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Abstract. The Routh reduction of cyclic variables in the Lagrange function and the
Jacobi-Maupertuis principle of constant energy systems are generalized. The article deals
with one-dimensional variational integral subject to differential constraints, the Lagrange
variational problem, that admits the Lie group of symmetries. Reduction to the orbit space
is investigated in the absolute sense relieved of all accidental structures. In particular,
the widest possible coordinate-free approach to the underdetermined systems of ordinary
differential equations, Poincaré-Cartan forms, variations and extremals is involved for the
preparation of the main task. The self-contained exposition differs from the common actual
theories and rests only on the most fundamental tools of classical mathematical analysis,
however, they are applied in infinite-dimensional spaces. The article may be of a certain
interest for nonspecialists since all concepts of the calculus of variations undergo a deep
reconstruction.

Keywords: Routh reduction; Lagrange variational problem; Poincaré-Cartan form; diffi-
ety; standard basis; controllability; variation

MSC 2010 : 49S05, 49N99, 70H03

Introduction

If a Lie transformation group G acts on a spaceM and preserves a certain mathe-

matical structure S inM, then as a rule naturally appears a reduced structure S/G

on the orbit spaceM/G of the invariants. This is the core of the magnificent Erlangen

program and the substance of classical geometry. In particular, we recall the pri-

mary Lie’s reduction of differential equations (see [18], [24]) and subsequent Cartan’s

reduction of symplectical structure (see [6], [17], [19]). Together they both appear as
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the components of the Routh reduction of variational integrals (see [12], [3], [1], [2])

treated in full generality here. In more detail, if ϕ̆ denotes the Poincaré-Cartan

form related to a one-dimensional variational integral
∫
ϕ where ϕ is a differential

1-form and if Ω denotes the differential constraints for the admissible curves, then

the symplectical structure dϕ̆ together with the differential equations Ω are closely

interconnected in the symmetry reduction problem treated here. Still more explicitly,

we are interested in the symmetry reduction to the orbit spaces of one-dimensional

Lagrange variational problems.

The article starts with informal Preface, where the original Routh achievement

together with a scheme of our new approach are outlined. The following brief sur-

vey of all Fundamental concepts includes the absolute differential equations, the

extremals of variational integral, the Poincaré-Cartan forms of the Lagrange vari-

ational problem and, marginally, a mention of infinitesimal symmetries. This is

illustrated by Introductory examples but we also refer to literature. The standard

basis introduces the main technical tool, a certain “differentiation by parts” under

the differential constraints, which is a mere linear algebra. With such modest and

in principle self-contained preparation, the proper reduction problem of the calcu-

lus of variations to the orbit spaces of one-parameter symmetry group is discussed.

Though the substance of The main result can be easily understood, the lengthy proof

demands a certain patience with delicate details. We therefore conclude with short

Introductory applications and succinct Perspectives.

It should be noted with regret that our approach is inconsistent with the common

theories. We believe that this unpleasant fact cannot be regarded as a defect of the

article. For the convenience of reader, the Concluding comments briefly survey the

essence of our unorthodox point of view in intelligible terms.

1. Preface

With only a small short cut, the primary Routh reduction, see [12], concerns the

variational integral

(1.1)

∫
f(t, y, z, y′, z′) dt,

where fy = 0, hence f = f(t, z, y′, z′) is independent of the variable y. Then the

Euler-Lagrange system (fy′)′ = 0, fz = (fz′)′ implies the conservation law

(1.2) fy′ = c ∈ R, hence y′ = g(t, z, z′, c) (certain function g)
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in the regular case fy′y′ 6= 0. The Routh variational integral

(1.3)

∫
f [c] dt, f [c] = f(t, z, g, z′)− cg

does not depend on the “cyclic variables” y, y′ and provides the same z-extremals

as above (easy direct verification). Analogous reduction appears for the variational

integrals (1.1) with the vanishing derivative ft = 0. If in particular

f =
1

2
(y′

2
+ z′

2
)− V (y, z)

is the Lagrange function of classical mechanics, the important Jacobi-Maupertuis

principle with any of the variational integrals

∫
(c− V ) dt,

∫
(y′

2
+ z′

2
) dt,

∫ √
(c− V )(y′2 + z′2) dt

follows after some effort (see [3]) where the conservation of the energy law

1

2
(y′

2
+ z′

2
) + V (y, z) = c ∈ R

stands for the previous condition (1.2).

The primary Routh reduction concerns the infinitesimal symmetry ∂/∂y of the

integral (1.1). Assuming instead the most general nonvanishing infinitesimal point

symmetry

(1.4) S = A(·)
∂

∂t
+B(·)

∂

∂y
+ C(·)

∂

∂z
6= 0, (·) = (t, y, z),

this vector field S can be transformed into ∂/∂y and then the primary Routh re-

sult (1.3) may be applied to obtain the corresponding generalization, see [1], [2].

This is however a clumsy procedure. An alternative approach is as follows.

Denoting ϕ = f(t, y, z, y′, z′) dt, we recall the Poincaré-Cartan form

(1.5) ϕ̆ = f dt+ fy′(dy − y′ dt) + fz′(dz − z′ dt).

Due to the Noether theorem, the assumed infinitesimal symmetry (1.4) provides the

conservation law

(1.6) ϕ̆(S) = Af + fy′(B − y′A) + fz′(C − z′A) = c ∈ R
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for the extremals. If in particular S = ∂/∂y, we have the above law (1.2) and one

can then observe that the restriction

(1.7) ϕ̆|y′=g = f [c] dt+ c dy + fz′ |y′=g(dz − z′ dt)

of the form (1.5) naturally leads to the Routh function f [c]. Omitting the summand

c dy which does not affect the extremals, the restriction

f [c] dt+ fz′(t, z, g, z′)(dz − z′ dt)

becomes the Poincaré-Cartan form for the variational integral
∫
f [c] dt with the z-

extremals, which provides the Routh result as well. The restriction concept (1.7) is

of coordinate-free nature and can be in principle carried over to the general case (1.4)

of the symmetries.

Let us, however, apply this alternative approach to the second-order variational

integral ∫
ϕ, ϕ = f(t, z, y′, z′, y′′, z′′) dt

with the infinitesimal symmetry S = ∂/∂y. The Poincaré-Cartan form

ϕ̆ = f dt+ (fy′ − (fy′′)′)(dy − y′ dt) + fy′′(dy′ − y′′ dt)

+ {(fz′ − (fz′′)′)(dz − z′ dt) + fz′′(dz′ − z′′ dt)}

provides the conservation law

(1.8) ϕ̆(S) = fy′ − (fy′′)′ = c, hence y′′′ = g(t, z, y′, z′, y′′, z′′, z′′′)

in the regular case fy′′y′′ 6= 0. We obtain the restriction

ϕ̆|y′′′=g = (f − cy′) dt+ c dy + fy′′(dy′ − y′′ dt) + {. . .}

and, omitting the summand c dy, quite analogous arguments as above make a good

sense. The Routh integral at the level set (1.8) appears as above. However, the final

result of the reduction is a Lagrange variational problem. In more detail, we have

the variational integral
∫
(f − cy′) dt together with the differential constraint (1.8).

We conclude that a self-contained group reduction theory is reasonable only within

the framework of the Lagrange variational problems. Let us recall that every such

variational problem involves two ingredients: it consists of a certain symplectical

structure and of a system of differential constraints. While the pure symplectical

structures are available in many textbooks, this is paradoxically not the case for
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a useful geometrical theory of differential equations and even for the intermediate

concept, the Poincaré-Cartan forms of the Lagrange variational problem. The actual

geometrical jet theory fails. We instead introduce the “absolute approach” relieved

of all accidental structures, the diffieties. In spite of disbelief of most specialists,

this is correct and a well established domain of mathematics, but the simple variant

(see [7]) is of better use for our aims than the monographs [16], [25].

2. Fundamental concepts

Unless otherwise stated, our reasonings concern the infinite-dimensional mani-

folds M modelled on R
∞ and though the theory is of global and coordinate-free

nature, we are mainly interested in the local and algorithmical results.

We suppose the infinite number of (local) coordinates h1, h2, . . . : M → R such

that the structural ring F(M) of admissible functions f : M → R involves just all

functions f = f(··, hj , ··) locally expressible in terms of a smooth composition of a fi-

nite number of coordinates. In particular, the coordinates can be changed by smooth

invertible transformations. Admissible mappings n : N → M between manifolds sat-

isfy the inclusion n
∗F(M) ⊂ F(N) and we use the formal convention that n can be

defined only on an open subset ofN. We speak of an inclusion n if a part of functions

n
∗h1,n∗h2, . . . can be taken for (local) coordinates on N. (Then N ⊂ M may be

identified with a subset.) We speak of a projection n if the family n
∗h1,n∗h2, . . .

can be completed to the (local) coordinates on N. (Then M is a factorspace of N

and the functions f = n
∗f are occasionally identified, therefore n∗F(M) ⊂ F(N)

becomes an F(M)-submodule of the F(N)-module.) Abbreviations like F = F(M)

occur whenever possible without much confusion.

We regret to say that a thorough exposition of the mathematical analysis on the

infinite-dimensional manifolds modelled on R
∞ does not exist yet.

The structural ring F = F(M) uniquely determines the F -module Φ = Φ(M) of

differential 1-forms ϕ and, moreover, the F -module T = T (M) of vector fields Z. In

more detail,

ϕ =
∑

f j dgj (finite sum), Z =
∑

zj
∂

∂hj
(infinite sum),

where f j , gj, zj ∈ F . The vector fields Z are regarded as F -linear functions on the

module Φ, where

ϕ(Z) = Z⌋ϕ =
∑

f jZgj, df(Z) =
∑ ∂f

∂hj
zj = Zf, ϕ ∈ Φ, f ∈ F
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in the common sense. If ϕ1, ϕ2, . . . is a (local) basis of Φ, then the equivalent formulae

Z =
∑

zj
∂

∂ϕj
(infinite sum, zj = ϕj(Z)),

Zf =
∑

zjf j , f ∈ F , df =
∑

f jϕj

will be frequently employed and we abbreviate ∂/∂f = ∂/∂ df. The familiar rules of

the exterior algebra and the Lie derivatives

LZϕ = Z⌋ dϕ+ dZ⌋ϕ, LZf = Zf = df(Z), LZX = [Z,X ]

do not need any comment.

We always suppose the existence of (finite or infinite) bases in all F -modules

to appear. This is a universal measure which deletes the “singularities”. We also

always suppose that the F -bases turn into R-bases after taking the values at a fixed

point of M. This measure is necessary in order to ensure the existence of effective

“pointwise” algorithms.

Passing to the fundamental concepts proper, we start with differential constraints,

that is, with differential equations.

Definition 2.1. A submodule Ω ⊂ Φ(M) of codimension one is called a diffiety

if there exists a filtration Ω∗ : Ω0 ⊂ Ω1 ⊂ . . . ⊂ Ω =
⋃
Ωl with finite-dimensional

F(M)-submodules Ωl ⊂ Ω such that

(2.1) LHΩl ⊂ Ωl+1 (all l), Ωl + LHΩl = Ωl+1 (l large enough),

is the good filtration, where H = H(Ω) ⊂ T (M) is the submodule of vector fields Z

satisfying Ω(Z) = 0.

This is a global definition. In the local theory, condition (2.1) can be replaced

with the requirement

(2.2) LZΩl ⊂ Ωl+1 (all l), Ωl + LZΩl = Ωl+1 (l large enough),

where Z ∈ T (M) is any nonvanishing vector field such that Ω(Z) = 0. Our diffieties

provide the “absolute version” of underdetermined systems of ordinary differential

equations, see [7], [16], [25], [22]. See also the subsequent examples.

Definition 2.2. An inclusion n : (a 6 t 6 b) → M of an interval (a 6 t 6 b) ⊂ R

is called a solution of diffiety Ω ⊂ Φ(M) if n∗Ω = 0. A vector field A ∈ T (M) is

called an (admissible) variation of solution n if n∗LAΩ = 0.
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All preparations are done to introduce the fundamental concept of the calculus of

variations, that is, the Lagrange variational problem.

Definition 2.3. Let ϕ ∈ Φ(M) and n : (a 6 t 6 b) → M be a solution of Ω.

Every expression

(2.3)

∫ b

a

n
∗ϕ̃, ϕ̃ = ϕ+ ω̃, ω̃ ∈ Ω

will be referred to as a variational integral with the constraint Ω.

The formal abbreviation
∫
ϕ for the integral (2.3) is useful in practice and not

confusing. In reality, we in fact deal with the family of all forms ϕ̃ = ϕ + ω̃, ω̃ ∈ Ω

and the integration over the interval a 6 t 6 b is introduced for a mere historical

reason. Still more explicitly, it should be noted that the subsequent extremals are

genuinely local concepts which correspond to Definition 2.4. On the contrary, the

historical approach rests on the global stationarity including some special boundary

conditions for the variations. While the definition (2.4) can be literally carried over

to all multidimensional Lagrange problems, already the introduction of appropriate

boundary conditions causes terrible difficulties in the case of several independent

variables.

Definition 2.4. A solution n : (a 6 t 6 b) → M of Ω is called an extremal of

the integral (2.3) if

(2.4) n
∗A⌋ dϕ̃ = 0, all A, ϕ̃ = ϕ+ ω̃, ω̃ = ω̃[n] ∈ Ω

for all variations A of n and an appropriate choice of the form ω̃.

The admissible variationsA are in full accordance with the classical theory and the

concept of variational integrals and extremals is inspired by [13]. The ambiguity of

the form ω̃ corresponds to the common concept of the Lagrange multipliers, however,

it will be completely deleted here. Assuming (2.4) with certain ω̃ = ω̃[n], the global

stationarity

∫ b

a

n
∗LAϕ = 0, A satisfying n∗ϕ̃(A)|t=b

t=a = 0, ϕ̃ = ϕ+ ω̃[n]

with the original form ϕ = ϕ̃− ω̃[n] is obvious.

We are passing to the crucial point of this article.

Definition 2.5. For a special choice ω̆ ∈ Ω, the form ϕ̆ = ϕ + ω̆ is called

a Poincaré-Cartan (PC) form related to the integral (2.3) if

(2.5) A⌋dϕ̆ ∼= Z⌋ dϕ̆ (mod Ω),
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where Z ∈ T (M) is an arbitrary vector field and A = A[Z] an appropriate variation

of the solution n. Moreover, we postulate the existence of a formula

(2.6) ϕj(A) =
∑

f j
krD

rϕk(Z) (finite sum, j = 1, 2, . . .),

where ϕ1, ϕ2, . . . is any (or, arbitrary) basis of module Φ(M) and coefficients

f j
kr ∈ F(M) do not depend on the choice of the integral (2.3), the vector field Z and

the solution n.

Condition (2.5) is clearly equivalent to the more illustrative identity

(2.7) n
∗A⌋ dϕ̆ = n

∗Z⌋ dϕ̆ (all solutions n).

The construction of the vector field A will soon appear. It is of local nature: if Z

vanishes near a certain point, then A = A[Z] vanishes at the same place, too.

The above definition provides the simplest possible “absolute approach” to the

theory of PC forms without any use of accidental structures. In order to simplify

the exposition, the definition is not the most general one and can be applied with

success only to the controllable diffieties Ω introduced below. In full generality, some

additional imposition on the vector field Z is necessary, but we abstain from more

detail at this place.

Theorem 2.1. A solution n of Ω is extremal of integral (2.3) if and only if

(2.8) n
∗Z⌋ dϕ̆ = 0, Z ∈ T (M)

for some (or, for every) PC form ϕ̆.

P r o o f. Condition (2.8) trivially implies (2.4). Let us conversely assume (2.4),

hence

0 = n
∗A⌋ dϕ̃ = n

∗A⌋ d(ϕ̆ + ω) = n
∗Z⌋ dϕ̆+ n

∗A⌋ dω, A = A[Z]

for all vector fields Z and the form ω = ϕ̃− ϕ̆ ∈ Ω. However,

0 = n
∗LAω = n

∗A⌋ dω + dn∗ω(A),

whence

0 =

∫ b

a

n
∗Z⌋ dϕ̆− n

∗ω(A)|t=b
t=a.

The boundary summands disappear if the vector field Z (and therefore A) vanishes

near the endpoints n(a),n(b) ∈ M. This implies (2.8) in the interior points a < t < b,

hence everywhere. �
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The last fundamental concept concerns the infinitesimal symmetries.

Definition 2.6. A vector field V ∈ T (M) is called a variation of diffiety

Ω ⊂ Φ(M) if LV Ω ⊂ Ω and a variation of integral (2.3) if moreover LV ϕ ∈ Ω.

Variations which generate a (local) Lie group are called infinitesimal symmetries.

Important warning: our variations are called generalized (or higher-order, or Lie-

Bäcklund) infinitesimal symmetries in contemporary literature though they do not

necessarily generate any group. This highly misleading terminology is made more

precise here. Explicit formula for all variations will be soon stated.

The variations V of diffiety Ω may be regarded as the “universal” admissible varia-

tions A satisfying n∗LAΩ = 0 for every solution n of Ω. In the crucial definition (2.5),

the variation A = A[Z] does not depend on the choice of n and therefore may be

regarded as a variation V = V [Z] of diffiety Ω as well. So we have the alternative

definition

(2.9) V ⌋ dϕ̆ ∼= Z⌋ dϕ̆ (mod Ω)

of PC form ϕ̆ where V = V [Z] is a variation of Ω.

Theorem 2.2. A variation V ∈ T (M) of diffiety Ω ⊂ Φ(M) is an infinitesimal

symmetry if and only if V preserves a certain good filtration Ω∗ in the sense that

LV Ωl ⊂ Ωl for all l.

We do not need urgently this result (see [22], [9]) at this place and delay the

proof. It should be only noted that the sufficience of the condition is easy since the

inclusion declares that the Lie derivative LV acts on finite-dimensional spaces where

the classical theory can be applied and such V does generate a group. Alas, there

are as a rule many good filtrations to be examined for the explicit determination of

all symmetries. No finite algorithm as yet exists.

Theorem 2.3. Every infinitesimal symmetry V ∈ T (M) of variational inte-

gral (2.3) preserves a certain PC form ϕ̆ in the sense that LV ϕ̆ = 0.

We again delay the proof.
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3. Introductory examples

Our approach and the terminology differ from the common use and the following

brief examples are stated for better clarity. We however start with some technical

tools.

Definition 3.1. A function x ∈ F(M) is called an independent variable for

a diffiety Ω ⊂ Φ(M) if the differential dx together with Ω generate the module Φ(M).

Alternatively, if ω1, ω2, . . . is a basis of Ω, then dx, ω1, ω2, . . . is a basis of Φ(M).

So we may introduce the total derivative D = Dx (abbreviation) for the independent

variable x. It is defined by

dx(D) = Dx = 1, ω1(D) = ω2(D) = . . . = 0, hence D =
∂

∂x

(
+
∑

0 ·
∂

∂ωj

)
.

Obviously D ∈ H = H(Ω) and this vector field D can be taken for a basis of H. It

follows that the condition

(3.1) LDΩl ⊂ Ωl+1 (all l), Ωl + LDΩl = Ωl+1 (l large enough)

is equivalent to (2.1) and (2.2). Moreover, we introduce the contact forms

ωf = df −Df dx ∈ Ω, f ∈ F(M)

satisfying the obvious identities

(3.2) dω ∼= dx ∧ LDω (mod Ω), ωDf = LDωf , df = Df dx+
∑ ∂f

∂hj
ωhj ,

where ω ∈ Ω, f ∈ F(M).

Lemma 3.1. A vector field V ∈ T (M) is a variation of diffiety Ω ⊂ Φ(M) if and

only if

(3.3) LDω(V ) = Dω(V ), ω ∈ Ω.

P r o o f. First formula (3.2) implies

0 ∼= LV ω = V ⌋ dω + dω(V ) ∼= −LDω(V ) dx+ dω(V ) (mod Ω),

where dω(V ) ∼= Dω(V ) dx by using the last formula (3.2). �
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Lemma 3.2. A vector field A ∈ T (M) is a variation of a solution n of diffiety Ω

if and only if

(3.4) n
∗LDω(A) = n

∗Dω(A) =
d

dn∗x
n
∗ω(A), ω ∈ Ω.

The proof may be omitted. Both conditions (3.3) and (3.4) are sufficient if the

form ω runs only over some generators ω1, ω2, . . . of the module Ω.

We are passing to examples proper.

3.1. The jet diffieties. Informally, they correspond to the trivial constraints

where the “true” differential equations are absent and we deal with “all curves”.

It should be noted, however, that this property is not of absolute nature and is

destroyed after “higher order” change of the jet coordinates (3.5), see [22], [21].

In rigorous terms, let us introduce the spaceM(m) with coordinates

(3.5) x,wj
r , j = 1, . . . ,m, r = 0, 1, . . .

and the F(M(m))-submodule Ω(m) ⊂ Φ(M(m)) of differential forms

(3.6) ω =
∑

ajrω
j
r (finite sum, ωj

r = dwj
r − wj

r+1 dx).

This is in reality the well-known infinite-order jet space. On the other hand, we also

have a diffiety where the term Ω(m)l of the order-preserving good filtration Ω(m)∗

involves all forms (3.6) with r 6 l. In geometrical terms, the solutions of Ω(m) are

the infinite prolongations

x = t, wj
r(t) =

drwj(t)

dtr
, a 6 t 6 b

of the curves w1 = w1(t), . . . , wm = wm(t) lying in the space Rm+1.

The total derivative

D =
∂

∂x
+
∑

wj
r+1

∂

∂wj
r

∈ H(Ω(m))

with respect to the independent variable x satisfies LDω
j
r = ωj

r+1. Lemma 3.2 can

be therefore comfortably applied for the choice ω = ωj
r and we obtain all variations

(3.7) V = v
∂

∂x
+
∑

Drvj
∂

∂ωj
r

, v = V x, vj = ωj
0(V ) = V wj

r − wj
r+1V x,
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where v, v1, . . . , vm are arbitrary functions. The familiar prolongation formula

V = v
∂

∂x
+
∑

vjr
∂

∂wj
r

, vjr+1 = Dvjr − wj
r+1Dv

easily follows since

vjr = dwj
r(V ) = ωj

r(V ) + wj
r+1V x = Drvj + wj

r+1v,

which implies the above recurrence for the coefficients vjr . The result (3.7) is, however,

simpler and better for use.

Turning to the variational integrals, let us denote

ϕ = f dx, f = f(x, ··, wj
r , ··) ∈ F(M(m)).

Then the “increasing” recurrence

(3.8) ϕ̆ = ϕ+ ω̆, ω̆ =
∑

f j
r+1ω

j
r , f j

r =
∂f

∂wj
r

−Df j
r+1

provides the common PC form. This follows from the directly verifiable formula

(3.9) dϕ̆ ∼=
∑

f j
0ω

j
0 ∧ dx (mod Ω(m) ∧ Ω(m)), f j

0 =
∑

(−1)rDr ∂f

∂wj
r

.

Condition (2.9) is satisfied: for a given vector field Z, we may choose even the quite

explicit variation V = V [Z| given by (3.7), where v = Zx and vj = ωj
0(Z). Employing

this PC form, the condition (2.8) for the extremals reads

0 = n
∗Z⌋ dϕ̆ = n

∗
∑

f j
0ω

j
0(Z) dx = n

∗
∑

f j
0v

j dt (all Z),

whence the common Euler-Lagrange system n
∗f j

0 = 0, j = 0, . . . ,m immediately

follows.

3.2. The Monge equation. Let us deal with the equation

dz

dx
= F

(
x, y, z,

dy

dx

)
.

The corresponding diffiety Ω ⊂ Φ(M) in the space M with coordinates x, yr, z,

r = 0, 1, . . . involves all differential forms

(3.10) ω =
∑

arηr + aζ, ηr = dyr − yr+1 dx, ζ = dz − F (x, y0, z, y1) dx.
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The total derivative

D =
∂

∂x
+
∑

yr+1

∂

∂yr
+ F

∂

∂z

satisfies

LDηr = ηr+1, LDζ = Fy0
η0 + Fy1

η1 + Fzζ

and there is the obvious order-preserving good filtration Ω∗, where the term Ωl

consists of forms (3.10) with r 6 l.

Lemma 3.2 cannot be directly applied, however, let us introduce the form π0 =

ζ − Fy1
η0 ∈ Ω0. Then

π1 = LDπ0 = aη0 + Fzζ = (a+ FzFy1
)η0 + Fzπ0, a = Fy0

−DFy1
,

π2 = LDπ1 = (a+ FzFy1
)η1 + . . . ,

π3 = LDπ2 = (a+ FzFy1
)η2 + . . . ,

. . .

Assuming a + FzFy1
6= 0, the forms π0, π1, . . . can be taken for an alternative basis

of diffiety Ω and then the variations

(3.11) V = v
∂

∂x
+
∑

Drp
∂

∂πr
, v = V x, p = π0(V )

with arbitrary functions v, p ∈ F(M) are determined.

Let us turn to the variational integrals. For instance, let

ϕ = f(x, y0, z) dx, dϕ = (fy0
η0 + fzζ) ∧ dx.

In terms of the alternative basis, one can obtain the formula

dϕ = (bπ0 + cπ1) ∧ dx

with certain clumsy coefficients not stated here and then the PC form ϕ̆ = ϕ− cπ0
easily follows since

d(cπ0) ∼= Dc dx ∧ π0 + c dπ0, dπ0 ∼= dx ∧ π1 (mod Ω ∧ Ω)

by using (3.2) and therefore clearly

dϕ̆ = d(ϕ− cπ0) ∼= (b−Dc)π0 ∧ dx (mod Ω ∧ Ω).

The condition (2.5) can be verified by the same arguments as above. We also have

the Euler-Lagrange equation n
∗(b−Dc) = 0 for the extremals n.
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Let us return to the exceptional case a+ FzFy1
= 0. Then

π1 = LDπ0 = Fzπ0

and we refer to a general theory (see [7], [22]), which implies that π0 is a multiple of

a differential df . We have a noncontrollable diffiety (see below) but the variations V

can be determined as well (see [22], [10]).

3.3. The second-order constraints. Let us deal with the Hilbert-Cartan equa-

tion
d2z

dx2
=

1

2

(dy
dx

)2
.

The corresponding diffiety Ω ⊂ Φ(M) in the space M with coordinates x, yr, z0, z1,

r = 0, 1, . . . involves all differential forms

ω =
∑

arηr + b0ζ0 + b1ζ1 (finite sum),

where

ηr = dyr − yr+1 dx, ζ0 = dz0 − z1 dx, ζ1 = dz1 −
1

2
(y1)

2 dx.

The total derivative

D =
∂

∂x
+
∑

yr+1

∂

∂yr
+ z1

∂

∂z0
+

1

2
(y1)

2 ∂

∂z1

satisfies LDηr = ηr+1, LDζ0 = ζ1, LDζ1 = y1η1. There is the obvious order-

preserving good filtration quite analogous as above.

In order to apply Lemma 3.2, let us introduce the forms

π0 = (y1)
2η0 − y2ζ0 − y1ζ1,

π1 = LDπ0 = 2y1y2η1 − y0ζ0 − 2y2ζ1,

π2 = LDπ1 = 2{(y2)
2 + y1y0}η0 − y4ζ0 − 3y2ζ1,

π3 = LDπ2 = 2{. . .}η1 + . . . ,

...

πr+2 = 2{. . .}ηr + . . . ,

...

which can be taken for the alternative basis of diffiety Ω. Then formally the same

formula (3.11) for the variations holds true without any change. The PC form ϕ̆

related to a variational integral
∫
ϕ does not bring any difficulties, see [22].
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4. The standard basis

We return to the general theory where the true sense of the above differential

forms π occurring in the examples will be clarified.

For every submodule Θ ⊂ Ω of a diffiety Ω, let KerΘ ⊂ Θ be the submodule of all

forms ϑ ∈ Θ such that LHϑ ⊂ Θ or, equivalently, with the property LDϑ ∈ Θ where

D ∈ H is a total derivative.

Definition 4.1. A filtration Ω∗ : Ω0 ⊂ Ω1 ⊂ . . . ⊂ Ω =
⋃
Ωl of diffiety Ω is

called a standard one if Ω∗ is good and moreover

(4.1) KerΩl+1 = Ωl, l > 0, KerΩ0 = Ker2 Ω0 6= Ω0.

Theorem 4.1. Let Ω∗ be a good filtration of diffiety Ω. There exists a unique

standard filtration Ω∗ of Ω such that

(4.2) Ωl+c = Ωl (l large enough)

with appropriate c > 0.

P r o o f ([7], [22], [9]). The naturally induced mapping

(4.3) LD : Ωl/Ωl−1 → Ωl+1/Ωl (formally Ω−1 = 0)

is F -linear and surjective for l large enough. It is therefore even bijective for large l

and then KerΩl = Ωl−1, l > L. We obtain the increasing sequence

. . . ⊃ KerΩL = ΩL−1 ⊃ KerΩL−1 ⊃ Ker2 ΩL−1 ⊃ . . . ,

which terminates with equalities

. . . ⊃ KerK ΩL−1 ⊃ KerK+1 ΩL−1 = KerK+2 ΩL−1 = . . .

So we may put

Ω0 = KerK ΩL−1, Ω1 = KerK−1 ΩL−1, . . . , ΩK−1 = KerΩL−1, ΩK = ΩL−1, . . .

where Ωl+c = Ωl, l > L, c = K − L+ 1. �
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For the reader’s amusement, the following figures may illustrate the intuitive sense

of the above construction.

...

Ω0 Ω1 Ω2

ω

LDω L2

D
ω

...

(a)

Ω1 Ω2

π
2

1
...

π
2

0
...

(b)
R

Figure 1. The original filtration (a), the standard filtration (b)

Theorem 4.2. The submodule

R =
⋂

Kerk Ωl = KerΩ0 ⊂ Ω0 (any fixed l)

is generated by all differentials df ∈ Ω.

P r o o f. Assuming df ∈ Ω we have

Df = df(D) = 0, LD df = dDf = 0

and it follows that df lies in all Ker-modules hence in R. The converse is more

involved (see [7], [10]) and we omit the proof for the reasons to follow. �

Definition 4.2. Diffiety Ω is called controllable if R = 0 is the trivial module,

that is, the diffiety Ω does not contain any differentials df 6= 0.

In a certain sense, the noncontrollable diffieties can be regarded as diffieties de-

pending on a finite number of parameters f = c ∈ R (df ∈ Ω). Though this property

does not cause many difficulties, the results become somewhat clumsy. We therefore

deal only with the controllable diffieties from now on. In this case, the standard

filtration

(4.4) Ω∗ : Ω0 = KerΩ1 ⊂ Ω1 = KerΩ2 ⊂ . . . ⊂ Ωl+c = Ωl ⊂ . . . , KerΩ0 = 0

with strict inclusions simplifies a little and, moreover, we obtain the standard basis

of diffiety Ω as follows. Let

πj
0 (0 < j 6 j0) be a basis of Ω0 and together with

πj
1 = LDπ

j
0 (0 < j 6 j0), π

j
0 (j0 < j 6 j1) a basis of Ω1 and together with
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πj
2 = L2

Dπ
j
0 (0 < j 6 j0), π

j
1 = LDπ

j
0 (j0 < j 6 j1), π

j
0 (j1 < j 6 j2) a basis of Ω2

and so on with Ω3, Ω4, . . .

This is a finite algorithm. The stationarity

0 < j0 < j1 < . . . < jc = jc+1 = . . . = dimΩl+1/Ωl = µ(Ω) (l large enough)

easily follows from (4.3) for a certain integer c. In reality, µ = µ(Ω) does not depend

on the choice of the filtration Ω∗ (see [7], [22], [10]). We obtain a hierarchy of forms

organized in the infinite table

(4.5)

πj
0, πj

1 = LDπ
j
0, πj

2 = L2
Dπ

j
0, . . . , . . . , . . . , (0 < j 6 j0)

πj
0, πj

1 = LDπ
j
0, . . . , . . . , . . . , (j0 < j 6 j1)

πj
0, . . . , . . . , . . . , (j1 < j 6 j2)

. . . , . . . , . . . ,

πj
0, πj

1 = LDπ
j
0, . . . , (jc−1 < j 6 jc)

with a finite number µ(Ω) of lines where the forms πj
r , r 6 l lying in the 1-st up

to l-th column constitute a basis of the module Ωl−1, l = 1, 2, . . . The table will be

frequently referred to.

Definition 4.3. The forms πj
0, 1 6 j 6 µ(Ω) are called initial to the standard

filtration Ω∗.

We recall that the total number jc = µ(Ω) of initial forms does not depend on the

choice of the filtration.

Lemma 4.1. All variations V of diffiety Ω are given by the formula

(4.6) V = v
∂

∂x
+
∑

Drpj
∂

∂πj
r

, v = V x, pj = πj
0(V )

and all variations A of a solution n of Ω are

(4.7) A = a
∂

∂x
+
∑

ajr
∂

∂πj
r

, n
∗ajr = n

∗Draj ,

where v, pj , a and aj may be arbitrary functions.

P r o o f. Apply Lemma 3.1 or Lemma 3.2. �

Theorem 4.3. Let (2.3) be a given variational integral. For every choice of initial

forms πj
0 of a given standard filtration Ω∗, there exists a unique PC form ϕ̆ = ϕ+ ω̆

such that

(4.8) dϕ̆ ∼= 0 (mod all πj
0 and Ω ∧Ω).
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P r o o f ([7], [9], [10]). The obvious congruences

dπj
r
∼= dx ∧ LDπ

j
r = dx ∧ πj

r+1 (mod Ω ∧ Ω),

d(gπj
r−1)

∼= dx ∧ gπj
r (mod πj

r−1, Ω ∧ Ω)

permit us to delete successively the higher-order summands in the congruence

dϕ ∼=
∑

gjrπ
j
r ∧ dx (mod Ω ∧ Ω)

up to the final “zeroth-order” formula

(4.9) d(ϕ + ω̆) =
∑

ejπj
0 ∧ dx (mod Ω ∧Ω).

In more detail: A summand gjRπ
j
R ∧ dx with large R > 1 disappears if the form ϕ is

replaced with ϕ+ gjRπ
j
R−1

since then

d(ϕ+ gjRπ
j
R−1

) ∼= . . .+ gjRπ
j
R ∧ dx+DgjR · dx ∧ πj

R−1
+ gjr dx ∧ πj

R,

where the R-th order summands cancel. This procedure is repeatedly applied to the

final result (4.9). The correction ω̆ of the form ϕ to the form ϕ̆ = ϕ+ ω̆ is unique.

Assuming (4.9), the condition (2.9) reads

V ⌋ dϕ̆ ∼=
∑

ejπj
0(V ) dx = Z⌋ dϕ̆ ∼=

∑
ejπj

0(Z) dx.

It is trivially satisfied if πj
0(V ) = πj

0(Z) for all j = 1, . . . ,m. We may choose the

variation V=V[Z] given by formula (4.6), where

pj = πj
0(V ) = πj

0(Z), hence πj
r(V ) = Drpj = Drπj

0(Z)

and v = dx(V ) is arbitrary. Since dx, πj
r , j = 1, . . . ,m; r = 0, 1, . . . is a basis

of Φ(M), the clumsy assumption (2.6) holds true for this variation A = V [Z]. So we

indeed have a PC form ϕ̆ in the sense of Definition 2.5. �

The following result is a consequence of (2.8).

Theorem 4.4. Assuming (4.9), a solution n of diffiety Ω is extremal of inte-

gral (2.3) if and only if n∗ej = 0, j = 1, . . . , µ(Ω).
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The uniqueness of PC form ϕ̆ in Theorem 4.3 should be taken with caution. First of

all, the standard filtration of a diffiety Ω is unique if and only if µ(Ω) = 1, see [7], [22].

(On this occasion, we cannot pass in silence the remarkable history concerning the

beautiful but hopelessly forgotten Monge problem, see [15], [5], related to the origins

of the primary Cartan’s version of the “absolute theory” of differential equations.

The Monge problem is resolved just in the case µ(Ω) = 1.) Assuming µ(Ω) > 1,

there are too many standard filtrations and a certain favourable case appears only if

µ(Ω) = j0. Then the module generated by all initial forms π
j
0, 1 6 j 6 j0 = µ(Ω) is

unique and the congruence (4.8) does determine a unique PC form already for a given

filtration. In general, the module generated by the initial forms πj
0, j0 < j 6 µ(Ω)

and the PC form ϕ̆ are not uniquely determined by a given filtration Ω∗, which causes

some difficulties.

5. The main result

The symmetries were as yet only marginally occurring and we turn to more detailed

investigation. We shall not directly deal with the corresponding Lie group but only

with the infinitesimal generator instead, the variation V. Though all the interrelations

between the variational integral
∫
ϕ with the constraint Ω and the variation V are

not self-evident at the first glance, the final result can be understood already at this

early place.

Theorem 5.1. Let Ω ⊂ Φ(M) be a controllable diffiety and V ∈ T (M) an

infinitesimal symmetry of a variational integral
∫
ϕ with the constraint Ω. If ϕ̆ is any

fixed PC form, every extremal is lying in a certain subspace M[c] ⊂ M determined

by the equation ϕ̆(V ) = c, where c ∈ R. If ϕ̆ is an invariant PC form, there exists

the orbit subspace M[c]/V ⊂ M/V of the total orbit space M/V, the orbit diffiety

Ω[c]/V ⊂ Φ(M[c]/V ) naturally induced by Ω and the Routh variational integral

(5.1)

∫
ϕ̆[c], ϕ̆[c] = ϕ̆− c dw, w ∈ F(M), V w = 1

defined on the spaceM[c]/V. Altogether we have the variational integral (5.1) with

the constraint Ω[c]/V ⊂ Φ(M[c]/V ). Projections on the orbit space M[c]/V of the

original extremals which are lying inM[c] are extremals of the Routh integral. More-

over, if ϕ̆[c] ∈ Φ(M[c]/V ) is a PC form of the Routh integral, the original extremals

lying in M[c] are surjectively projected onto the family of all extremals of the inte-

gral (5.1).

P r o o f. The following proof consists of many short steps.
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5.1. The underlying space. Let a vector field V ∈ T (M) generate a (local) one-

parameter Lie group of transformations onM. Assuming V 6= 0 at every point ofM,

we obtain the (local) orbit space denoted M/V. Let v : M → M/V be the natural

projection. The functions g ∈ F(M/V ) bijectively correspond to the invariants (in

classical terminology: first integrals) g ∈ F(M) satisfying V g = 0, namely g = v
∗g.

We abbreviate (formally identify)

g = v
∗g = g, hence F(M/V ) ⊂ F(M).

Analogously, the forms ψ ∈ Φ(M/V ) bijectively correspond to the integral invariants

ψ = v
∗ψ ∈ Φ(M) satisfying either of the equivalent conditions (see [6], [7])

(5.2) LfV ψ = 0 (f ∈ F(M)) or V ⌋ψ = ψ(V ) = 0.

We again abbreviate

ψ = v
∗ψ = ψ, hence Φ(M/V ) ⊂ Φ(M).

The integral invariants ψ should not be confused with invariant forms ϕ ∈ Φ(M)

satisfying the weaker condition LV ϕ = 0.

5.2. Adapted coordinates. We suppose the existence of alternative coordinates,

especially the first integrals gk, with a somewhat strange notation at this place

w, gk : M → R; V w = 1, V gk = 0, k = 0, 1, . . .

This is a reliable fact but rigorous proofs are nontrivial, see [7], [23]. Then the

functions

gk = v
∗gk : M/V → R, k = 0, 1, . . .

may be taken for coordinates on the orbit space. Invariant forms are

ϕ =W dw +
∑

Gk dgk, W,Gk ∈ F(M/V )

and integral invariants appear if W = 0.

5.3. The entrance of diffieties. Let V be a symmetry of diffiety Ω ⊂ Φ(M).

We choose x = g0 for the independent variable. If D = Dx is the corresponding total

derivative, the contact forms

η(= ωw) = dw −Dw dx, ηj(= ωgj ) = dgj −Dgj dx, j = 1, 2, . . .
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may be taken for a basis of Ω. We may also introduce the contact forms

ηr = ωDrw = Lr
Dη, ηjr = ωDrgj = Lr

Dω
j , r = 0, 1, . . . ; j = 1, 2, . . . ,

though they are of little importance for the general theory.

5.4. The orbit diffiety. The inclusion LV Ω ⊂ Ω implies

0 = V (ω(D)) = (LV ω)(D) + ω([V,D]) = ω([V,D]), ω ∈ Ω,

whence [V,D] ∈ H is a multiple of D. However, [V,D]x = V Dx − DV x = 0 and

therefore [V,D] = 0. It follows that the vector field D ∈ T (M) is V -projectable, that

is,

D(v∗g) = (v∗D)g, g ∈ F(M/V )

for a certain vector field v∗D ∈ T (M/V). We again abbreviate

D = v∗D, D ∈ T (M/V ).

One can see that η is an invariant form and all forms

ηr = v
∗ηr, r = 1, 2, . . . , ηjr = v

∗ηjr , r = 0, 1, . . . ; j = 1, 2, . . .

are integral invariants. Let us introduce the module Ω/V = Ω∩Φ(M/V ) of all forms

ω ∈ Ω which are integral invariants. The contact forms ηj , j = 1, 2, . . . may be taken

for the basis of this F(M/V )-submodule of the module Φ(M/V ). We recall that

x, gj , j = 1, 2, . . . are coordinates on the orbit spaceM/V , whence Ω/V ⊂ Φ(M/V )

is F(M/V )-submodule of codimension one.

5.5. Adapted filtrations. In order to see that Ω/V ⊂ Φ(M/V ) is a diffiety on

the orbit space, some arrangements are necessary. Let Ω∗ be a good filtration where

the second condition of (2.1) holds true if l > L. Let Ω̃0 ⊂ Ω be any submodule

generated by a finite number of forms ηr and η
j
r ensuring moreover the inclusion

Ωl ⊂ Ω̃0. (In fact the forms with r = 0 are sufficient here but not quite useful in

practice.) Then the good filtration Ω̃∗ defined by the recurrence Ω̃l+1 = Ω̃l + LDΩ̃l

is clearly invariant. (The proof of Theorem 2.2 is done.)

We turn to a better result. If a submodule Θ ⊂ Ω is invariant, hence LV Θ ⊂ Θ,

then KerΘ ⊂ Ω is also invariant. If the proof of Theorem 4.1 is applied to in-

variant filtration Ω∗, we obtain a standard and, moreover, invariant filtration Ω∗.

(Theorem 2.2 is somewhat improved.)
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Analogous reasonings can be applied to the submodule Ω/V ⊂ Φ(M/V ). Roughly,

the form η = η0 is omitted and we obtain the good filtration (Ω/V )∗. Altogether, the

F(M/V )-submodule Ω/V ⊂ Φ(M/V ) of all integral invariants ω ∈ Ω is a diffiety on

the orbit spaceM/V with (formally) the same total derivative D.

5.6. On the solutions. If n : (a 6 t 6 b) → M is a solution of Ω, then the

corresponding projection vn : (a 6 t 6 b) → M/V is a solution of diffiety Ω/V. In-

formally, the coordinate w ∈ F(M) is omitted. Conversely, a solution of diffiety Ω/V

is expressed in terms of coordinates x, gj, j = 1, 2, . . . In order to obtain the solu-

tion n of Ω, the remaining coordinate w should be (not uniquely) determined from

the easy Pfaffian equation n
∗η = 0.

5.7. The entrance of variational integral. Let ϕ ∈ Φ(M) and V ∈ T (M) be

a variation of the integral
∫
ϕ. If ϕ̆ is a PC form and n is an extremal, the identities

LV Ω ⊂ Ω, LV ϕ ∈ Ω, n
∗Ω = 0, n

∗Z⌋ dϕ̆ = 0, ϕ̆ = ϕ+ ω̆

imply

0 = n
∗LV ϕ̆ = n

∗V ⌋ dϕ̆+ n
∗ dϕ̆(V ) = dn∗ϕ̆(V ),

whence

n
∗ϕ̆(V ) = c, c = c[n] ∈ R.

This is the Noether theorem for the Lagrange variational problem.

5.8. The Noether subspace. If a solution n of Ω satisfies n∗f = 0 for a certain

f ∈ F(M), then also

0 = dn∗f = n
∗ df = n

∗Df dx, n
∗ dx = dn∗x 6= 0

and therefore n∗Df = 0. It follows that

(5.3) n
∗Dr(ϕ̆(V )− c) = 0, r = 0, 1, . . .

In geometrical terms, every extremal lies in a certain subspace i[c] : M[c] ⊂ M

defined by equations (5.3). Assuming ϕ̆(V ) = c ∈ R, we have M[c] = M and the

theory becomes much easier than in the general case ϕ̆(V ) 6= const. We therefore

suppose dϕ̆(V ) 6= 0 from now on unless otherwise stated. Equations (5.3) can be

also expressed in the global form

n
∗Hr(ϕ̆(V )− c) = 0, H = H(Ω); r = 0, 1, . . .

without the use of the accidental technical tool, the derivative D = Dx.
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5.9. The Routh integral. Let ϕ̆ be an invariant PC form, hence

0 = LV ϕ̆ = V ⌋ dϕ̆+ dϕ̆(V ).

It follows that V ϕ̆(V ) = 0 and therefore

V Dr(ϕ̆(V )− c) = 0, r = 0, 1, . . .

In geometrical terms, the vector field V ∈ T (M) is tangent to the Noether subspace

and may be regarded as a vector field on M[c] as well. We may introduce the orbit

subspaceM[c]/V ⊂ M/V. On the other hand, the elementary equation

LfV ϕ̆ = fLV ϕ̆+ ϕ̆(V ) df = ϕ̆(V ) df, f ∈ F(M)

implies the identity

LfV (ϕ̆− c dw) = (ϕ̆(V )− c) df, w ∈ F(M), V w = 1

with the restriction

LfV ϕ̆[c] = 0, ϕ̆[c] = i[c]∗(ϕ̆− c dw) ∈ Φ(M[c])

to the subspace i[c] : M[c] ⊂ M. Due to (5.2), the latter identity declares that the

form ϕ̆[c] ∈ Φ(M[c]) is integral invariant. It may be identified with the corresponding

form on the orbit spaceM[c]/V. In more detail

(5.4) i[c]∗(ϕ̆− c dw) = ϕ̆[c] = v
∗ϕ̆[c], v : M[c] → M[c]/V.

We have the desired Routh variational integral
∫
ϕ̆[c] on the spaceM[c]/V with the

constraint diffiety of integral invariants Ω/V restricted to the subspace M[c]/V. In

quite explicit terms, the submodule

i[c]∗Ω/V ⊂ Φ(M[c]/V )

is the constraint diffiety for the Routh integral (5.4).

5.10. The overall survey. Altogether we recall

coordinates w, x, gj onM, the basis η, ηj of Ω,

coordinates x, gj onM/V, the basis ηj of Ω/V,
j = 1, 2, . . .
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Assuming ϕ̆(V ) 6= const, we may choose ϕ̆(V ) = g1. Let us denote g2r+1 = Drg1,

r = 0, 1, . . . Then

w, x, g2r are coordinates onM[c] and η, η2r is a basis of Ω[c],

x, g2r are coordinates on M[c]/V and η2r is a basis of Ω[c]/V
r = 1, 2, . . .

In fact we do not need such artificial arrangement in the proof. In all particular

examples to follow, much better coordinates can be found.

There are commutative diagrams

i[c] : M

v

��

M[c]oo

��

i[c] : M/V M[c]/Voo

i[c]∗ : Φ(M)

v
∗

��

// Φ(M[c])

��

i[c]∗ : Φ(M/V ) // Φ(M[c]/V )

i[c] : Ω

v

��

// Ω[c]

��

i[c] : Ω/V // Ω[c]/V

Since Ω ⊂ Φ(M) and Ω/V ⊂ Φ(M/V ) are diffieties, the restrictions

i[c]∗Ω = Ω[c] ⊂ Φ(M[c]), i[c]∗Ω/V ⊂ Φ(M[c]/V )

are also diffieties since the restrictions of good filtrations are (obviously) good. We

recall the abbreviated notation of variational integrals
∫
ϕ =

∫ b

a
n
∗(ϕ+ ω̃) (solution n of Ω, arbitrary ω̃ ∈ Ω),∫

ϕ̆[c] =
∫ b

a
n
∗(ϕ̆[c] + ω̃) (solution n of Ω[c]/V, arbitrary ω̃ ∈ Ω[c]/V ).

Let us at least accentuate the strengh of PC forms. The above condition

n
∗Z⌋ dϕ̆ = 0 (arbitrary Z ∈ T (M))

for the extremal n is equivalent to any of the seemingly weaker conditions

(5.5) n
∗A⌋ d(ϕ̆+ ω) = 0, n

∗V ⌋ d(ϕ̆+ ω) = 0, n
∗Z⌋ d(ϕ̆+ ω) = 0

with arbitrary variations A or V, appropriate ω ∈ Ω, and arbitrary vector field Z.

5.11. The finale. In order to conclude the proof, let us introduce the classical

Pfaff-Darboux normal form

(5.6) dϕ̆ =
∑

dak ∧ dbk, ak, bk ∈ F(M); k = 0, 1, . . . ,K

of the exterior differential dϕ̆. Condition (2.8) for the extremals n in the space M

reads

(5.7) n
∗ dak = n

∗ dbk = 0, k = 0, . . . ,K, n∗Ω = 0.
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On the other hand, if ϕ̆ is an invariant PC form, then

0 = LV ϕ̆ = V ⌋ dϕ̆+ dϕ̆(V ), therefore V ⌋ dϕ̆ = −dϕ̆(V ),

where

V ⌋ dϕ̆ =
∑

V ak dbk −
∑

V bk dak.

We may suppose a0 = ϕ̆(V ) without loss of generality, whence

V a0 = . . . = V aK = 0, V b0 = 1, V b1 = . . . = V bK = 0.

Denoting w = b0, we have

dϕ̆ = dϕ̆(V ) ∧ dw +
∑

daj ∧ dbj , j = 1, . . . ,K,

whence

ϕ̆ = ϕ̆(V ) dw +
∑

aj dbj + dF, F ∈ F(M).

Trivially, i[c]∗ϕ̆(V ) = c, which implies that the form

ϕ̆[c] = i[c]∗(ϕ̆− c dw) = i[c]∗
(∑

aj dbj + dF
)

makes sense on the orbit space M[c]/V. It follows that

dϕ̆[c] = i[c]∗
∑

daj ∧ dbj

and we obtain certain extremals n in the spaceM[c]/V by applying Definition (2.4).

In more detail, we have the condition

n
∗A⌋ dϕ̆[c] = 0 (all A),

which is satisfied if

(5.8) n
∗ daj = n

∗ dbj = 0, j = 1, . . . ,K, n
∗Ω[c]/V = 0.

Conditions (5.8) are weaker than (5.7). However, if ϕ̆[c] is a PC form, there exist no

other extremals than those satisfying (2.8) and the proof of Theorem 5.1 is done.

5.12. Easier finale. The Pfaff-Darboux normal form provides an interesting com-

plementary insight into the role of the Routh integral and was mentioned just for this

reason here. In fact, the direct arguments are enough and quite easy. Indeed, if n

is a solution of Ω lying in M[c], then the projection vn on the orbit space M[c]/V

is trivially a solution of diffiety Ω[c]/V involving only the integral invariants of Ω.

If, moreover, n is an extremal, condition (2.8) restricted to M[c] implies (2.4) with

the form ϕ̆[c] instead of ϕ̆ and with a general vector field Z projectable on the orbit

space M[c]/V instead of a variation A. So the projections vn are even the “very

strong” extremals of the Routh integral, moreover, if ϕ̆[c] is a PC form, then other

extremals satisfying (5.5) do not exist. �

315



If the variation V and the orbit diffiety are explicitly described, the Routh in-

tegral (5.1) with the reduced constraint Ω[c]/V on the space M[c]/V can be easily

written down, however, the last sentence of Theorem 5.1 latently contains the true

difficulty.

Definition 5.1. We speak of a normal case of the reduction problem if every

extremal of the integral (5.1) is a projection of an appropriate extremal of the primary

integral
∫
ϕ.

We will return to the criteria of normality later on. Some statements with par-

ticular examples are needful. At this place, we delete one gap also occurring in the

proof, namely the postulated existence of an invariant PC form.

Theorem 5.2. The invariant PC form ϕ̆ with LV ϕ̆ = 0 exists for every varia-

tion V of integral
∫
ϕ with controllable constraint Ω.

P r o o f. Let Ω∗ be a standard filtration and let us (temporarily) denote by Θ the

module generated by all initial forms π1
0 , . . . , π

µ
0 . If the module Θ is invariant in the

sense that LV Θ ⊂ Θ, then Theorem 4.3 ensures that the corresponding PC form ϕ̆

is invariant, too. So we refer to the following lemma. �

Lemma 5.1. Let Ω∗ be a standard and invariant filtration. Then the module Θ

can be made invariant if the initial forms are appropriately modified.

P r o o f. We state only the rough scheme of reasonings. Assume j0 = jµ, so

we have only initial forms π1
0 , . . . , π

j0
0 ∈ Ω0. Then Θ = Ω0 and since we suppose

LV Ω0 ⊂ Ω0, the assertion holds true.

Assume j1 = jµ, so we have the initial forms π
1
0 , . . . , π

j1
1 ∈ Ω1. Then

LV π
j
0 =

∑
ajj′π

j′

0 , j, j′ = 1, . . . , j0

(since Ω0 is preserved) and moreover

LV π
k
0 =

∑
bkk′πk′

0 +
∑

ckjπ
j
0 +

∑
dkjπ

j
1, k, k′ = j0 + 1, . . . , j1

(since Ω1 is preserved). The forms π
j
1 are not initial and must be deleted in order to

obtain the sought result. Let us introduce the correction

πk
0 = πk

0 +
∑

ukjπ
j
1, k = j0 + 1, . . . , j1

of initial forms. Then

LV π
k
0 =

∑(
dkj + V ukj +

∑
ukj′a

j′

j

)
πj
1 + . . .

316



and we obtain the system of equations

dkj + V ukj +
∑

ukj′a
j′

j = ukj , j = 1, . . . , j0; k = j0 + 1, . . . , j1

for the unknown functions ukj . They ensure the invariance of the corrected module Θ

with the initial forms π1
0 , . . . , π

j0
0 (as before), π

j0+1

0 , . . . , πj1
0 (corrected).

Analogous adaptations can be made if j2 = jµ, and so on. �

Let us conclude with the case which was as yet passed over.

Theorem 5.3. Let Ω ⊂ Φ(M) be a controllable diffiety and V ∈ T (M) an

infinitesimal symmetry of a variational integral
∫
ϕ with the constraint Ω. If ϕ̆ is an

invariant PC form and ϕ̆(V ) = c ∈ R, then the Routh variational integral (5.1) is

defined on the orbit space M/V. Altogether we have the variational integral
∫
ϕ̆[c]

with constraint Ω/V ⊂ Φ(M/V ) and the original extremals in M are naturally

projected on the family of all extremals of the integral (5.1).

P r o o f. This is formally Theorem 5.1 if we put i[c] = id, that is,M[c] = M and

i[c]∗ = id, Ω[c] = Ω. The proof may be omitted. �

Warning: We tacitly suppose the controllability. If Ω/V or Ω[c]/V are noncon-

trollable diffieties, the above results fail. A certain caution is necessary also for the

choice of the independent variable x = g0 since it is employed both on M and on

the spaceM[c] ⊂ M.

6. Introductory applications

The notation of the general theory is insufficient and cannot be as a rule mechan-

ically preserved in particular reduction problems. Two kinds of coordinates then

appear, the primary coordinates on the spaceM andM[c] together with coordinates

adapted to the orbit spaces M/V and M[c]/V. The reduction problem is expressed

in terms of the primary coordinates, while the adapted coordinates determine the

geometrical sense of the final achievement (maybe) in a somewhat latent form.

Let us turn to simple instructive examples.

6.1. The point symmetry of a first-order integral in the jet space. We

recall the coordinates on the jet spaceM(m), the contact forms of the diffiety Ω(m)

and the total derivative

x,wj
r , ω

j
r = dwj

r − wj
r+1 dx, D =

∂

∂x
+
∑

wj
r+1

∂

∂wj
r

, j = 1, . . . ,m; r = 0, 1, . . .
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for our convenience. The order-preserving filtration Ω(m)∗ is a standard one, the

forms

ωj
0 (= πj

0, j = 1, . . . , j0 = µ(Ω(m)) = m)

are initial and generate the first term Ω(m)0 of the filtration. We recall variation (3.7)

of diffiety Ω(m). Let this variation V be the infinitesimal point symmetry in the

common sense:

V x = v(x, ··, wj
0, ··), V wj

0 = vj0 + wj
1v = vj(x, ··, wj

0, ··), j = 1, . . . ,m.

Then V generates a group of point transformations of M(m). In full detail, there

exist functionally independent functions

w = w(x, ··, wj
0, ··), g = g(x, ··, wj

0, ··), g
k = gk(x, ··, wj

0, ··), k = 1, . . . ,m− 1

satisfying

V w = 1, V g = V gk = 0, k = 1, . . . ,m− 1.

The reason for this notation is as follows. If g is taken for alternative independent

variable, we obtain the useful alternative total derivative

Dg (= D abbreviation) =
1

Dg
D with [V,D] = 0

and the remaining invariant functions (first integrals)

wr = Drw, gkr = Drgk, k = 1, . . . ,m− 1; r = 1, 2, . . .

of the order r. Then the functions

(6.1) w0 (= w), g, gk0 (= gk), wr , g
k
r , k = 1, . . . ,m− 1; r = 1, 2, . . .

may be taken for alternative coordinates onM(m) and if w0 is omitted, we have the

coordinates onM(m)/V. Consequently all forms

(6.2) ηr(= ωwr
) = dwr − wr+1 dg, ηkr (= ωgk

r
) = dgkr − gkr+1 dg

constitute the alternative basis of diffiety Ω(m) and if η0 is omitted, we have a basis

of diffiety Ω(m)/V. We eventually introduce the variational integral
∫
ϕ and the

corresponding PC form, where

ϕ = f(x, ··, wj
0, w

j
1, ··) dx, ϕ̆ = f dx+

∑ ∂f

∂wj
1

ωj
0.
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The point symmetry V preserves the filtration Ω(m)∗ and especially the first term

Ω(m)0. Moreover, due to congruence (4.8) and the equality j0 = µ(Ω), the first

term uniquely determines the PC form, which implies that ϕ̆ is an invariant form.

Theorem 5.1 can be applied. Assuming

dϕ̆(V ) 6= 0, ϕ̆(V ) = fv +
∑ ∂f

∂wj
1

vj0,

we may introduce the Noether subspace i[c] : M[c] ⊂ M defined by

(6.3) Dr(ϕ̆(V )− c) = 0 (equivalently Dr(ϕ̆(V )− c) = 0)

and the Routh integral
∫
ϕ̆[c]. The differential form

(6.4) ϕ̆[c] = i[c]∗(ϕ̆− c dw)

is an integral invariant defined even on the orbit space M[c]/V and we obtain the

sought reduction with the constraint diffiety Ω[c]/V = i[c]∗Ω/V.

Altogether we have deleted the coordinate w and the contact form η, moreover,

the conservation law ϕ̆(V ) = c holds true in the reduced space.

The same result was derived in [1], [2] together with very explicit particular ex-

amples using a direct construction, however, the true sense of the result is better

clarified in the general theory.

6.2. Continuation: the normality condition. Abbreviating N = ϕ̆(V ), we

wish to determine some coordinates on the Noether subspaceM[c] ⊂ M(m) and on

the orbit subspace M[c]/V ⊂ M(m)/V by applying the common implicit functions

theorem. In terms of the alternative coordinates clearly

DrN = . . .+
∂N

∂w1

wr+1 +
∑ ∂N

∂gk1
gkr+1, r = 1, 2, . . .

as the top order summands are concerned. Therefore

dDrN = . . .+
∂N

∂w1

dwr+1 +
∑ ∂N

∂gk1
dgkr+1, r = 1, 2, . . .

Assuming

(6.5)
∂N

∂w1

(
=
∂ϕ̆(V )

∂w1

)
6= 0,
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it follows that coordinates w1, w2, . . . in (6.1) can be replaced with functions N ,

DN, . . . , that is, the family of functions

(6.6) w0 (= w), g, DrN, gkr , k = 1, . . . ,m− 1; r = 0, 1, . . .

may be also taken for coordinates on M(m). Omitting all functions DrN, we have

coordinates onM[c]. Even more is true. We may refer to the identity

V N = V ϕ̆(V ) = 0, where V =
∂

∂w
=

∂

∂w0

in terms of the alternative coordinates. Then the same arguments as above imply

that (6.6) are coordinates on the orbit spaceM[c]/V if the first term w0 is omitted.

Let us turn to the PC form ϕ̆. Formula (3.9) reads

dϕ̆ ∼=
∑

f j
0ω

j
0 ∧ dx (mod Ω(m) ∧ Ω(m))

and therefore a certain congruence

dϕ̆ ∼=
(
eη0 +

∑
ekηk0

)
∧ dg (mod Ω(m) ∧ Ω(m))

holds true in terms of alternative coordinates (6.1). (Briefly saying: ϕ̆ is a PC form

after applying any pointwise transformation and the forms η0, η
1
0 , . . . , η

m−1
0 may be

taken for initial as well.) Since the form

dϕ̆[c] = i[c]∗(dϕ̆− c dw) = i[c]∗ dϕ̆

on the orbit space is independent of the coordinate w = w0, it follows that

(6.7) dϕ̆[c] ∼= i[c]∗
(∑

ekηk0 ∧ dg
)
(mod Ω[c]/V ∧ Ω[c]/V ).

If ek, ηk0 , g are alternatively regarded as functions and forms on the orbit space, the

mapping i[c]∗ can be formally omitted and condition (6.7) declares that ϕ̆[c] is a PC

form on the orbit space. We conclude that condition (6.5) ensures the normal case

of the reduction problem in terms of coordinates on the orbit space.

Though the above reasoning clarifies the substance of normality, the result (6.5) is

of little use in practice. A normality condition expressed in terms of the primary jet

coordinates would be better. This is indeed possible by applying a tricky argument

(see [1], [2]) which is somewhat simplified here as follows.

First of all, one can easily derive the formulae

(6.8) dDrN = . . .+
∑ ∂N

∂wj
1

dwj
r+1, r = 0, 1, . . . ,

∂N

∂wj
1

=
∑ ∂2f

∂wj
1∂w

j′

1

vj
′
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by direct calculation. Analogous formulae

(6.9) dgkr = . . .+
∑ ∂gkr

∂wj
r

dwj
r , k = 1, . . . ,m− 1; r = 0, 1, . . . ,

where

(6.10)
∂gkr

∂wj
r

=
1

(Dg)r+1

(
−
∂g

∂wj
0

Dgk0 +
∂gk0

∂wj
0

Dg
)
, r = 1, 2, . . .

need more effort, see below.

Assuming (6.8), (6.9) and (6.10), the sufficient normality condition

(6.11)
∑ ∂2f

∂wj
1∂w

j′

1

vjvj
′

6= 0, vj = ωj
0(V ) = vj0 − wj

1v

in terms of primary coordinates can be proved as follows. By using the identities

0 = V g = vDg +
∑

vj
∂g

∂wj
0

, 0 = V gk0 = vDgk0 +
∑

vj
∂gk0

∂wj
0

we obtain the nontrivial dependences

∑ ∂gkr

∂wj
r

vj =
1

(Dg)r+1
(vDg ·Dgk0 − vDgk0 ·Dg) = 0, r = 1, 2, . . .

Inequality (6.11) together with (6.8) therefore declares that

det




∂Dr−1N

∂w1
1

. . .
∂Dr−1N

∂wm
1

∂g1r
∂w1

1

. . .
∂g1r
∂wm

1

...
. . .

...

∂gm−1
r

∂w1
1

. . .
∂gm−1

r

∂wm
1




6= 0, r = 1, 2, . . .

and we may apply the same arguments as above: functions (6.6) can be taken for

coordinates onM(m) with the same consequences for the PC form ϕ̆[c].

Let us finally outline the proof of formula (6.10). If r = 1, then

gk1 = Dgk0 =
1

Dg
Dgk0 ,

∂gk1

∂wj
1

= −
1

(Dg)2
∂Dg

∂wj
1

Dgk0 +
1

Dg

∂Dgk0

∂wj
1
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and inserting

∂Dg

∂wj
1

=
∂g

∂wj
0

,
∂Dgk0

∂wj
1

=
∂gk0

∂wj
0

,

we obtain (6.10). Analogous equalities

gk2 =
1

Dg
Dgk1 ,

∂gk2

∂wj
2

=
1

Dg

∂Dgk1

∂wj
2

=
1

Dg

∂gk1

∂wj
2

imply (6.10) with r = 2, and so on with r > 2.

6.3. Still a continuation: on the Jacobi-Maupertuis principle. Let us in

particular choose

V =
∂

∂x
, w = x, g = wm

0 , gk = wk
0 , k = 1, . . . ,m− 1.

Informally saying, then the primary jet coordinates differ from the alternative coordi-

nates adapted to the orbit spaces only within the choice of the independent variable.

For instance,

the formdwk
r − wk

r+1 dx turns into dwk
r −

wk
r+1

wm
1

dg = dwk
r −

wk
r+1

wm
1

dwm
0 .

Let us mention the variational integral
∫
ϕ where

(6.12) ϕ = T (··, wj
0, w

j
1, ··)− V (··, wj

0, ··), 2T =
∑ ∂T

∂wj
1

wj
1.

Then, trivially,

ϕ̆ = (T − V ) dx+
∑ ∂T

∂wj
1

ωj
0 = −(T + V ) dx+

∑ ∂T

∂wj
1

dwj
0,

ϕ̆(V ) = −(T + V ), ϕ̆[c] = ϕ̆− c dx =
∑ ∂T

∂wj
1

dwj
0

and the normality condition (6.11) can be simplified as T 6= 0 by using the second

formula in (6.12)

If dwj
0 = wj

1 dx is inserted into the PC form ϕ̆[c], three results

2T dx, −2(V + c) dx, ±2
√
∓(V + c)T dx
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appear if the conservation law −(T +V ) = c is taken into account. Due to the differ-

ential dx, these forms are not defined on the orbit spaces, however, the independent

variable in the last form can be arbitrarily changed. So we obtain, e.g., the form

ϕ̃[c] = ±2

√

∓(V + c)T
(
· ·,

dwj
0

dwm
0

, · ·
)
dwm

0 ,

which is already defined on the orbit spaces. The above Routh reduction ϕ̆[c] is a PC

form related to the variational integral
∫
ϕ̃[c] on the underlying orbit spaceM[c]/V

with the constant energy T + V.

6.4. A constrained variational integral. It is not easy to state a short and

nontrivial example. Let us deal with the constrained variational integral

∫
f(y1, . . . , ym, z) dx,

dz

dx
= F

(dy1
dx

, . . . ,
dym

dx

)
.

First of all, we introduce the coordinates and contact forms

x, yjr, ηjr = dyjr − yjr+1 dx, ζ = dz − F (y11 , . . . , y
m
1 ) dx,

where j = 1, . . . ,m and r = 0, 1, . . . Then

LDη
j
r = ηjr+1, LDζ =

∑ ∂F

∂wj
1

ηj1, D =
∂

∂x
+
∑

yjr+1

∂

∂yjr
+ F

∂

∂z
.

We have the diffiety Ω, where the submodules Ωl ⊂ Ω (l = 0, 1, . . .) of forms

ω =
∑

ajrη
j
r + aζ (sum with r 6 l)

provide a good but not the standard filtration. However, clearly

LDπ = −
∑

D
∂F

∂yj1
ηj0 ∈ Ω0, π = ζ −

∑ ∂F

∂yj0
ηj0 ∈ Ω0

and it follows that π generates the module KerΩ0. So we may introduce the initial

forms

π1
0 = η10 , . . . , πm−1

0 = ηm−1

0 , πm
0 = π

satisfying the equations

πk
r = Lr

Dπ
k
0 = ηkr , k = 1, . . . ,m− 1; r = 0, 1, . . . ,

πm
0 = π = ζ − . . . , πm

r+1 = Lr+1

D π = . . .−Aηmr , A = D
∂F

∂ym1
.
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We have tacitly supposed A 6= 0 here. The forms ηmr not appearing in the first line

can be expressed in terms of forms πj
r of the second line.

On the other hand, we have the variational integral
∫
ϕ where ϕ = f(··, yj0, ··, z) dx.

It follows that

dϕ =
(∑ ∂f

∂yj0
ηj0 +

∂f

∂z
ζ
)
∧ dx =

(∑
Bjπj

0 +Bπm
1

)
∧ dx

in terms of the standard basis with the coefficients

Bk =
∂f

∂yk0
+
∂f

∂z

∂F

∂yk1
+

1

A
D
∂F

∂yk1
, Bm =

∂f

∂z
, B = −

1

A

( ∂f

∂ym0
+
∂f

∂z

∂F

∂ym1

)

and we obtain the PC form ϕ̆ = ϕ−Bπm
0 since

dϕ̆ = dϕ− dB ∧ πm
0 −B dπm

0
∼=

(∑
Bjπj

0 −DBπm
0

)
∧ dx (mod Ω ∧ Ω).

For the choice V = ∂/∂x, clearly

ϕ̆(V ) = f −B
(
−F +

∑ ∂F

∂yj1
yj1

)
, ϕ̆[c] = ϕ̆− c dx = (f − c) dx−Bπ0.

The curiosity ϕ̆[c] = −Bπ0 independent of the integral
∫
ϕ appears if one supposes

the identity

F =
∑ ∂F

∂yj1
yj1.

We shall not discuss the choice of the variables in the orbit spaces here, they are

analogous as in the Jacobi-Maupertuis principle and let us also pass the normality

condition with silence.

6.5. Two symmetries of a second-order integral. We conclude with an “in-

correct” example. The above mechanisms will be mechanically simulated for the case

of two symmetries.

Let us recall the jet spaceM(m+1) where the coordinates and contact forms are

denoted

x, wj
r , zr, ωj

r = dwj
r − wj

r+1 dx, ξr = dzr − zr+1 dx j = 1, . . . ,m; r = 0, 1, . . . ,

for better clarity of formulae to follow. We shall deal with two examples of the

second-order variational integral
∫
ϕ.

First, suppose ϕ = f(x, ··, wj
0, w

j
1, w

j
2, ··, z2) dx. Then

ϕ̆ = f dx+
∑( ∂f

∂wj
1

−D
∂f

∂wj
2

)
ωj
0 +

∑ ∂f

∂wj
2

ωj
1 −D

∂f

∂z2
ξ0 +

∂f

∂z2
ξ1

324



is the PC form and

V =
∂

∂z0
, W = x

∂

∂z0
+

∂

∂z1

are two symmetries. The Noether subspace M[a, b] ⊂ M(m + 1) depends on two

parameters a, b ∈ R and is defined by the equations

(6.13) Dr(ϕ̆(V )− a) = 0, Dr(ϕ̆(W )− b) = 0, r = 0, 1, . . . ,

where

ϕ̆(V ) = −
∂f

∂z2
, ϕ̆(W ) = −xD

∂f

∂z2
+
∂f

∂z2
.

The Routh reduction

ϕ̆[a, b] = ϕ̆− a d(z0 − xz1)− b dz1

satisfies the conditions

(6.14) ϕ̆[a, b](V ) = 0, ϕ̆[a, b](W ) = 0,

which ensure that ϕ̆[a, b] is defined on the orbit spaceM[a, b]/(V,W ) of two symme-

tries V,W. Clearly [V,W ] = 0 and we have the abelian symmetry group.

Second, let us analogously choose

ϕ = f(x, ··, wj
0, w

j
1, w

j
2, ··)

z2
z1

dx, V =
∂

∂z0
, W =

∑
zr

∂

∂zr
.

This is already a nonabelian case since [V,W ] = V. Then

ϕ̆ = . . .−
{
f

z2
(z1)2

+D
f

z1

}
ξ0 +

f

z1
ξ1

and the Noether subspace M[a, b] ⊂ M(m + 1) is defined by the equations (6.13),

where

ϕ̆(V ) = −{. . .}, ϕ̆(W ) = z0{. . .}+ f.

The Routh reduction should be of the form ϕ̆[a, b] = ϕ̆ − dF , where the function

F = F (z0, z1) satisfies the equations

a = ϕ̆(V ) = V F =
∂F

∂z0
, b = ϕ̆(W ) =WF = z0

∂F

∂z0
+ z1

∂F

∂z1

analogous to (6.14). Alas, the equations are incompatible and such a reduction does

not exist. On the other hand, the two-form dϕ̆ makes a good sense on the orbit

spaceM[a, b]/(V,W ) and it follows that the symplectical structures can be reduced

without any difficulty.
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7. Perspectives

We ask some questions and raise some problems to be investigated.

7.1. Noncontrollable diffieties. The residual submodule R = R(Ω) ⊂ Ω of

diffiety Ω appearing in Theorem 4.2 is unique. It follows that LV R ⊂ R for ev-

ery variation V of Ω, see [7], [21]. In order to introduce the PC form, additional

imposition LZR ⊂ R for the vector field Z in definition (2.5) is necessary.

7.2. On the PC form. We do not know if there exist “reasonable” forms ϕ̆

satisfying (2.5) but not (2.6). Alternatively: can the clumsy condition (2.6) be

omitted? Still in other terms, does (2.5) ensure the local nature of A = A[Z] and

therefore the Theorem 2.1?

7.3. Several independent variables. If n is the number of independent vari-

ables, the diffieties Ω ⊂ Φ(M) are of codimension n and we have the multiple integral∫
ϕ with given differential n-form ϕ and arbitrary n-forms ω̃, ω̆ ∼= 0 (mod Ω). The

definitions of the variations, extremals and PC forms can be preserved. However, the

standard filtrations and the controllability rest on the involutivity concept, see [8].

It should be noted that even a formal definition of the PC form for the Lagrange

variational problem of multiple variational integrals cannot be regarded as a trivial

task, see [14].

7.4. Several symmetries. The orbit spaces and the Noether theorem do not

cause difficulty, however, invariant PC forms, the Noether subspaces and the Routh

variational integrals are ambiguous.

7.5. The Lie-Cartan pseudogroups. Somewhat paradoxically, the more sym-

metries we have, the worse are the results. For instance, the Noether theorem is

easy for the Lie group but the general case of the Lie-Cartan pseudogroups where

the symmetries depend on an “infinite number of parameters” was not clarified yet.

7.6. On the determination of symmetries. It should be noted that even the

structure of all symmetries of the family of curves in R3 is actually unknown. There

are too many nonclassical symmetries, in particular the “higher order” invertible

contact transformations generated by “multiple waves”.

7.7. On the Noether theorem. It may be generalized to include the divergence

symmetries, that is, the symmetries of the Euler-Lagrange system where the PC

form is preserved modulo a differential of a function. Does there exist a reasonable

symmetry reduction?
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8. Concluding comments

At least, we highly appreciate the professionality and prompt cooperation of the

anonymous referee with the belief that the following notes may delete some ambi-

guities concerning the distinction between our approach and the common theories

which rest on the advanced jet formalisms.

First, the article concerns the Routh reduction in the primary sense given in [12].

So we start with the variational integral
∫
ϕ and the result again is a variational

integral
∫
ϕ̆[c] on the orbit space. As a result, the nonabelian case does not give

any reasonable Routh reduction, see [2]. In articles like [19], [4], [11], [20], the

Routh procedure mainly focuses on the reduction of the Lagrange system and the

symplectical structures.

Second, we deal with variational integrals subject to arbitrary differential con-

straint Ω, the quite general Lagrange variational problem. On the contrary, the

common theories are devoted to minutely precise analysis of the first-order varia-

tional integrals appearing in applied mechanics. This is very valuable but rather

narrow theory.

Third, our approach is coordinate-free (intrinsical) in the widest possible sense.

For instance, the independent and dependent variables with various projections and

connections appear only in particular examples as technical tools. As a result, the

exposition is extremely short and does not need any subtle geometrical concepts of

accidental nature proper only to the special problems under consideration.

At last, let us briefly point out some details: Definitions 2.4 and 2.5, the distinc-

tion between variations and infinitesimal symmetries, the explicit formula (4.6) for

all variations, the Euler-Lagrange system without any uncertain multipliers for the

extremals and the three-lines proof of the Noether theorem for the general Lagrange

problem, formula (3.3) avoiding the common “linearization procedure” (see [16]), and

last but not least, the survey of open problems which are still waiting for solution.
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