NORM CONTINUITY OF POINTWISE QUASI-CONTINUOUS MAPPINGS

ALIREZA KAMEL MIRMOSTAFAEE, Mashhad

Received February 13, 2017. Published online January 17, 2018. Communicated by Javier Gutiérrez García

Abstract. Let X be a Baire space, Y be a compact Hausdorff space and $\varphi \colon X \to C_p(Y)$ be a quasi-continuous mapping. For a proximal subset H of $Y \times Y$ we will use topological games $\mathcal{G}_1(H)$ and $\mathcal{G}_2(H)$ on $Y \times Y$ between two players to prove that if the first player has a winning strategy in these games, then φ is norm continuous on a dense G_δ subset of X. It follows that if Y is Valdivia compact, each quasi-continuous mapping from a Baire space X to $C_p(Y)$ is norm continuous on a dense G_δ subset of X.

Keywords: function space; weak continuity; generalized continuity; quasi-continuous function; pointwise topology

MSC 2010: 54C35, 54C08, 54C05

1. INTRODUCTION

Let X and Z be topological spaces. A function $\varphi \colon X \to Z$ is called quasicontinuous at $x_0 \in X$ if for any neighborhood U of x_0 in X and any neighborhood V of $z_0 = \varphi(x_0)$ in Z there exists a nonempty open subset G of U such that $\varphi(G) \subset V$. The mapping $\varphi \colon X \to Z$ is called quasi-continuous if it is quasi-continuous at any point of X.

Let Y be a compact space and C(Y) be the space of all continuous real-valued functions on Y. We consider two topologies on C(Y), the norm topology, which is the topology generated by the supremum norm $||f|| = \sup_{y \in Y} |f(y)|, f \in C(Y)$, and the pointwise topology, which is the topology inherited from \mathbb{R}^Y with product topology. The space C(Y) equipped with the pointwise topology will be denoted by $C_n(Y)$.

The research has been supported by a grant from Ferdowsi University of Mashhad No. 2/44717.

In 1974, Namioka [15] proved that every continuous mapping $\varphi \colon X \to C_p(Y)$ is norm continuous at the points of a dense G_{δ} subset of X provided that X is countably Čech-complete. Christensen [5] showed Namioka's theorem is still valid when X is σ - β -unfavorable. It was expected that the result of Namioka remains true when X is an arbitrary Baire space. However, Talagrand [17] provided an example of a pointwise continuous mapping $\varphi \colon X \to C_p(X)$, where X is on an α -favorable space X which is nowhere norm continuous. The result of Talagrand raises the following question:

What are compact spaces Y such that for every Baire space X and continuous (or quasi-continuous) mapping $\varphi \colon X \to C_p(Y)$ must be norm continuous at each point of some dense G_{δ} subset of X?

Several partial answers to the above question have been obtained by some authors (see e.g. [3], [6]–[14]). In particular, Bouziad [2] introduced two person games $\mathcal{G}_1(H)$ and $\mathcal{G}_2(H)$ on product $Y \times Y$, where H is a proximal subset of $Y \times Y$, to show that if the first player has winning strategies in both plays, then Y is a co-Namioka compact space.

In this paper, we will show that if in a compact space Y the second player in games $\mathcal{G}_1(H)$ and $\mathcal{G}_2(H)$ has no winning strategies, then every quasi-continuous mapping $\varphi \colon X \to C_p(Y)$ is norm continuous on a dense G_{δ} subset of X.

2. Results

We start this section by introducing the following topological games. The first one is known as "Banach-Mazur game" (or "Choquet game", see [4] or [16]).

The Banach-Mazur game $\mathcal{BM}(X)$: Two players β and α select alternately nonempty open subsets of X as follows. Player β starts the game by selecting a nonempty open subset U_1 of X. In return, α replies by selecting some nonempty open subset V_1 of U_1 . At the *n*-th stage of the game, $n \ge 1$, player β chooses a nonempty open subset $U_n \subset V_{n-1}$ and α answers by choosing a nonempty open subset V_n of U_n . Proceeding in this fashion, the players generate a sequence $(U_n, V_n)_{n=1}^{\infty}$ which is called a *play*. Player α wins the play $(U_n, V_n)_{n\ge 1}^{\infty}$ if $\bigcap_{n\ge 1} U_n = \bigcap_{n\ge 1} V_n \neq \emptyset$; otherwise player β wins this play. A *partial play* is a finite sequence of sets consisting of the first few moves of a play. A *strategy* for player α is a rule by means of which the player makes his/her choices. An *s*-play is a play in which α selects his/her moves according to the strategy *s*. The strategy *s* for the player α is said to be a *winning strategy* if every *s*-play is won by α . A space X is called α -favorable if there exists a winning strategy for α in $\mathcal{BM}(X)$. It is easy to verify that every α -favorable space X is a Baire space. There are examples of Baire spaces which are not α -favorable (see for example [10]). It is known that X is a Baire space if and only if player β does not have a winning strategy in the game $\mathcal{BM}(X)$.

Let Y be a compact Hausdorff space and Δ denote the diagonal of $Y \times Y$. Following [2], a subset H of $Y \times Y$ is called proximal if it intersects every neighborhood of Δ . For a proximal set $H \subset \Delta$ we consider the following two player topological games.

 $\mathcal{G}_1(H)$: At the *n*-th stage, \mathfrak{a} selects a pair (W_n, D_n) , where W_n is an open neighborhood of Δ and $D_n \cap H$ is a dense subset of H. Then \mathfrak{b} answers by taking a point $(y_n, y'_n) \in W_n \cap H \cap D_n$. This play is won by \mathfrak{a} if for every neighborhood W of Δ there is some $n \in \mathbb{N}$ such that $(y_n, y'_n) \in W$. Otherwise, \mathfrak{b} wins the play. The space Y is called $\mathcal{G}_1(H)$ - \mathfrak{b} -favorable if \mathfrak{b} has a winning strategy in $\mathcal{G}_1(H)$. Otherwise, Y is called $\mathcal{G}_1(H)$ - \mathfrak{b} -unfavorable.

 $\mathcal{G}_2(H)$: At the *n*-th stage, \mathfrak{a} selects a pair (W_n, D_n) , where W_n is an open neighborhood of Δ and D_n is a dense subset of W_n . Then the answer of \mathfrak{b} will be a point $(y_n, y'_n) \in W_n \cap D_n$. The play is won by \mathfrak{a} if for every neighborhood W of Δ containing H there is some $n \in \mathbb{N}$ such that $(y_n, y'_n) \in W$. Otherwise, \mathfrak{b} wins the game. The space Y is called $\mathcal{G}_2(H)$ - \mathfrak{b} -favorable if \mathfrak{b} has a winning strategy in $\mathcal{G}_2(H)$. Otherwise, Y is called $\mathcal{G}_2(H)$ - \mathfrak{b} -unfavorable.

Hereafter, we will assume that Y is a compact space and H is a proximal subset of Y. In order to prove the main result of this paper, we need the following lemmas.

Lemma 1. Let $A \subset C(Y)$ be such that for some $\varepsilon > 0$ there is a neighborhood Wof Δ such that $|f(y) - f(y')| < \frac{1}{4}\varepsilon$ for each $f \in A$ and $(y, y') \in W$. Then for every $f \in A$ there is a relatively open, with respect to pointwise topology on A, set $B \subseteq A$ such that $f \in B$ and $\|\cdot\| - \operatorname{diam}(B) < \varepsilon$.

Proof. For each $y \in Y$ let $W_y = \{z : (y, z) \in W\}$. Then each W_y is open and $|f(y) - f(z)| < \frac{1}{4}\varepsilon$ for each $f \in A$ and $z \in W_y$. Since Y is compact, there are points $y_1, \ldots, y_n \in Y$ such that $Y = \bigcup_{i=1}^n W_{y_i}$. Choose an element $f_0 \in A$ and define

$$B = \left\{ f \in A \colon |f(y_i) - f_0(y_i)| < \frac{\varepsilon}{8}, \ 1 \leqslant i \leqslant n \right\}.$$

Then for each $f, g \in B$ and $y \in Y$ there is some $1 \leq i \leq n$ such that $y \in W_{y_i}$. Therefore we have

$$\begin{split} |f(y) - g(y)| &\leq |f(y) - f(y_i)| + |f(y_i) - f_0(y_i)| + |f_0(y_i) - g(y_i)| + |g(y_i) - g(y)| \\ &< \frac{\varepsilon}{4} + \frac{\varepsilon}{8} + \frac{\varepsilon}{8} + \frac{\varepsilon}{4} = \frac{3\varepsilon}{4}. \end{split}$$

It follows that $||f - g|| < \varepsilon$.

331

Lemma 2. Let X be a topological space and $\varphi: X \to C_p(Y)$ be a quasicontinuous mapping. If X is α -favorable and \mathfrak{b} has no winning strategy in $\mathcal{G}_1(H)$ or X is Baire and \mathfrak{a} has a winning strategy in $\mathcal{G}_1(H)$, then for each $\varepsilon > 0$ and a nonempty open subset U of X there are an open neighborhood E of Δ and a nonempty open subset $O \subset U$ such that for each $f \in \varphi(O)$ and $(y, y') \in E \cap H$ we have $|f(y) - f(y')| < \varepsilon$.

Proof. If the result of the lemma were not true, then there are some $\varepsilon > 0$ and an open subset U of X such that for each open subset $O \subset U$ and open neighborhood E of Δ , $|f(y) - f(y')| \ge \varepsilon$ for some $f \in \varphi(O)$ and $(y, y') \in E \cap H$. Let $U_1 = U$ be the first move of player β in $\mathcal{BM}(X)$ and $V_1 \subset U_1$ be the answer of α to this movement. Suppose that (W_1, D_1) is the first move of \mathfrak{a} in $\mathcal{G}_1(H)$. By our assumption, there is some $f_1 \in \varphi(V_1)$ and $(y_1, y'_1) \in W_1 \cap D_1 \cap H$ such that $|f_1(y_1) - f_1(y'_1)| > \frac{1}{2}\varepsilon$. Let (y_1, y'_1) be the answer of \mathfrak{b} to (W_1, D_1) . In step n, when V_1, \ldots, V_n and $(W_1, D_1), \ldots, (W_n, D_n)$ are specified by α and \mathfrak{a} , respectively, we select some $f_n \in \varphi(V_n)$ and $(y_n, y'_n) \in W_n \cap D_n \cap H$ such that $|f_n(y_n) - f_n(y'_n)| > \frac{1}{2}\varepsilon$. Let $\delta_n = |f_n(y_n) - f_n(y'_n)| - \frac{1}{2}\varepsilon$ and define

$$B_n = \left\{ f: |f(y_n) - f_n(y_n)| < \frac{\delta_n}{2} \text{ and } |f(y'_n) - f_n(y'_n)| < \frac{\delta_n}{2} \right\}.$$

If $f \in B_n$, we have

$$(2.1) ||f(y_n) - f(y'_n)| \ge |f_n(y_n) - f_n(y'_n)| - \{|f(y_n) - f_n(y_n)| + |f(y'_n) - f_n(y'_n)|\} > |f_n(y_n) - f_n(y'_n)| - \delta_n = \frac{\varepsilon}{2}.$$

Thanks to the quasi-continuity of φ , there is some nonempty subset U_{n+1} of V_n such that $\varphi(U_{n+1}) \subset B_n$. Let U_{n+1} be the answer of β to the partial play $(U_1, V_1, \ldots, U_n, V_n)$ and (y_n, y'_n) be the response of \mathfrak{b} to $((W_1, D_1), \ldots, (W_n, D_n))$. In this way by induction on n, a strategy for β in $\mathcal{BM}(X)$ and a strategy for \mathfrak{b} in $\mathcal{G}_1(H)$ is defined. Under either every assumption of the lemma, there are related games $\{(W_n, D_n), (y_n, y'_n)\}$ and $\{(U_n, V_n)\}$ which are won by \mathfrak{a} and α , respectively. Let $z \in \bigcap_{n \geq 1} U_n$ and $f = \varphi(z)$. Define

$$W = \left\{ (y, y') \colon |f(y) - f(y')| < \frac{\varepsilon}{3} \right\}.$$

Then W is a neighborhood of Δ , hence there is some $n \in \mathbb{N}$ such that $(y_n, y'_n) \in W$. However, $f \in \varphi(U_{n+1}) \subset B_n$, hence by (2.1), $|f(y_n) - f(y'_n)| > \frac{1}{2}\varepsilon$. This contradiction proves the lemma. **Lemma 3.** Let X and φ satisfy the assumptions of Lemma 2 and let Y be \mathfrak{b} unfavorable for play $\mathcal{G}_2(H)$. Then for every nonempty open subset U of X and every $\varepsilon > 0$ there is a nonempty open subset O of U and an open neighborhood W of Δ such that $|f(y) - f(y')| < \varepsilon$ for each $f \in \varphi(O)$ and $(y, y') \in W$.

Proof. Suppose that the lemma is not true. Then there is some $\varepsilon > 0$ and a nonempty open subset U of X such that for every nonempty open subset O' of Uand every open neighborhood E of Δ there are $f \in \varphi(O')$ and $(y, y') \in E$ such that $|f(y) - f(y')| \ge \varepsilon$. By Lemma 2, there is a nonempty open subset O' of U and an open neighborhood E of Δ such that $|f(y) - f(y')| < \frac{1}{2}\varepsilon$ for each $(y, y') \in E \cap H$ and $f \in \varphi(O')$. Let $U_1 = O'$ be the first choice of β in $\mathcal{BM}(X)$ and $V_1 \subset U_1$ be the response of α to U_1 . Let E' be an open neighborhood of Δ such that $\overline{E'} \subset E$. Let (W_1, D_1) be the first choice of \mathfrak{a} in the play $\mathcal{G}_2(H)$. Then there is some $f \in \varphi(V_1)$ such that $|f(y_1) - f(y'_1)| > \frac{1}{2}\varepsilon$ for some $(y_1, y'_1) \in W_1 \cap E'$. Since $D_1 \cap E'$ is dense in $W_1 \cap E'$, we can assume that $(y_1, y'_1) \in W_1 \cap E' \cap D_1$. Let (y_1, y'_1) be the answer of \mathfrak{b} to (W_1, D_1) .

Let the partial plays (U_1, \ldots, U_n, V_n) in $\mathcal{BM}(X)$ and $((W_1, D_1), \ldots, (W_n, D_n))$ in $\mathcal{G}_2(H)$ for some $n \in \mathbb{N}$ be specified. Then by our assumption, there is some $f_n \in \varphi(V_n)$ and $(y_n, y'_n) \in W_n \cap E' \cap D_n$ such that $|f_n(y_n) - f_n(y'_n)| > \frac{1}{2}\varepsilon$. Let (y_n, y'_n) be the answer of \mathfrak{b} to $(W_1, D_1), \ldots, (W_n, D_n)$. Define $\delta_n = |f_n(y_n) - f_n(y'_n)| - \frac{1}{2}\varepsilon$ and

$$B_n = \left\{ f: |f(y_n) - f_n(y_n)| < \frac{\delta_n}{2} \text{ and } |f(y'_n) - f_n(y'_n)| < \frac{\delta_n}{2} \right\}.$$

Then B_n is a pointwise open subset of C(Y) which contains $f_n \in \varphi(V_n)$. Thanks to quasi-continuity of φ , there is an open subset $U_{n+1} \subset V_n$ such that $\varphi(U_{n+1}) \subset B_n$. Let U_{n+1} be the next move of player β . By (2.1), $|f(y_n) - f(y'_n)| > \frac{1}{2}\varepsilon$ for each $f \in \varphi(U_{n+1})$. In this way, by induction on n a strategy for β in $\mathcal{BM}(X)$ and a strategy for \mathfrak{b} in $\mathcal{G}_2(H)$ are determined. Since \mathfrak{b} does not have a winning strategy, there is a play $\{(W_n, D_n), (y_n, y'_n)\}_{n \ge 1}$ which is won by \mathfrak{a} . Let $\{(U_n, V_n)\}_{n \ge 1}$ be its corresponding $\mathcal{BM}(X)$ game. Then $\bigcap_{n \ge 1} U_n \neq \emptyset$. Let $f = \varphi(z) \in \varphi(\bigcap_{n \ge 1} U_n)$ and define

$$W = \left\{ (y, y') \colon |f(y) - f(y')| < \frac{\varepsilon}{3} \right\} \cup (Y \times Y \setminus \overline{E'}).$$

Then W is a neighborhood of Δ which contains H. Therefore, there is some n such that $(y_n, y'_n) \in W$. Since $(y_n, y'_n) \in E'$, it follows that $|f(y_n) - f(y'_n)| < \frac{1}{3}\varepsilon$. However, $f \in \varphi(U_n) \subset B_n$. This contradiction proves the lemma.

Now, we are ready to state the main result of this section.

Theorem 4. Let X be a topological space and $\varphi: X \to C_p(Y)$ be a quasicontinuous mapping. Suppose that X is α -favorable and \mathfrak{b} has no winning strategy in $\mathcal{G}_1(H)$ or X is Baire and \mathfrak{a} has a winning strategy in $\mathcal{G}_1(H)$. If Y is \mathfrak{b} -unfavorable for play $\mathcal{G}_2(H)$, there is a dense G_{δ} subset D of X such that φ is norm continuous on D.

Proof. Let $\varphi: X \to C_p(Y)$ be a quasi-continuous mapping. Define

$$G_n = \bigcup \left\{ O \colon O \text{ is open in } X \text{ and norm-diam}(\varphi(O)) < \frac{1}{n} \right\}.$$

Then each G_n is open in X. Let U be an arbitrary nonempty open subset of X. By Lemma 3, there is a nonempty open subset O of U and an open neighborhood W of Δ such that $|f(y) - f(y')| < \frac{1}{5}n^{-1}$ for each $f \in \varphi(O)$ and $(y, y') \in W$. In view of Lemma 1, there is a pointwise open set $B \subset C_p(Y)$ such that $B \cap \varphi(O) \neq \emptyset$ and norm-diam $(B \cap \varphi(O)) < n^{-1}$. Since φ is quasi-continuous, the set $\varphi^{-1}(B) \cap O$ is semi-open and nonempty, and consequently, it contains a nonempty open set V. Thus $V \subset G_n \cap U$, hence G_n is dense in X. Clearly φ is norm continuous on $D = \bigcap_{n \geq 1} G_n$.

Let Γ be a set and

$$\sigma(\Gamma) = \{ x \in [0,1]^{\Gamma} \colon \{ \gamma \in \Gamma \colon x(\gamma) \neq 0 \text{ is countable} \} \}.$$

A compact space Y is called *Corson compact* if it can be embedded in some $\sigma(\Gamma)$. The space Y is called *Valdivia compact* if it can be embedded in some subset K of $[0,1]^{\Gamma}$ such that $K \cap \sigma(\Gamma)$ is dense in K. It follows from the definition that every Corson compact space is Valdivia compact but the converse is not true in general (see [8]). Debs [6] proved that if X is a Baire space and Y is a Corson compact, then every continuous mapping $\varphi \colon X \to C_p(Y)$ is norm continuous at any point of a dense G_{δ} subset of X. Bouziad [2] improved this result by showing that Y can be any \mathfrak{a} -favorable space for the games $\mathcal{G}_1(H)$ and $\mathcal{G}_2(H)$, where H is a proximal subset of $Y \times Y$. So the above result holds when Y is Valdivia compact (see [1]).

Kendeov et al. [11], Corollaries 5 and 8, have shown that this result remains true if X is α -favorable, Y is Valdivia compact and φ is quasi-continuous. Theorem 4 enables us to give a simultaneous generalization of these results.

Corollary 5. Let X be a Baire space and Y be a Valdivia compact space. Then every quasi-continuous mapping $\varphi \colon X \to C_p(Y)$ is norm continuous at any point of a dense G_{δ} subset of X. A c k n o w l e d g m e n t s. The author wishes to thank anonymous reviewer for his/her helpful comments and suggestions.

References

[1]	C. Angosto, B. Cascales, I. Namioka: Distances to spaces of Baire one functions.			
	Math. Z. 263 (2009), 103–124.	\mathbf{zbl}	MR	doi
[2]	A. Bouziad: L'espace de Helly a la propriété de Namioka. C. R. Acad. Sci., Paris, Sér. I			
	317 (1993), 841–843. (In French.)	\mathbf{zbl}	MR	
[3]	A. Bouziad: Every Čech-analytic Baire semitopological group is a topological group.			
	Proc. Am. Math. Soc. 124 (1996), 953–959.	\mathbf{zbl}	MR	doi
[4]	G. Choquet: Lectures on Analysis. Vol. 1: Integration and Topological Vector Spaces.			
	Mathematics Lecture Note Series. W. A. Benjamin Inc., New-York, 1969.	\mathbf{zbl}	MR	
[5]	J. P. R. Christensen: Joint continuity of separately continuous functions. Proc. Am.			
	Math. Soc. 82 (1981), 455–461.	\mathbf{zbl}	MR	doi
[6]	G. Debs: Pointwise and uniform convergence on a Corson compact space. Topology Appl.			
	23 (1986), 299–303.	\mathbf{zbl}	MR	doi
[7]	R. Deville: Point convergence and uniform convergence on a compact space. Bull. Pol.			
	Acad. Sci., Math. 37 (1989), 507–515. (In French.)	zbl	MR	
[8]	R. Deville, G. Godefroy: Some applications of projective resolutions of identity. Proc.			
	Lond. Math. Soc., III. Ser. 67 (1993), 183–199.	\mathbf{zbl}	MR	doi
[9]	G. Hansel, JP. Troallic: Quasicontinuity and Namioka's theorem. Topology Appl. 46			
	(1992), 135-149.	\mathbf{zbl}	MR	doi
[10]	R. Haydon: Baire trees, bad norms and the Namioka property. Mathematika 42 (1995),			
	30-42.	zbl	MR	doi
[11]	P. S. Kenderov, I. S. Kortezov, W. B. Moors: Norm continuity of weakly continuous map-			
	pings into Banach spaces. Topology Appl. 153 (2006), 2745–2759.	\mathbf{zbl}	MR	doi
[12]	A. K. Mirmostafaee: Norm continuity of quasi-continuous mappings into $C_p(X)$ and			
[]	product spaces. Topology Appl. 157 (2010), 530–535.	zbl	MR	doi
[13]	A. K. Mirmostafaee: Quasi-continuity of horizontally quasi-continuous functions. Real			1
[-1, 4]	Anal. Exch. 39 (2013–2014), 335–344.	zbl	MR	doi
[14]	A. K. Mirmostafaee: Continuity of separately continuous mappings. Math. Slovaca 64	11		1 .
[1][]	(2014), 1019-1026.	ZDI	MR	<u>doi</u>
[10] [16]	I. Nathioka: Separate continuity and joint continuity. Pac. J. Math. 51 (1974), 515-551.	ZDI	MUL	doi
[10]	and Measure Space, Graduate Texts in Mathematics 2 Springer, New York, 1071	zhl	MR	doi
[17]	M Talagrand Espaces de Baire et espaces de Namioka Math Ann 270 (1985) 150-164	201	IVII (
[11]	(In French) (1900) , $109-104$.	zhl	$_{\mathrm{MR}}$	doi
		2.01	EVIII (aor

Author's address: Alireza Kamel Mirmostafaee, Center of Excellence in Analysis on Algebraic Structures, Department of Pure Mathematics, Ferdowsi University of Mashhad, P. O. Box 1159, Mashhad 91775, Mashhad, Iran, e-mail: mirmostafaei@um.ac.ir.