

2k
e−2z −

1

2k
e−z,

where k is a non-negative integer. Then f and g share the value 0 CM, f (k) and g(k)

share the value 1 CM and δ(0; f) = 1
2 , but f 6≡ g and f (k)g(k) 6≡ 1.

Let h be a non-constant meromorphic function. We denote by

(1.1) P (h) = h(k) + a1h
(k−1) + a2h

(k−2) + . . .+ ak−1h
′ + akh

the differential polynomial of h, where a1, a2, . . . , ak are finite complex numbers and k

is a positive integer.

R em a r k 1.3. The following example shows that in Theorem A the functions

f (k) and g(k) cannot be replaced by P (f) and P (g).

E x am p l e 1.4 ([8]). Let f(z) = 1
2e

−2z and g(z) = e−2z. Then f and g share

the value 0 CM, f ′′ + 2f ′ and g′′ + 2g′ share the value 1 CM and δ(0; f) > 1
2 , but

f 6≡ g and (f ′′ + 2f ′)(g′′ + 2g′) 6≡ 1.

In 2015, Li and Li proved the following results.

Theorem B ([8]). Let f and g be two non-constant entire functions. Suppose

that f and g share the value 0 CM, P (f) and P (g) share the value 1 CM and

δ(0; f) > 1
2 . If λ(f) 6= 1, then f ≡ g unless P (f)P (g) ≡ 1.
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Theorem C ([8]). Let f and g be two non-constant entire functions. Suppose

that f and g share the value 0 CM, P (f) and P (g) share the value 1 IM and

δ(0; f) > 4
5 . If λ(f) 6= 1, then f ≡ g unless P (f)P (g) ≡ 1.

Now observing the above results the following questions are inevitable.

Q u e s t i o n 1.5. Is the condition “λ(f) 6= 1” sharp in Theorems B, C?

Q u e s t i o n 1.6. Is the condition “δ(0; f) > 1
2” sharp in Theorem B?

Q u e s t i o n 1.7. What can be said if the sharing value in Theorems B, C is

replaced by a small function of f and g?

Q u e s t i o n 1.8. Is it really possible in any way to relax the nature of sharing

the 1-point in Theorem B (Theorem C)?

In this paper we pay our attention to the nature of the differential polynomial

P (h) of h defined as in (1.1). Actually, we want to show that when ak 6= 0 in (1.1),

the condition λ(f) 6= 1 is not necessary. On the other hand, when ak = 0 in (1.1),

the condition λ(f) 6= 1 is necessary.

We now explain the notation of weighted sharing as introduced in [6].

Definition 1.9 ([6]). Let k ∈ N ∪ {0} ∪ {∞}. For a ∈ C ∪ {∞} we denote by

Ek(a; f) the set of all a-points of f , where an a-point of multiplicity m is counted

m times if m 6 k and k + 1 times if m > k. If Ek(a; f) = Ek(a; g), we say that f , g

share the value a with the weight k.

We write f , g share (a, k) to mean that f , g share the value a with the weight k.

Clearly, if f , g share (a, k), then f , g share (a, p) for any integer p, 0 6 p < k. Also

we note that f , g share a value a IM or CM if and only if f , g share (a, 0) or (a,∞),

respectively.

Let h be a non-constant meromorphic function. We denote by

(1.2) P1(h) = h(k) + a1h
(k−1) + a2h

(k−2) + . . .+ ak−1h
′ + akh

and

(1.3) P2(h) = h(k) + b1h
(k−1) + b2h

(k−2) + . . .+ bk−1h
′

the differential polynomials of h, where a1, a2, . . . , ak (6= 0), b1, b2, . . . , bk−1 are finite

complex numbers with (b1, b2, . . . , bk−1) 6= (0, 0, . . . , 0) and k is a positive integer.

Now taking the possible answers of the above questions into background we obtain

the following results.
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Theorem 1.10. Let f and g be two non-constant entire functions and let α(z)

(6≡ 0,∞) be a small function with respect to f and g. Suppose that f and g share

(0,∞), P1(f) − α and P1(g) − α share (0, 2). If δk+2(0; f) >
1
2 , then f ≡ g unless

P1(f)P1(g) ≡ α2.

Theorem 1.11. Let f and g be two non-constant entire functions and let α(z)

(6≡ 0,∞) be a small function with respect to f and g. Suppose that f and g share

(0,∞), P1(f) − α and P1(g) − α share (0, 1). If δk+2(0; f) >
3
5 , then f ≡ g unless

P1(f)P1(g) ≡ α2.

Theorem 1.12. Let f and g be two non-constant entire functions and let α(z)

(6≡ 0,∞) be a small function with respect to f and g. Suppose that f and g share

(0,∞), P1(f) − α and P1(g) − α share (0, 0). If δk+2(0; f) >
4
5 , then f ≡ g unless

P1(f)P1(g) ≡ α2.

Theorem 1.13. Let f and g be two non-constant entire functions and let α(z)

(6≡ 0,∞) be a small function with respect to f and g. Suppose that f and g share

(0,∞), P2(f) − α and P2(g) − α share (0, 2). If λ(f) 6= 1 and δk+2(0; f) >
1
2 , then

f ≡ g unless P2(f)P2(g) ≡ α2.

Theorem 1.14. Let f and g be two non-constant entire functions and let α(z)

(6≡ 0,∞) be a small function with respect to f and g. Suppose that f and g share

(0,∞), P2(f) − α and P2(g) − α share (0, 1). If λ(f) 6= 1 and δk+2(0; f) >
3
5 , then

f ≡ g unless P2(f)P2(g) ≡ α2.

Theorem 1.15. Let f and g be two non-constant entire functions and let α(z)

(6≡ 0,∞) be a small function with respect to f and g. Suppose that f and g share

(0,∞), P2(f) − α and P2(g) − α share (0, 0). If λ(f) 6= 1 and δk+2(0; f) >
4
5 , then

f ≡ g unless P2(f)P2(g) ≡ α2.

R em a r k 1.16. From the following example it is easy to see that the condition

δk+2(0; f) >
1

2

in Theorem 1.10 is sharp.

E x am p l e 1.17. Let

f(z) = ez
(

1−
1

2
ez
)

and g(z) = e−z
(1

2
− e−z

)

.
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Then

P1(f) = −
3

8

(

f (iv) +
2

3
f ′′′ − 5f ′′ − 2f ′ + 8f

)

= ez(1− ez)

and

P1(g) = −
3

8

(

g(iv) +
2

3
g′′′ − 5g′′ − 2g′ + 8f

)

= e−z(1− e−z).

Clearly P1(f) and P1(g) share (1,∞), f , g share (0,∞) and δk+2(0; f) = 1
2 , but

neither f ≡ g nor P1(f)P1(g) ≡ 1.

R em a r k 1.18. From the following example it is easy to see that the conditions

δk+2(0; f) >
1

2
and λ(f) 6= 1

in Theorem 1.13 are sharp.

E x am p l e 1.19. Let

f(z) = ez
(

1−
1

2
ez
)

and g(z) = e−z
(1

2
− e−z

)

.

Then

P2(f) = −
3

8

(

f (iv) −
2

3
f ′′′ − 5f ′′ + 2f ′

)

= ez(1− ez)

and

P2(g) = −
3

8

(

g(iv) −
2

3
g′′′ − 5g′′ + 2g′

)

= e−z(1 − e−z).

Clearly P2(f) and P2(g) share (1,∞), f , g share (0,∞), δk+2(0; f) =
1
2 and λ(f) = 1,

but neither f ≡ g nor P2(f)P2(g) ≡ 1.

R em a r k 1.20. From the following example it is easy to see that the condition

“f and g share (0,∞)” in Theorem 1.10 is necessary.

E x am p l e 1.21. Let

f(z) = e3z − e2z and g(z) = ez − e−2z.

Then

P1(f) =
1

24
(f (iv) + 6f ′′′ + 23f ′′ + 42f ′ + 48f) = e3z − e2z

and

P1(g) =
1

24
(g(iv) + 6g′′′ + 23g′′ + 42g′ + 48g) = ez − e−2z.

Clearly P1(f) and P1(g) share (1,∞), f , g do not share (0,∞) and δk+2(0; f) =
2
3 > 1

2 , but neither f ≡ g nor P1(f)P1(g) ≡ 1.
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2. Lemmas

Let F , G be two non-constant meromorphic functions. Henceforth we shall denote

by H the following function:

(2.1) H =
(F ′′

F ′
−

2F ′

F − 1

)

−
(G′′

G′
−

2G′

G− 1

)

.

Lemma 2.1 ([17]). Let f be a non-constant meromorphic function, P (f) be de-

fined by (1.1) and p, k be positive integers. If P (f) 6≡ 0, we have

Np(r, 0;P (f)) 6 T (r, P (f))− T (r, f) +Np+k(r, 0; f) + S(r, f),

Np(r, 0;P (f)) 6 kN(r,∞; f) +Np+k(r, 0; f) + S(r, f).

Lemma 2.2. Let f and g be two non-constant entire functions. Suppose P2(f) ≡

P2(g), where P2(f) is defined by (1.3). If λ(f) 6= 1, then f ≡ g.

P r o o f. Proof of the lemma follows from the proof of Theorem 1.4 in [8]. �

Lemma 2.3 ([13]). Suppose fj, j = 1, 2, . . . ,m + 1 and gj, j = 1, 2, . . . ,m are

entire functions satisfying the following conditions:

(i)
m
∑

j=1

fj(z)e
gj(z) ≡ fm+1;

(ii) The order of fj(z) is less than the order of e
gk(z) for 1 6 j 6 m+1, 1 6 k 6 m;

and furthermore, the order of fj(z) is less than the order of e
gj−gk for m 6 2

and 1 6 j 6 m+ 1, 1 6 l, k 6 m, l 6= k.

Then fj ≡ 0, j = 1, 2, . . . ,m+ 1.

Lemma 2.4. Let us consider the linear differential equations

(2.2) an(z)f
(n)(z) + an−1(z)f

(n−1)(z) + . . .+ a0(z)f(z) = 0

with entire coefficients a0(z) (6≡ 0), a1(z), . . . , an(z) (6≡ 0). Then all solutions of (2.2)

are entire functions of finite order if and only if the coefficients a0, a1, . . . , an of (2.2)

are polynomials.

P r o o f. Proof of the lemma follows from the proof of Theorem 4.1 (see [7]) and

Remark 1 (see [7], page 58). �
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Lemma 2.5 ([6]). Let f and g be two non-constant meromorphic functions shar-

ing (1, 2). Then one of the following holds:

(i) T (r, f) 6 N2(r, 0; f)+N2(r, 0; g)+N2(r,∞; f)+N2(r,∞; g)+S(r, f)+S(r, g),

(ii) fg ≡ 1,

(iii) f ≡ g.

Lemma 2.6 ([1]). Let F and G be two non-constant meromorphic functions shar-

ing (1, 1) and H 6≡ 0. Then

T (r, F ) 6 N2(r, 0;F ) +N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G) +
1

2
N(r, 0;F )

+
1

2
N(r,∞;F ) + S(r, F ) + S(r,G).

Lemma 2.7 ([1]). Let F and G be two non-constant meromorphic functions shar-

ing (1, 0) and H 6≡ 0. Then

T (r, F ) 6 N2(r, 0;F ) +N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G) + 2N(r, 0;F )

+N(r, 0;G) + 2N(r,∞;F ) +N(r,∞;G) + S(r, F ) + S(r,G).

Lemma 2.8 ([16]). Let H be defined as in (2.1). If H ≡ 0 and

lim sup
r→∞

N(r, 0;F ) +N(r, 0;G) +N(r,∞;F ) +N(r,∞;G)

T (r)
< 1, r ∈ I,

where I is a set of infinite linear measures. Then F ≡ G or FG ≡ 1.

3. Proofs of the theorems

P r o o f of Theorem 1.10. Let F (z) = P1(f)/α(z) and G(z) = P1(g)/α(z). Then

F and G share (1, 2) except for the zeros and poles of α(z). Now applying Lemma 2.5

we see that one of the following three cases holds.

Case 1. Suppose

T (r, F ) 6 N2(r, 0;F ) +N2(r, 0;G) + S(r, F ) + S(r,G).
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Now applying Lemma 2.1 we have

T (r, f) 6 T (r, F ) +Nk+2(r, 0; f)−N2(r, 0;F ) + S(r, f) + S(r, g)

6 Nk+2(r, 0; f) +N2(r, 0;G) + S(r, f) + S(r, g)

6 Nk+2(r, 0; f) +Nk+2(r, 0; g) + S(r, f) + S(r, g)

6 2Nk+2(r, 0; f) + S(r, f) + S(r, g)

6 (2 − 2δk+2(0; f) + ε)T (r, f) + S(r, f) + S(r, g)

6 (2 − 2δk+2(0; f) + ε)T (r) + S(r),

i.e.

T (r, f) 6 (2 − 2δk+2(0; f) + ε)T (r) + S(r).(3.1)

Similarly we have

(3.2) T (r, g) 6 (2− 2δk+2(0; f) + ε)T (r) + S(r).

Combining (3.1) and (3.2) we get

(−1 + 2δk+2(0; f)− ε)T (r) 6 S(r).(3.3)

Since ε > 0 is arbitrary, we see that (3.3) leads to a contradiction.

Case 2. F ≡ G. Then we have

P1(f) ≡ P1(g).(3.4)

Let

f

g
= h = eα,(3.5)

where α is an entire function.

We now consider the following subcases.

Subcase 2.1. Suppose α is a constant. Let eα = c0, where c0 is a finite complex

constant. We obtain f ≡ c0g and so P1(f) ≡ c0P1(g). Now by (3.4) we find that

c0 = 1 and so f ≡ g.

Subcase 2.2. Suppose α is a non-constant entire function.

Now from (3.4) we have P1(f − g) ≡ 0. Solving this equation (see [3], [7]) we get

f(z)− g(z) =

m
∑

j=1

pj(z)e
βjz,(3.6)
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wherem (6 k) is a positive integer, βj , j = 1, 2, . . . ,m are distinct complex constants

and pj(z), j = 1, 2, . . . ,m are polynomials.

We deduce from (3.5) that

f ′ = (g′ + α′g)eα

f ′′ = (g′′ + 2α′g′ + (α′′ + (α′)2)g)eα

f ′′′ = (g′′′ + 3α′g′′ + 3(α′′ + (α′)2)g′ + n3(α′)3 + (α′′ + 3α′α′′ + (α′)3)g)eα

...

f (k) = (g(k) +Qk
k−1g

(k−1) +Qk
k−2g

(k−2) + . . .+Qk
0g)e

α,

where Qk
i (α

′, α′′, . . . , α(k)), i = 0, 1, 2, . . . , k − 1 are differential polynomials in

α′, α′′, . . . , α(k). Next we suppose

P1(f) = f (k) + a1f
(k−1) + a2f

(k−1) + . . .+ ak−1f
′ + akf

= (g(k) +Qk−1g
(k−1) + . . .+Q1g

′ +Q0g)e
α,

where Qi(α
′, α′′, . . . , α(k)), i = 0, 1, 2, . . . , k − 1 are differential polynomials in

α′, α′′, . . . , α(k). Since α is an entire function, we obtain T (r, α(j)) = S(r, h) for

j = 1, 2, . . . , k. Hence T (r,Qi) = S(r, h) for i = 0, 1, 2, . . . , k− 1. Now from (3.4) we

have

(eα − 1)g(k) + (eαQk−1 − a1)g
(k−1) + . . .+ (eαQ1 − ak−1)g

′ + (eαQ0 − ak)g ≡ 0.

Clearly eα − 1 6≡ 0 and eαQ0 − ak 6≡ 0. Now by Lemma 2.4 one can easily conclude

that both f and g are of infinite order. By the Weierstrass’s factorization theorem

we have

f(z) = γ(z)eα1(z), g(z) = γ(z)eα2(z),

where γ(z) is canonical product formed with common zeros of f and g and α1(z),

α2(z) are non-constant entire functions.

Clearly α1(z) 6≡ α2(z). Since α(z) is a non-constant entire function, from (3.5) it

follows that α1(z)−α2(z) is a non-constant entire function. Since λ(γ) is equal to τ(f)

which is the exponent of convergence of zeros of f(z) and τ(f) 6 τ(f−g) 6 λ(f−g),

by (3.6) we have

λ(γ) 6 λ(f − g) = λ

( m
∑

j=1

pj(z)e
βjz

)

6 1.

Note that λ(eα1) = λ(f/γ) and λ(eα2) = λ(g/γ). Since λ(f) > 1, λ(g) > 1 and

λ(γ) 6 1, it follows that λ(eα1) > 1 and λ(eα2) > 1. Also we see that

f − g = (eα1−α2 − 1)g.
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Clearly,

λ(eα1−α2) = λ(eα1−α2 − 1) = λ
(f − g

g

)

.

Since λ(g) > 1 and λ(f − g) 6 1, it follows that λ(eα1−α2) > 1. From (3.6) we see

that

γ(z)eα1(z)−α2(z) +
m
∑

j=1

(−pj(z))e
βjz−α2(z) = γ(z),

where λ(eβjz−α2(z)) > 1 for j = 1, 2, . . . ,m. Now by Lemma 2.3, we see that γ(z) ≡ 0.

Therefore f(z) ≡ 0, which is a contradiction.

Case 3. FG ≡ 1. Then we have P1(f)P1(g) ≡ α2(z). This completes the proof.

�

P r o o f of Theorem 1.11. Let F (z) = P1(f)/α(z) and G(z) = P1(g)/α(z). Then

F and G share (1, 1) except for the zeros and poles of α(z). We now consider the

following two cases.

Case 1. H 6≡ 0. Applying Lemmas 2.1 and 2.6 we have

T (r, f) 6 T (r, F ) +Nk+2(r, 0; f)−N2(r, 0;F ) + S(r, f) + S(r, g)

6 N2(r, 0;F ) +N2(r, 0;G) +
1

2
N(r, 0;F )

+Nk+2(r, 0; f)−N2(r, 0;F ) + S(r, f) + S(r, g)

6 Nk+2(r, 0; g) +
1

2
Nk+1(r, 0; f) +Nk+2(r, 0; f) + S(r, f) + S(r, g)

6
5

2
Nk+2(r, 0; f) + S(r, f) + S(r, g)

6

(5

2
−

5

2
δk+2(0; f) + ε

)

T (r) + S(r),

i.e.

T (r, f) 6
(5

2
−

5

2
δk+2(0; f) + ε

)

T (r) + S(r).(3.7)

Similarly we have

T (r, g) 6
(5

2
−

5

2
δk+2(0; f) + ε

)

T (r) + S(r).(3.8)

Combining (3.7) and (3.8) we get

(

−
3

2
+

5

2
δk+2(0; f)− ε

)

T (r) 6 S(r).(3.9)

Since ε > 0 is arbitrary, we see that (3.9) leads to a contradiction.
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Case 2. H ≡ 0. In view of Lemma 2.4 we get

N(r, 0;F ) +N(r, 0;G) +N(r,∞;F ) +N(r,∞;G)

6 Nk+2(r, 0; f) +Nk+2(r, 0; g) + S(r, f) + S(r, g)

6 2Nk+2(r, 0; f) + S(r, f) + S(r, g)

6 (2− 2δk+2(0; f) + ε)T (r) + S(r).

Since ε > 0 is arbitrary and δk+2(0; f) >
3
5 , we must have

lim sup
r→∞

N(r, 0;F ) +N(r, 0;G) +N(r,∞;F ) +N(r,∞;G)

T (r)
< 1

and so by Lemma 2.8 we have either F ≡ G or FG ≡ 1. So the theorem follows from

the proof of Theorem 1.10. This completes the proof. �

P r o o f of Theorem 1.12. Let F (z) = P1(f)/α(z) and G(z) = P1(g)/α(z). Then

F and G share (1, 0) except for the zeros and poles of α(z). We now consider the

following two cases.

Case 1. H 6≡ 0. Applying Lemmas 2.1 and 2.7 we have

T (r, f) 6 T (r, F ) +Nk+2(r, 0; f)−N2(r, 0;F ) + S(r, f) + S(r, g)

6 N2(r, 0;F ) +N2(r, 0;G) + 2N(r, 0;F ) +N(r, 0;G)

+Nk+2(r, 0; f)−N2(r, 0;F ) + S(r, f) + S(r, g)

6 3Nk+2(r, 0; f) + 2Nk+2(r, 0; g) + S(r, f) + S(r, g)

6 5Nk+2(r, 0; f) + S(r, f) + S(r, g)

6 (5 − 5δk+2(0; f) + ε)T (r) + S(r),

i.e.

T (r, f) 6 (5 − 5δk+2(0; f) + ε)T (r) + S(r).(3.10)

Similarly we have

T (r, g) 6 (5− 5δk+2(0; f) + ε)T (r) + S(r).(3.11)

Combining (3.10) and (3.11) we get

(−4 + 5δk+2(0; f)− ε)T (r) 6 S(r).(3.12)

Since ε > 0 is arbitrary, we see that (3.12) leads to a contradiction.

Case 2. H ≡ 0. The remaining part of the theorem follows from the proof of

Theorem 1.10. This completes the proof. �
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P r o o f of Theorems 1.13–1.15. The proofs of theorems follow from the proof of

Theorem 1.10, Theorem 1.11, Theorem 1.12, respectively, and Lemma 2.2. So we

omit the detailed proofs. �
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