NORM CONTINUITY OF POINTWISE QUASI-CONTINUOUS MAPPINGS

Alireza Kamel Mirmostafaee, Mashhad
Received February 13, 2017. Published online January 17, 2018.
Communicated by Javier Gutiérrez García

Abstract

Let X be a Baire space, Y be a compact Hausdorff space and $\varphi: X \rightarrow C_{p}(Y)$ be a quasi-continuous mapping. For a proximal subset H of $Y \times Y$ we will use topological games $\mathcal{G}_{1}(H)$ and $\mathcal{G}_{2}(H)$ on $Y \times Y$ between two players to prove that if the first player has a winning strategy in these games, then φ is norm continuous on a dense G_{δ} subset of X. It follows that if Y is Valdivia compact, each quasi-continuous mapping from a Baire space X to $C_{p}(Y)$ is norm continuous on a dense G_{δ} subset of X.

Keywords: function space; weak continuity; generalized continuity; quasi-continuous function; pointwise topology

MSC 2010: 54C35, 54C08, 54C05

1. InTRODUCTION

Let X and Z be topological spaces. A function $\varphi: X \rightarrow Z$ is called quasicontinuous at $x_{0} \in X$ if for any neighborhood U of x_{0} in X and any neighborhood V of $z_{0}=\varphi\left(x_{0}\right)$ in Z there exists a nonempty open subset G of U such that $\varphi(G) \subset V$. The mapping $\varphi: X \rightarrow Z$ is called quasi-continuous if it is quasi-continuous at any point of X.

Let Y be a compact space and $C(Y)$ be the space of all continuous real-valued functions on Y. We consider two topologies on $C(Y)$, the norm topology, which is the topology generated by the supremum norm $\|f\|=\sup _{y \in Y}|f(y)|, f \in C(Y)$, and the pointwise topology, which is the topology inherited from \mathbb{R}^{Y} with product topology. The space $C(Y)$ equipped with the pointwise topology will be denoted by $C_{p}(Y)$.

The research has been supported by a grant from Ferdowsi University of Mashhad No. 2/44717.

In 1974, Namioka [15] proved that every continuous mapping $\varphi: X \rightarrow C_{p}(Y)$ is norm continuous at the points of a dense G_{δ} subset of X provided that X is countably Cech-complete. Christensen [5] showed Namioka's theorem is still valid when X is σ - β-unfavorable. It was expected that the result of Namioka remains true when X is an arbitrary Baire space. However, Talagrand [17] provided an example of a pointwise continuous mapping $\varphi: X \rightarrow C_{p}(X)$, where X is on an α-favorable space X which is nowhere norm continuous. The result of Talagrand raises the following question:

What are compact spaces Y such that for every Baire space X and continuous (or quasi-continuous) mapping $\varphi: X \rightarrow C_{p}(Y)$ must be norm continuous at each point of some dense G_{δ} subset of X ?

Several partial answers to the above question have been obtained by some authors (see e.g. [3], [6]-[14]). In particular, Bouziad [2] introduced two person games $\mathcal{G}_{1}(H)$ and $\mathcal{G}_{2}(H)$ on product $Y \times Y$, where H is a proximal subset of $Y \times Y$, to show that if the first player has winning strategies in both plays, then Y is a co-Namioka compact space.

In this paper, we will show that if in a compact space Y the second player in games $\mathcal{G}_{1}(H)$ and $\mathcal{G}_{2}(H)$ has no winning strategies, then every quasi-continuous mapping $\varphi: X \rightarrow C_{p}(Y)$ is norm continuous on a dense G_{δ} subset of X.

2. Results

We start this section by introducing the following topological games. The first one is known as "Banach-Mazur game" (or "Choquet game", see [4] or [16]).

The Banach-Mazur game $\mathcal{B} \mathcal{M}(X)$: Two players β and α select alternately nonempty open subsets of X as follows. Player β starts the game by selecting a nonempty open subset U_{1} of X. In return, α replies by selecting some nonempty open subset V_{1} of U_{1}. At the n-th stage of the game, $n \geqslant 1$, player β chooses a nonempty open subset $U_{n} \subset V_{n-1}$ and α answers by choosing a nonempty open subset V_{n} of U_{n}. Proceeding in this fashion, the players generate a sequence $\left(U_{n}, V_{n}\right)_{n=1}^{\infty}$ which is called a play. Player α wins the play $\left(U_{n}, V_{n}\right)_{n \geqslant 1}^{\infty}$ if $\bigcap_{n \geqslant 1} U_{n}=\bigcap_{n \geqslant 1} V_{n} \neq \emptyset$; otherwise player β wins this play. A partial play is a finite sequence of sets consisting of the first few moves of a play. A strategy for player α is a rule by means of which the player makes his/her choices. An s-play is a play in which α selects his/her moves according to the strategy s. The strategy s for the player α is said to be a winning strategy if every s-play is won by α. A space X is called α-favorable if there exists a winning strategy for α in $\mathcal{B M}(X)$.

It is easy to verify that every α-favorable space X is a Baire space. There are examples of Baire spaces which are not α-favorable (see for example [10]). It is known that X is a Baire space if and only if player β does not have a winning strategy in the game $\mathcal{B} \mathcal{M}(X)$.

Let Y be a compact Hausdorff space and Δ denote the diagonal of $Y \times Y$. Following [2], a subset H of $Y \times Y$ is called proximal if it intersects every neighborhood of Δ. For a proximal set $H \subset \Delta$ we consider the following two player topological games.
$\mathcal{G}_{1}(H)$: At the n-th stage, \mathfrak{a} selects a pair $\left(W_{n}, D_{n}\right)$, where W_{n} is an open neighborhood of Δ and $D_{n} \cap H$ is a dense subset of H. Then \mathfrak{b} answers by taking a point $\left(y_{n}, y_{n}^{\prime}\right) \in W_{n} \cap H \cap D_{n}$. This play is won by \mathfrak{a} if for every neighborhood W of Δ there is some $n \in \mathbb{N}$ such that $\left(y_{n}, y_{n}^{\prime}\right) \in W$. Otherwise, \mathfrak{b} wins the play. The space Y is called $\mathcal{G}_{1}(H)$ - \mathfrak{b}-favorable if \mathfrak{b} has a winning strategy in $\mathcal{G}_{1}(H)$. Otherwise, Y is called $\mathcal{G}_{1}(H)$ - \mathfrak{b}-unfavorable.
$\mathcal{G}_{2}(H)$: At the n-th stage, \mathfrak{a} selects a pair $\left(W_{n}, D_{n}\right)$, where W_{n} is an open neighborhood of Δ and D_{n} is a dense subset of W_{n}. Then the answer of \mathfrak{b} will be a point $\left(y_{n}, y_{n}^{\prime}\right) \in W_{n} \cap D_{n}$. The play is won by \mathfrak{a} if for every neighborhood W of Δ containing H there is some $n \in \mathbb{N}$ such that $\left(y_{n}, y_{n}^{\prime}\right) \in W$. Otherwise, \mathfrak{b} wins the game. The space Y is called $\mathcal{G}_{2}(H)$ - \mathfrak{b}-favorable if \mathfrak{b} has a winning strategy in $\mathcal{G}_{2}(H)$. Otherwise, Y is called $\mathcal{G}_{2}(H)$ - \mathfrak{b}-unfavorable.

Hereafter, we will assume that Y is a compact space and H is a proximal subset of Y. In order to prove the main result of this paper, we need the following lemmas.

Lemma 1. Let $A \subset C(Y)$ be such that for some $\varepsilon>0$ there is a neighborhood W of Δ such that $\left|f(y)-f\left(y^{\prime}\right)\right|<\frac{1}{4} \varepsilon$ for each $f \in A$ and $\left(y, y^{\prime}\right) \in W$. Then for every $f \in A$ there is a relatively open, with respect to pointwise topology on A, set $B \subseteq A$ such that $f \in B$ and $\|\cdot\|-\operatorname{diam}(B)<\varepsilon$.

Proof. For each $y \in Y$ let $W_{y}=\{z:(y, z) \in W\}$. Then each W_{y} is open and $|f(y)-f(z)|<\frac{1}{4} \varepsilon$ for each $f \in A$ and $z \in W_{y}$. Since Y is compact, there are points $y_{1}, \ldots, y_{n} \in Y$ such that $Y=\bigcup_{i=1}^{n} W_{y_{i}}$. Choose an element $f_{0} \in A$ and define

$$
B=\left\{f \in A:\left|f\left(y_{i}\right)-f_{0}\left(y_{i}\right)\right|<\frac{\varepsilon}{8}, 1 \leqslant i \leqslant n\right\}
$$

Then for each $f, g \in B$ and $y \in Y$ there is some $1 \leqslant i \leqslant n$ such that $y \in W_{y_{i}}$. Therefore we have

$$
\begin{aligned}
|f(y)-g(y)| & \leqslant\left|f(y)-f\left(y_{i}\right)\right|+\left|f\left(y_{i}\right)-f_{0}\left(y_{i}\right)\right|+\left|f_{0}\left(y_{i}\right)-g\left(y_{i}\right)\right|+\left|g\left(y_{i}\right)-g(y)\right| \\
& <\frac{\varepsilon}{4}+\frac{\varepsilon}{8}+\frac{\varepsilon}{8}+\frac{\varepsilon}{4}=\frac{3 \varepsilon}{4} .
\end{aligned}
$$

It follows that $\|f-g\|<\varepsilon$.

Lemma 2. Let X be a topological space and $\varphi: X \rightarrow C_{p}(Y)$ be a quasicontinuous mapping. If X is α-favorable and \mathfrak{b} has no winning strategy in $\mathcal{G}_{1}(H)$ or X is Baire and \mathfrak{a} has a winning strategy in $\mathcal{G}_{1}(H)$, then for each $\varepsilon>0$ and a nonempty open subset U of X there are an open neighborhood E of Δ and a nonempty open subset $O \subset U$ such that for each $f \in \varphi(O)$ and $\left(y, y^{\prime}\right) \in E \cap H$ we have $\left|f(y)-f\left(y^{\prime}\right)\right|<\varepsilon$.

Proof. If the result of the lemma were not true, then there are some $\varepsilon>0$ and an open subset U of X such that for each open subset $O \subset U$ and open neighborhood E of $\Delta,\left|f(y)-f\left(y^{\prime}\right)\right| \geqslant \varepsilon$ for some $f \in \varphi(O)$ and $\left(y, y^{\prime}\right) \in E \cap H$. Let $U_{1}=U$ be the first move of player β in $\mathcal{B M}(X)$ and $V_{1} \subset U_{1}$ be the answer of α to this movement. Suppose that $\left(W_{1}, D_{1}\right)$ is the first move of \mathfrak{a} in $\mathcal{G}_{1}(H)$. By our assumption, there is some $f_{1} \in \varphi\left(V_{1}\right)$ and $\left(y_{1}, y_{1}^{\prime}\right) \in W_{1} \cap D_{1} \cap H$ such that $\left|f_{1}\left(y_{1}\right)-f_{1}\left(y_{1}^{\prime}\right)\right|>\frac{1}{2} \varepsilon$. Let $\left(y_{1}, y_{1}^{\prime}\right)$ be the answer of \mathfrak{b} to $\left(W_{1}, D_{1}\right)$. In step n, when V_{1}, \ldots, V_{n} and $\left(W_{1}, D_{1}\right), \ldots,\left(W_{n}, D_{n}\right)$ are specified by α and \mathfrak{a}, respectively, we select some $f_{n} \in \varphi\left(V_{n}\right)$ and $\left(y_{n}, y_{n}^{\prime}\right) \in W_{n} \cap D_{n} \cap H$ such that $\left|f_{n}\left(y_{n}\right)-f_{n}\left(y_{n}^{\prime}\right)\right|>\frac{1}{2} \varepsilon$. Let $\delta_{n}=\left|f_{n}\left(y_{n}\right)-f_{n}\left(y_{n}^{\prime}\right)\right|-\frac{1}{2} \varepsilon$ and define

$$
B_{n}=\left\{f:\left|f\left(y_{n}\right)-f_{n}\left(y_{n}\right)\right|<\frac{\delta_{n}}{2} \text { and }\left|f\left(y_{n}^{\prime}\right)-f_{n}\left(y_{n}^{\prime}\right)\right|<\frac{\delta_{n}}{2}\right\} .
$$

If $f \in B_{n}$, we have

$$
\begin{align*}
\left|f\left(y_{n}\right)-f\left(y_{n}^{\prime}\right)\right| & \geqslant\left|f_{n}\left(y_{n}\right)-f_{n}\left(y_{n}^{\prime}\right)\right|-\left\{\left|f\left(y_{n}\right)-f_{n}\left(y_{n}\right)\right|+\left|f\left(y_{n}^{\prime}\right)-f_{n}\left(y_{n}^{\prime}\right)\right|\right\} \tag{2.1}\\
& >\left|f_{n}\left(y_{n}\right)-f_{n}\left(y_{n}^{\prime}\right)\right|-\delta_{n}=\frac{\varepsilon}{2} .
\end{align*}
$$

Thanks to the quasi-continuity of φ, there is some nonempty subset U_{n+1} of V_{n} such that $\varphi\left(U_{n+1}\right) \subset B_{n}$. Let U_{n+1} be the answer of β to the partial play $\left(U_{1}, V_{1}, \ldots, U_{n}, V_{n}\right)$ and $\left(y_{n}, y_{n}^{\prime}\right)$ be the response of \mathfrak{b} to $\left(\left(W_{1}, D_{1}\right), \ldots,\left(W_{n}, D_{n}\right)\right)$. In this way by induction on n, a strategy for β in $\mathcal{B M}(X)$ and a strategy for \mathfrak{b} in $\mathcal{G}_{1}(H)$ is defined. Under either every assumption of the lemma, there are related games $\left\{\left(W_{n}, D_{n}\right),\left(y_{n}, y_{n}^{\prime}\right)\right\}$ and $\left\{\left(U_{n}, V_{n}\right)\right\}$ which are won by \mathfrak{a} and α, respectively. Let $z \in \bigcap_{n \geqslant 1} U_{n}$ and $f=\varphi(z)$. Define

$$
W=\left\{\left(y, y^{\prime}\right):\left|f(y)-f\left(y^{\prime}\right)\right|<\frac{\varepsilon}{3}\right\} .
$$

Then W is a neighborhood of Δ, hence there is some $n \in \mathbb{N}$ such that $\left(y_{n}, y_{n}^{\prime}\right) \in W$. However, $f \in \varphi\left(U_{n+1}\right) \subset B_{n}$, hence by (2.1), $\left|f\left(y_{n}\right)-f\left(y_{n}^{\prime}\right)\right|>\frac{1}{2} \varepsilon$. This contradiction proves the lemma.

Lemma 3. Let X and φ satisfy the assumptions of Lemma 2 and let Y be \mathfrak{b} unfavorable for play $\mathcal{G}_{2}(H)$. Then for every nonempty open subset U of X and every $\varepsilon>0$ there is a nonempty open subset O of U and an open neighborhood W of Δ such that $\left|f(y)-f\left(y^{\prime}\right)\right|<\varepsilon$ for each $f \in \varphi(O)$ and $\left(y, y^{\prime}\right) \in W$.

Proof. Suppose that the lemma is not true. Then there is some $\varepsilon>0$ and a nonempty open subset U of X such that for every nonempty open subset O^{\prime} of U and every open neighborhood E of Δ there are $f \in \varphi\left(O^{\prime}\right)$ and $\left(y, y^{\prime}\right) \in E$ such that $\left|f(y)-f\left(y^{\prime}\right)\right| \geqslant \varepsilon$. By Lemma 2, there is a nonempty open subset O^{\prime} of U and an open neighborhood E of Δ such that $\left|f(y)-f\left(y^{\prime}\right)\right|<\frac{1}{2} \varepsilon$ for each $\left(y, y^{\prime}\right) \in E \cap H$ and $f \in \varphi\left(O^{\prime}\right)$. Let $U_{1}=O^{\prime}$ be the first choice of β in $\mathcal{B M}(X)$ and $V_{1} \subset U_{1}$ be the response of α to U_{1}. Let E^{\prime} be an open neighborhood of Δ such that $\overline{E^{\prime}} \subset E$. Let $\left(W_{1}, D_{1}\right)$ be the first choice of \mathfrak{a} in the play $\mathcal{G}_{2}(H)$. Then there is some $f \in \varphi\left(V_{1}\right)$ such that $\left|f\left(y_{1}\right)-f\left(y_{1}^{\prime}\right)\right|>\frac{1}{2} \varepsilon$ for some $\left(y_{1}, y_{1}^{\prime}\right) \in W_{1} \cap E^{\prime}$. Since $D_{1} \cap E^{\prime}$ is dense in $W_{1} \cap E^{\prime}$, we can assume that $\left(y_{1}, y_{1}^{\prime}\right) \in W_{1} \cap E^{\prime} \cap D_{1}$. Let (y_{1}, y_{1}^{\prime}) be the answer of \mathfrak{b} to $\left(W_{1}, D_{1}\right)$.

Let the partial plays $\left(U_{1}, \ldots, U_{n}, V_{n}\right)$ in $\mathcal{B M}(X)$ and $\left(\left(W_{1}, D_{1}\right), \ldots,\left(W_{n}, D_{n}\right)\right)$ in $\mathcal{G}_{2}(H)$ for some $n \in \mathbb{N}$ be specified. Then by our assumption, there is some $f_{n} \in \varphi\left(V_{n}\right)$ and $\left(y_{n}, y_{n}^{\prime}\right) \in W_{n} \cap E^{\prime} \cap D_{n}$ such that $\left|f_{n}\left(y_{n}\right)-f_{n}\left(y_{n}^{\prime}\right)\right|>\frac{1}{2} \varepsilon$. Let $\left(y_{n}, y_{n}^{\prime}\right)$ be the answer of \mathfrak{b} to $\left(W_{1}, D_{1}\right), \ldots,\left(W_{n}, D_{n}\right)$. Define $\delta_{n}=\left|f_{n}\left(y_{n}\right)-f_{n}\left(y_{n}^{\prime}\right)\right|-\frac{1}{2} \varepsilon$ and

$$
B_{n}=\left\{f:\left|f\left(y_{n}\right)-f_{n}\left(y_{n}\right)\right|<\frac{\delta_{n}}{2} \text { and }\left|f\left(y_{n}^{\prime}\right)-f_{n}\left(y_{n}^{\prime}\right)\right|<\frac{\delta_{n}}{2}\right\} .
$$

Then B_{n} is a pointwise open subset of $C(Y)$ which contains $f_{n} \in \varphi\left(V_{n}\right)$. Thanks to quasi-continuity of φ, there is an open subset $U_{n+1} \subset V_{n}$ such that $\varphi\left(U_{n+1}\right) \subset B_{n}$. Let U_{n+1} be the next move of player β. By (2.1), $\left|f\left(y_{n}\right)-f\left(y_{n}^{\prime}\right)\right|>\frac{1}{2} \varepsilon$ for each $f \in \varphi\left(U_{n+1}\right)$. In this way, by induction on n a strategy for β in $\mathcal{B M}(X)$ and a strategy for \mathfrak{b} in $\mathcal{G}_{2}(H)$ are determined. Since \mathfrak{b} does not have a winning strategy, there is a play $\left\{\left(W_{n}, D_{n}\right),\left(y_{n}, y_{n}^{\prime}\right)\right\}_{n \geqslant 1}$ which is won by \mathfrak{a}. Let $\left\{\left(U_{n}, V_{n}\right)\right\}_{n \geqslant 1}$ be its corresponding $\mathcal{B} \mathcal{M}(X)$ game. Then $\bigcap_{n \geqslant 1} U_{n} \neq \emptyset$. Let $f=\varphi(z) \in \varphi\left(\bigcap_{n \geqslant 1} U_{n}\right)$ and define

$$
W=\left\{\left(y, y^{\prime}\right):\left|f(y)-f\left(y^{\prime}\right)\right|<\frac{\varepsilon}{3}\right\} \cup\left(Y \times Y \backslash \overline{E^{\prime}}\right)
$$

Then W is a neighborhood of Δ which contains H. Therefore, there is some n such that $\left(y_{n}, y_{n}^{\prime}\right) \in W$. Since $\left(y_{n}, y_{n}^{\prime}\right) \in E^{\prime}$, it follows that $\left|f\left(y_{n}\right)-f\left(y_{n}^{\prime}\right)\right|<\frac{1}{3} \varepsilon$. However, $f \in \varphi\left(U_{n}\right) \subset B_{n}$. This contradiction proves the lemma.

Now, we are ready to state the main result of this section.

Theorem 4. Let X be a topological space and $\varphi: X \rightarrow C_{p}(Y)$ be a quasicontinuous mapping. Suppose that X is α-favorable and \mathfrak{b} has no winning strategy in $\mathcal{G}_{1}(H)$ or X is Baire and \mathfrak{a} has a winning strategy in $\mathcal{G}_{1}(H)$. If Y is \mathfrak{b}-unfavorable for play $\mathcal{G}_{2}(H)$, there is a dense G_{δ} subset D of X such that φ is norm continuous on D.

Proof. Let $\varphi: X \rightarrow C_{p}(Y)$ be a quasi-continuous mapping. Define

$$
G_{n}=\bigcup\left\{O: O \text { is open in } X \text { and norm- } \operatorname{diam}(\varphi(O))<\frac{1}{n}\right\} .
$$

Then each G_{n} is open in X. Let U be an arbitrary nonempty open subset of X. By Lemma 3, there is a nonempty open subset O of U and an open neighborhood W of Δ such that $\left|f(y)-f\left(y^{\prime}\right)\right|<\frac{1}{5} n^{-1}$ for each $f \in \varphi(O)$ and $\left(y, y^{\prime}\right) \in W$. In view of Lemma 1, there is a pointwise open set $B \subset C_{p}(Y)$ such that $B \cap \varphi(O) \neq \emptyset$ and norm- $\operatorname{diam}(B \cap \varphi(O))<n^{-1}$. Since φ is quasi-continuous, the set $\varphi^{-1}(B) \cap O$ is semi-open and nonempty, and consequently, it contains a nonempty open set V. Thus $V \subset G_{n} \cap U$, hence G_{n} is dense in X. Clearly φ is norm continuous on $D=\bigcap_{n \geqslant 1} G_{n}$.

Let Γ be a set and

$$
\sigma(\Gamma)=\left\{x \in[0,1]^{\Gamma}:\{\gamma \in \Gamma: x(\gamma) \neq 0 \text { is countable }\}\right\} .
$$

A compact space Y is called Corson compact if it can be embedded in some $\sigma(\Gamma)$. The space Y is called Valdivia compact if it can be embedded in some subset K of $[0,1]^{\Gamma}$ such that $K \cap \sigma(\Gamma)$ is dense in K. It follows from the definition that every Corson compact space is Valdivia compact but the converse is not true in general (see [8]). Debs [6] proved that if X is a Baire space and Y is a Corson compact, then every continuous mapping $\varphi: X \rightarrow C_{p}(Y)$ is norm continuous at any point of a dense G_{δ} subset of X. Bouziad [2] improved this result by showing that Y can be any \mathfrak{a}-favorable space for the games $\mathcal{G}_{1}(H)$ and $\mathcal{G}_{2}(H)$, where H is a proximal subset of $Y \times Y$. So the above result holds when Y is Valdivia compact (see [1]).

Kendeov et al. [11], Corollaries 5 and 8, have shown that this result remains true if X is α-favorable, Y is Valdivia compact and φ is quasi-continuous. Theorem 4 enables us to give a simultaneous generalization of these results.

Corollary 5. Let X be a Baire space and Y be a Valdivia compact space. Then every quasi-continuous mapping $\varphi: X \rightarrow C_{p}(Y)$ is norm continuous at any point of a dense G_{δ} subset of X.

Acknowledgments. The author wishes to thank anonymous reviewer for his/her helpful comments and suggestions.

References

[1] C. Angosto, B. Cascales, I. Namioka: Distances to spaces of Baire one functions. Math. Z. 263 (2009), 103-124.

zbl MR doi

[2] A. Bouziad: L'espace de Helly a la propriété de Namioka. C. R. Acad. Sci., Paris, Sér. I 317 (1993), 841-843. (In French.)
zbl MR
[3] A. Bouziad: Every Čech-analytic Baire semitopological group is a topological group. Proc. Am. Math. Soc. 124 (1996), 953-959.
zbl MR doi
[4] G. Choquet: Lectures on Analysis. Vol. 1: Integration and Topological Vector Spaces. Mathematics Lecture Note Series. W. A. Benjamin Inc., New-York, 1969.
zbl MR
[5] J. P. R. Christensen: Joint continuity of separately continuous functions. Proc. Am. Math. Soc. 82 (1981), 455-461.
zbl MR doi
[6] G. Debs: Pointwise and uniform convergence on a Corson compact space. Topology Appl. 23 (1986), 299-303.
zbl MR doi
[7] R. Deville: Point convergence and uniform convergence on a compact space. Bull. Pol. Acad. Sci., Math. 37 (1989), 507-515. (In French.)
zbl MR
[8] R. Deville, G. Godefroy: Some applications of projective resolutions of identity. Proc. Lond. Math. Soc., III. Ser. 67 (1993), 183-199.
zbl MR doi
[9] G.Hansel, J.-P. Troallic: Quasicontinuity and Namioka's theorem. Topology Appl. 46 (1992), 135-149.

Zbl MR doi
[10] R. Haydon: Baire trees, bad norms and the Namioka property. Mathematika 42 (1995), 30-42.
[11] P.S. Kenderov, I. S. Kortezov, W. B. Moors: Norm continuity of weakly continuous mappings into Banach spaces. Topology Appl. 153 (2006), 2745-2759.
zbl MR doi
zbl MR doi
[12] A. K. Mirmostafaee: Norm continuity of quasi-continuous mappings into $C_{p}(X)$ and product spaces. Topology Appl. 157 (2010), 530-535.
zbl MR doi
[13] A. K. Mirmostafaee: Quasi-continuity of horizontally quasi-continuous functions. Real Anal. Exch. 39 (2013-2014), 335-344.
zbl MR doi
[14] A. K. Mirmostafaee: Continuity of separately continuous mappings. Math. Slovaca 64 (2014), 1019-1026.
[15] I. Namioka: Separate continuity and joint continuity. Pac. J. Math. 51 (1974), 515-531.
[16] J. C. Oxtoby: Measure and Category. A Survey of the Analogies between Topological
and Measure Spaces. Graduate Texts in Mathematics 2. Springer, New York, 1971.
$[17]$ M. Talagrand: Espaces de Baire et espaces de Namioka. Math. Ann. 270 (1985), 159-164.
zbl MR doi (In French.)
zbl MR doi

Author's address: Alireza Kamel Mirmostafaee, Center of Excellence in Analysis on Algebraic Structures, Department of Pure Mathematics, Ferdowsi University of Mashhad, P. O. Box 1159, Mashhad 91775, Mashhad, Iran, e-mail: mirmostafaei@um.ac.ir.

