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Abstract. Let X be a Baire space, Y be a compact Hausdorff space and ϕ : X → Cp(Y )
be a quasi-continuous mapping. For a proximal subset H of Y × Y we will use topological
games G1(H) and G2(H) on Y × Y between two players to prove that if the first player has
a winning strategy in these games, then ϕ is norm continuous on a dense Gδ subset of X. It
follows that if Y is Valdivia compact, each quasi-continuous mapping from a Baire space X
to Cp(Y ) is norm continuous on a dense Gδ subset of X.
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1. Introduction

Let X and Z be topological spaces. A function ϕ : X → Z is called quasi-

continuous at x0 ∈ X if for any neighborhood U of x0 in X and any neighborhood V

of z0 = ϕ(x0) in Z there exists a nonempty open subset G of U such that ϕ(G) ⊂ V .

The mapping ϕ : X → Z is called quasi-continuous if it is quasi-continuous at any

point of X .

Let Y be a compact space and C(Y ) be the space of all continuous real-valued

functions on Y . We consider two topologies on C(Y ), the norm topology, which is

the topology generated by the supremum norm ‖f‖ = sup
y∈Y

|f(y)|, f ∈ C(Y ), and the

pointwise topology, which is the topology inherited from R
Y with product topology.

The space C(Y ) equipped with the pointwise topology will be denoted by Cp(Y ).
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In 1974, Namioka [15] proved that every continuous mapping ϕ : X → Cp(Y )

is norm continuous at the points of a dense Gδ subset of X provided that X is

countably Čech-complete. Christensen [5] showed Namioka’s theorem is still valid

when X is σ-β-unfavorable. It was expected that the result of Namioka remains true

when X is an arbitrary Baire space. However, Talagrand [17] provided an example

of a pointwise continuous mapping ϕ : X → Cp(X), where X is on an α-favorable

space X which is nowhere norm continuous. The result of Talagrand raises the

following question:

What are compact spaces Y such that for every Baire space X and continuous (or

quasi-continuous) mapping ϕ : X → Cp(Y ) must be norm continuous at each point

of some dense Gδ subset of X?

Several partial answers to the above question have been obtained by some authors

(see e.g. [3], [6]–[14]). In particular, Bouziad [2] introduced two person games G1(H)

and G2(H) on product Y × Y , where H is a proximal subset of Y × Y , to show

that if the first player has winning strategies in both plays, then Y is a co-Namioka

compact space.

In this paper, we will show that if in a compact space Y the second player in games

G1(H) and G2(H) has no winning strategies, then every quasi-continuous mapping

ϕ : X → Cp(Y ) is norm continuous on a dense Gδ subset of X .

2. Results

We start this section by introducing the following topological games. The first one

is known as “Banach-Mazur game” (or “Choquet game”, see [4] or [16]).

The Banach-Mazur game BM(X): Two players β and α select alternately non-

empty open subsets ofX as follows. Player β starts the game by selecting a nonempty

open subset U1 of X . In return, α replies by selecting some nonempty open sub-

set V1 of U1. At the n-th stage of the game, n > 1, player β chooses a nonempty

open subset Un ⊂ Vn−1 and α answers by choosing a nonempty open subset Vn of

Un. Proceeding in this fashion, the players generate a sequence (Un, Vn)
∞

n=1 which is

called a play. Player α wins the play (Un, Vn)
∞

n>1 if
⋂

n>1

Un =
⋂

n>1

Vn 6= ∅; otherwise

player β wins this play. A partial play is a finite sequence of sets consisting of the

first few moves of a play. A strategy for player α is a rule by means of which the

player makes his/her choices. An s-play is a play in which α selects his/her moves

according to the strategy s. The strategy s for the player α is said to be a winning

strategy if every s-play is won by α. A space X is called α-favorable if there exists

a winning strategy for α in BM(X).
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It is easy to verify that every α-favorable space X is a Baire space. There are

examples of Baire spaces which are not α-favorable (see for example [10]). It is

known that X is a Baire space if and only if player β does not have a winning

strategy in the game BM(X).

Let Y be a compact Hausdorff space and ∆ denote the diagonal of Y ×Y . Follow-

ing [2], a subsetH of Y ×Y is called proximal if it intersects every neighborhood of∆.

For a proximal set H ⊂ ∆ we consider the following two player topological games.

G1(H): At the n-th stage, a selects a pair (Wn, Dn), where Wn is an open neigh-

borhood of ∆ and Dn ∩ H is a dense subset of H . Then b answers by taking a

point (yn, y′n) ∈ Wn ∩H ∩Dn. This play is won by a if for every neighborhood W

of ∆ there is some n ∈ N such that (yn, y′n) ∈ W . Otherwise, b wins the play. The

space Y is called G1(H)-b-favorable if b has a winning strategy in G1(H). Otherwise,

Y is called G1(H)-b-unfavorable.

G2(H): At the n-th stage, a selects a pair (Wn, Dn), where Wn is an open neigh-

borhood of ∆ and Dn is a dense subset of Wn. Then the answer of b will be a

point (yn, y′n) ∈ Wn ∩Dn. The play is won by a if for every neighborhood W of ∆

containing H there is some n ∈ N such that (yn, y′n) ∈ W . Otherwise, b wins the

game. The space Y is called G2(H)-b-favorable if b has a winning strategy in G2(H).

Otherwise, Y is called G2(H)-b-unfavorable.

Hereafter, we will assume that Y is a compact space and H is a proximal subset

of Y . In order to prove the main result of this paper, we need the following lemmas.

Lemma 1. Let A ⊂ C(Y ) be such that for some ε > 0 there is a neighborhoodW

of ∆ such that |f(y) − f(y′)| < 1

4
ε for each f ∈ A and (y, y′) ∈ W . Then for every

f ∈ A there is a relatively open, with respect to pointwise topology on A, set B ⊆ A

such that f ∈ B and ‖·‖ − diam(B) < ε.

P r o o f. For each y ∈ Y let Wy = {z : (y, z) ∈ W}. Then each Wy is open and

|f(y)− f(z)| < 1

4
ε for each f ∈ A and z ∈ Wy . Since Y is compact, there are points

y1, . . . , yn ∈ Y such that Y =
n
⋃

i=1

Wyi
. Choose an element f0 ∈ A and define

B =
{

f ∈ A : |f(yi)− f0(yi)| <
ε

8
, 1 6 i 6 n

}

.

Then for each f, g ∈ B and y ∈ Y there is some 1 6 i 6 n such that y ∈ Wyi
.

Therefore we have

|f(y)− g(y)| 6 |f(y)− f(yi)|+ |f(yi)− f0(yi)|+ |f0(yi)− g(yi)|+ |g(yi)− g(y)|

<
ε

4
+

ε

8
+

ε

8
+

ε

4
=

3ε

4
.

It follows that ‖f − g‖ < ε. �
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Lemma 2. Let X be a topological space and ϕ : X → Cp(Y ) be a quasi-

continuous mapping. If X is α-favorable and b has no winning strategy in G1(H)

or X is Baire and a has a winning strategy in G1(H), then for each ε > 0 and

a nonempty open subset U of X there are an open neighborhood E of ∆ and a

nonempty open subset O ⊂ U such that for each f ∈ ϕ(O) and (y, y′) ∈ E ∩H we

have |f(y)− f(y′)| < ε.

P r o o f. If the result of the lemma were not true, then there are some ε > 0

and an open subset U of X such that for each open subset O ⊂ U and open neigh-

borhood E of ∆, |f(y) − f(y′)| > ε for some f ∈ ϕ(O) and (y, y′) ∈ E ∩ H . Let

U1 = U be the first move of player β in BM(X) and V1 ⊂ U1 be the answer of α

to this movement. Suppose that (W1, D1) is the first move of a in G1(H). By

our assumption, there is some f1 ∈ ϕ(V1) and (y1, y
′

1) ∈ W1 ∩ D1 ∩ H such that

|f1(y1)− f1(y
′

1)| >
1

2
ε. Let (y1, y′1) be the answer of b to (W1, D1). In step n, when

V1, . . . , Vn and (W1, D1), . . . , (Wn, Dn) are specified by α and a, respectively, we se-

lect some fn ∈ ϕ(Vn) and (yn, y′n) ∈ Wn ∩Dn ∩H such that |fn(yn)− fn(y
′

n)| >
1

2
ε.

Let δn = |fn(yn)− fn(y
′

n)| −
1

2
ε and define

Bn =
{

f : |f(yn)− fn(yn)| <
δn

2
and |f(y′n)− fn(y

′

n)| <
δn

2

}

.

If f ∈ Bn, we have

(2.1) |f(yn)− f(y′n)| > |fn(yn)− fn(y
′

n)| − {|f(yn)− fn(yn)|+ |f(y′n)− fn(y
′

n)|}

> |fn(yn)− fn(y
′

n)| − δn =
ε

2
.

Thanks to the quasi-continuity of ϕ, there is some nonempty subset Un+1 of Vn

such that ϕ(Un+1) ⊂ Bn. Let Un+1 be the answer of β to the partial play

(U1, V1, . . . , Un, Vn) and (yn, y
′

n) be the response of b to ((W1, D1), . . . , (Wn, Dn)).

In this way by induction on n, a strategy for β in BM(X) and a strategy for b in

G1(H) is defined. Under either every assumption of the lemma, there are related

games {(Wn, Dn), (yn, y
′

n)} and {(Un, Vn)} which are won by a and α, respectively.

Let z ∈
⋂

n>1

Un and f = ϕ(z). Define

W =
{

(y, y′) : |f(y)− f(y′)| <
ε

3

}

.

Then W is a neighborhood of ∆, hence there is some n ∈ N such that (yn, y′n) ∈ W .

However, f ∈ ϕ(Un+1) ⊂ Bn, hence by (2.1), |f(yn)−f(y′n)| >
1

2
ε. This contradiction

proves the lemma. �
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Lemma 3. Let X and ϕ satisfy the assumptions of Lemma 2 and let Y be b-

unfavorable for play G2(H). Then for every nonempty open subset U of X and every

ε > 0 there is a nonempty open subset O of U and an open neighborhood W of ∆

such that |f(y)− f(y′)| < ε for each f ∈ ϕ(O) and (y, y′) ∈ W .

P r o o f. Suppose that the lemma is not true. Then there is some ε > 0 and a

nonempty open subset U of X such that for every nonempty open subset O′ of U

and every open neighborhood E of ∆ there are f ∈ ϕ(O′) and (y, y′) ∈ E such that

|f(y) − f(y′)| > ε. By Lemma 2, there is a nonempty open subset O′ of U and an

open neighborhood E of ∆ such that |f(y) − f(y′)| < 1

2
ε for each (y, y′) ∈ E ∩ H

and f ∈ ϕ(O′). Let U1 = O′ be the first choice of β in BM(X) and V1 ⊂ U1 be the

response of α to U1. Let E′ be an open neighborhood of ∆ such that E′ ⊂ E. Let

(W1, D1) be the first choice of a in the play G2(H). Then there is some f ∈ ϕ(V1)

such that |f(y1) − f(y′1)| >
1

2
ε for some (y1, y′1) ∈ W1 ∩ E′. Since D1 ∩ E′ is dense

in W1 ∩ E′, we can assume that (y1, y′1) ∈ W1 ∩ E′ ∩D1. Let (y1, y′1) be the answer

of b to (W1, D1).

Let the partial plays (U1, . . . , Un, Vn) in BM(X) and ((W1, D1), . . . , (Wn, Dn))

in G2(H) for some n ∈ N be specified. Then by our assumption, there is some

fn ∈ ϕ(Vn) and (yn, y′n) ∈ Wn∩E′∩Dn such that |fn(yn)−fn(y
′

n)| >
1

2
ε. Let (yn, y′n)

be the answer of b to (W1, D1), . . . , (Wn, Dn). Define δn = |fn(yn) − fn(y
′

n)| −
1

2
ε

and

Bn =
{

f : |f(yn)− fn(yn)| <
δn

2
and |f(y′n)− fn(y

′

n)| <
δn

2

}

.

Then Bn is a pointwise open subset of C(Y ) which contains fn ∈ ϕ(Vn). Thanks to

quasi-continuity of ϕ, there is an open subset Un+1 ⊂ Vn such that ϕ(Un+1) ⊂ Bn.

Let Un+1 be the next move of player β. By (2.1), |f(yn) − f(y′n)| >
1

2
ε for each

f ∈ ϕ(Un+1). In this way, by induction on n a strategy for β in BM(X) and a

strategy for b in G2(H) are determined. Since b does not have a winning strategy,

there is a play {(Wn, Dn), (yn, y
′

n)}n>1 which is won by a. Let {(Un, Vn)}n>1 be its

corresponding BM(X) game. Then
⋂

n>1

Un 6= ∅. Let f = ϕ(z) ∈ ϕ
(

⋂

n>1

Un

)

and

define

W =
{

(y, y′) : |f(y)− f(y′)| <
ε

3

}

∪ (Y × Y \ E′).

Then W is a neighborhood of ∆ which contains H . Therefore, there is some n such

that (yn, y′n) ∈ W . Since (yn, y′n) ∈ E′, it follows that |f(yn)−f(y′n)| <
1

3
ε. However,

f ∈ ϕ(Un) ⊂ Bn. This contradiction proves the lemma. �

Now, we are ready to state the main result of this section.
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Theorem 4. Let X be a topological space and ϕ : X → Cp(Y ) be a quasi-

continuous mapping. Suppose that X is α-favorable and b has no winning strategy

in G1(H) or X is Baire and a has a winning strategy in G1(H). If Y is b-unfavorable

for play G2(H), there is a dense Gδ subset D of X such that ϕ is norm continuous

on D.

P r o o f. Let ϕ : X → Cp(Y ) be a quasi-continuous mapping. Define

Gn =
⋃

{

O : O is open in X and norm-diam(ϕ(O)) <
1

n

}

.

Then each Gn is open in X . Let U be an arbitrary nonempty open subset of X . By

Lemma 3, there is a nonempty open subset O of U and an open neighborhood W

of ∆ such that |f(y) − f(y′)| < 1

5
n−1 for each f ∈ ϕ(O) and (y, y′) ∈ W . In view

of Lemma 1, there is a pointwise open set B ⊂ Cp(Y ) such that B ∩ ϕ(O) 6= ∅

and norm-diam(B ∩ ϕ(O)) < n−1. Since ϕ is quasi-continuous, the set ϕ−1(B) ∩O

is semi-open and nonempty, and consequently, it contains a nonempty open set V .

Thus V ⊂ Gn ∩ U , hence Gn is dense in X . Clearly ϕ is norm continuous on

D =
⋂

n>1

Gn. �

Let Γ be a set and

σ(Γ) = {x ∈ [0, 1]Γ : {γ ∈ Γ: x(γ) 6= 0 is countable}}.

A compact space Y is called Corson compact if it can be embedded in some σ(Γ).

The space Y is called Valdivia compact if it can be embedded in some subset K of

[0, 1]Γ such that K ∩ σ(Γ) is dense in K. It follows from the definition that every

Corson compact space is Valdivia compact but the converse is not true in general

(see [8]). Debs [6] proved that if X is a Baire space and Y is a Corson compact,

then every continuous mapping ϕ : X → Cp(Y ) is norm continuous at any point of

a dense Gδ subset of X . Bouziad [2] improved this result by showing that Y can be

any a-favorable space for the games G1(H) and G2(H), where H is a proximal subset

of Y × Y . So the above result holds when Y is Valdivia compact (see [1]).

Kendeov et al. [11], Corollaries 5 and 8, have shown that this result remains true

if X is α-favorable, Y is Valdivia compact and ϕ is quasi-continuous. Theorem 4

enables us to give a simultaneous generalization of these results.

Corollary 5. Let X be a Baire space and Y be a Valdivia compact space. Then

every quasi-continuous mapping ϕ : X → Cp(Y ) is norm continuous at any point of

a dense Gδ subset of X .
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