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1. Introduction

In a previous paper [9], we defined a new method of integrability, named weak

McShane integrability, for functions defined on a σ-finite outer regular quasi Radon

measure space (S,Σ, T , µ) into a Banach space X . In the same paper we studied its

relation with the Pettis integral, and proved that a function from S into X is weakly

McShane integrable on each member of Σ if and only if it is Pettis and weakly

McShane integrable on S. We also proved that if a function is weakly McShane

integrable on S, then it is Pettis integrable on each member of an increasing sequence

of measurable sets of finite measure with union S. Moreover, it can be seen from

our methods that for weakly sequentially complete spaces or for spaces that do not

contain a copy of c0, a weakly McShane integrable function on S is always Pettis

integrable. Moreover, in the same paper, a class of functions which are weakly

McShane integrable on S but not McShane integrable on S is also presented.

In [1], Di Piazza and Marraffa proved the multiplier theorem for the McShane

integral, that is, if f : S → X is McShane integrable on S and h ∈ L∞(S,R), then

the function hf : S → X is McShane integrable. The proof of this result uses the

usual approximation techniques and the Cauchy criterion. In the spirit of these

results, it is natural to address the following question:
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If f : S → X is a weakly McShane integrable function on S and h ∈ L∞(S,R),

does hf : S → X have to be weakly McShane integrable on S? If the answer is no,

what are the conditions for hf becoming weakly McShane integrable on S?

In the present work, we give a positive answer to above question. More generally,

it will be shown that if h ∈ L∞(S,R), f : S → X is weakly McShane integrable

and integrably bounded function on S and X is w∗-separable, then the function

hf : S → X is weakly McShane integrable on S (see Theorem 3.1). Our proof makes

use of the Vitali-Lebesgue convergence theorem for the Pettis integral and the diag-

onal process.

2. Preliminaries

In the sequel, X stands for a Banach space, whose norm is denoted by ‖·‖, and X∗

stands for the topological dual of X . The closed unit ball of X∗ is denoted by BX∗ .

By w, we denote the weak topology of X , and by w∗ the weak topology of X∗.

Let (S,Σ, µ) be a positive measure space. By Σf we denote the collection of all

measurable sets of finite measure. By L1
R
(µ) we denote the Banach space of all

(equivalence classes of) Σ-measurable and µ-integrable real-valued functions on Ω,

equipped with the classical norm ‖f‖1 :=
∫

S
|f | dµ, and by L∞(S,R) the set of all

real-valued, bounded almost everywhere on S functions. If h ∈ L∞(S,R), we denote

‖h‖∞ = inf{M > 0: |h| 6 M µ-a.e}. A function f : S → X is said to be scalarly

integrable (or Dunford integrable) if for every x∗ ∈ X∗, the real-valued function

〈x∗, f〉 belongs to L1
R
(µ). In this case, for each E ∈ Σ there is x∗∗

E ∈ X∗∗ such that

〈x∗, x∗∗
E 〉 =

∫

E

〈x∗, f〉dµ.

The vector x∗∗
E is called the Dunford integral of f over E. In the case where x

∗∗
E ∈ X

for all E ∈ Σ, f is called Pettis integrable and we write (Pe)-
∫

E
f dµ instead of x∗∗

E to

denote the Pettis integral of f over E. If f : S → X is a Pettis integrable function,

then the set {〈x∗, f〉 : x∗ ∈ BX∗} is relatively weakly compact in L1
R
(µ) (see [8],

page 162). A function f : S → X is said to be integrably bounded if the real-valued

function ‖f‖ is a member of L1
R
(µ).

Definition 2.1 ([4], Definition 246A). A subset H of L1
R
(µ) is uniformly inte-

grable if for every ε > 0 we can find a set E ∈ Σf and an M > 0 such that

∫

S

(|h| −M1E)
+ dµ 6 ε for every h ∈ H,

where (|h| −M1E)
+ := max(|h| −M1E , 0).
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Theorem 2.1 ([4], Theorem 246G). A subset H of L1
R
(µ) is uniformly integrable

if and only if

(1) sup
h∈H

∣

∣

∫

A
h dµ

∣

∣ < ∞ for every µ-atom (in the measure space sense (see [4], 211I)),

and every A ∈ Σ,

(2) for every ε > 0 there are E ∈ Σf and η > 0 such that
∣

∣

∫

F
h dµ

∣

∣ 6 ε for every

h ∈ H and for every F ∈ Σ with µ(F ∩ E) 6 η.

R em a r k 2.1 ([4], Corollary 246I). Note that when (S,Σ, µ) is a probability

space, (1) and (2) may be replaced with

lim
λ→∞

sup
h∈H

∫

{t∈S : |h(t)|>λ}

|h| dµ = 0.

R em a r k 2.2. Note that if f : S → X is a scalarly integrable and integrably

bounded function, then the set {〈x∗, f〉 : x∗ ∈ BX∗} is uniformly integrable.

The following well known result, which is the Pettis analogue of the classical Vitali

convergence theorem, will play a key role in this work (see [6], [8]).

Theorem 2.2. Let f : S → X be a scalarly integrable function satisfying the

following two conditions:

(i) {〈x∗, f〉 : x∗ ∈ BX∗} is uniformly integrable,

(ii) there exists a sequence (fn) of Pettis integrable functions from S into X such

that

lim
n→∞

∫

E

〈x∗, fn〉dµ =

∫

E

〈x∗, f〉dµ

for each x∗ ∈ X∗ and each E ∈ Σ.

Then f is Pettis integrable and

w- lim
n→∞

(Pe)-

∫

E

fn dµ = (Pe)-

∫

E

f dµ

for all E ∈ Σ.

Condition (i) may be replaced with

(i)′ {〈x∗, f〉 : x∗ ∈ BX∗} is relatively weakly compact in L1
R
(µ) (see [4], Theo-

rem 247C).

Let (S,Σ, µ) be a σ-finite positive measure space and T ⊂ Σ a topology on S

making (S, T ,Σ, µ) a quasi-Radon measure space which is outer regular, that is,

such that

µ(E) = inf{µ(G) : E ⊂ G, G ∈ T }, E ∈ Σ.
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For an extensive study of quasi-Radon measure spaces, the reader is referred to [5],

Chapter 41. A partial McShane partition is a countable (may be finite) collection

{(Ei, ti)}i∈I , where the Ei’s are pairwise disjoint measurable subsets of S with finite

measure and ti a point of S for each i ∈ I. A generalized McShane partition of S is

an infinite partial McShane partition {(Ei, ti)}i>1 such that µ
(

S \
∞
⋃

i=1

Ei

)

= 0. A

gauge on S is a function ∆: S → T such that t ∈ ∆(t) for every t ∈ S. For a given ∆

on S, we say that a partial McShane partition {(Ei, ti)}i∈I is subordinate to ∆ if

Ei ⊂ ∆(ti) for every i ∈ I. A sequence (Pm
∞) of a generalized McShane partitions

of S is said to be adapted to the sequence of gauges (∆m) if Pm
∞ is subordinate to ∆m

for each m > 1. Let f : S → X be a function. We set

σn(f,P∞) :=
n
∑

i=1

µ(Ei)f(ti)

for each infinite partial McShane partition P∞ = {(Ei, ti)}i>1.

From now on, (S, T ,Σ, µ) is a σ-finite outer regular quasi-Radon measure space.

Definition 2.2 ([3]). A function f : S → X isMcShane integrable (M-integrable

for short) with McShane integral ̟ if for every ε > 0 there is a gauge ∆: S → T

such that

lim sup
n→∞

‖σn(f,P∞)−̟‖ 6 ε

for every generalized McShane partition P∞ of S subordinate to ∆. We set ̟ :=

(M)-
∫

S
f dµ.

For the properties of McShane integrable functions on a quasi-Radon measure

space we refer to [2], [3], [4].

R em a r k 2.3. For the sake of comparison with the weak McShane integral it

is interesting to observe the two following sequential formulations of the preceding

definition.

A function f : S → X is M-integrable with McShane integral ̟ if and only if

there is a sequence of gauges (∆m) from S into T such that

lim
m→∞

sup
P∞∈Π∞(∆m)

lim sup
n→∞

‖σn(f,P∞)−̟‖ = 0,

where Π∞(∆m) denotes the collection of all generalized McShane partitions of S

subordinate to ∆m.

Equivalently,
lim

m→∞
lim sup
n→∞

‖σn(f,P
m
∞)−̟‖ = 0

for every sequence (Pm
∞) of generalized McShane partitions of S adapted to (∆m).
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Before proceeding further, we list below some basic properties of the McShane

integral that will be needed in this work. They are borrowed from [3].

Theorem 2.3. Let f : S → X be a function.

(1) If f is M-integrable, then the restriction f|A is M-integrable (with respect to

the σ-finite outer regular quasi-Radon measure space (A,A∩T , A∩Σ, µ|A)) for

every A ⊂ S.

(2) Let E ∈ Σ. Then f is M-integrable on E if and only if f|E is M-integrable,

and in this case the integrals are equal.

(3) Suppose X = R. Then f isM-integrable if and only if it is Lebesgue integrable,

and the two integrals are equal.

Definition 2.3 ([9]). We say that a function f : S → X is weakly McShane

integrable (WM-integrable for short) on S with weak McShane integral ̟ if there

is a sequence of gauges (∆m) from S into T such that the property

(∗) lim
m→∞

lim sup
n→∞

|〈x∗, σn(f,P
m
∞)〉 − 〈x∗, ̟〉| = 0

holds for every x∗ ∈ X∗ and for every sequence (Pm
∞) of generalized McShane parti-

tions of S adapted to (∆m), that is, Pm
∞ is subordinate to ∆m for each m > 1.

We set ̟ = (WM)-
∫

S
f dµ.

⊲ f is said to be WM-integrable on a measurable subset E of S if the function 1Ef

is WM-integrable on S. We set (WM)-
∫

E
f dµ := (WM)-

∫

S
1Ef dµ.

⊲ f is said to be WM-integrable on Σ if it is WM-integrable on every measurable

subset of S.

According to [9], Proposition 3.2, (∗) may be replaced with

lim
m→∞

sup
P∞∈Π∞(∆m)

lim sup
n→∞

|〈x∗, σn(f,P∞)〉 − 〈x∗, ̟〉| = 0 ∀x∗ ∈ X∗,

where Π∞(∆m) denotes the collection of all generalized McShane partitions of S

subordinate to ∆m.

In the next theorems we list basic properties of the weak McShane integral that

will be needed in this paper. They are borrowed from [9].

Theorem 2.4. Let f , g : S → X be two functions and E ∈ Σ.

(1) If f and g are WM-integrable on S and α is a real number, then αf + g is

WM-integrable on S and

(WM)-

∫

S

αf + g dµ = α(WM)-

∫

S

f dµ+ (WM)-

∫

S

g dµ.
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(2) If f is WM-integrable on S and if f = g µ-a.e., then the function g is WM-

integrable on S and

(WM)-

∫

S

g dµ = (WM)-

∫

S

f dµ.

(3) The function 1Ef is WM-integrable on S if and only if the restriction f|E is

WM-integrable on E, and the two integrals are equal.

(4) If f isWM-integrable on E, then it is scalarly integrable on E (that is, 〈x∗, f〉

is Lebesgue integrable on E for all x∗ ∈ X∗), and we have
∫

E

〈x∗, f〉dµ =

〈

x∗, (WM)-

∫

E

f dµ

〉

∀x∗ ∈ X∗.

As a consequence of Corollary 4.3 of [9], note that a function f which is WM-

integrable on S need not to be Pettis integrable; therefore notWM-integrable on Σ.

However, we have:

Theorem 2.5 ([9], Theorem 4.2 and Corollary 4.1). Let f : S → X be a function.

Then the following statements are equivalent:

(i) f is WM-integrable on Σ.

(ii) f is WM-integrable on S and the set {〈x∗, f〉 : x∗ ∈ BX∗} is uniformly inte-

grable.

(iii) f is WM-integrable on S and Pettis integrable.

3. The multiplier for the weak McShane integral

In this section we present our principal result in which we characterize the multi-

plier of the weak McShane integral:

Theorem 3.1. Let f : S → X be a WM-integrable function on S and h ∈

L∞(S,R). If

(i) f is integrably bounded, and

(ii) X is w∗-separable,

then hf is WM-integrable on S.

P r o o f. The proof of Theorem 3.1 involves the following lemma.

Lemma 3.1. Let f : S → X be a function. If

(i) there exists an increasing sequence (Sk) in Σf with union S such that 1Sk
f is

WM-integrable on S for each k > 1,

(ii) f is integrably bounded,

then f is WM-integrable on Σ.
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P r o o f. As each function 1Sk
f isWM-integrable on S, then by Theorem 2.4 (4) it

is scalarly integrable on S. Therefore by Remark 2.2 the set {〈x∗, 1Sk
f〉 : x∗ ∈ BX∗}

is uniformly integrable. It follows from Theorem 2.5 that each 1Sk
f is WM-

integrable on Σ, therefore Pettis integrable. Condition (ii) also gives that the set

{〈x∗, f〉 : x∗ ∈ BX∗} is uniformly integrable. On the other hand,

lim
k→∞

∫

E

〈x∗, 1Sk
f〉dµ = lim

k→∞

∫

E∩Sk

〈x∗, f〉dµ =

∫

E

〈x∗, f〉dµ

for all x∗ ∈ X∗ and E ∈ Σ. Then we can invoke Theorem 2.2, which shows that f

is Pettis integrable. By virtue of Theorem 2.5, it is enough to prove that f is WM-

integrable on S. Using again the WM-integrability of 1Sk
f on S and the fact that

each real-valued function 1S\Sk
‖f‖ is Lebesgue integrable (i.e. McShane integrable,

see Theorem 2.3 (3)), we obtain the existence of a sequence (∆k
m)m>1 of gauges

from S into T such that

lim
m→∞

lim sup
n→∞

∣

∣

∣

∣

〈x∗, σn(1Sk
f,Pm

∞)〉 − 〈x∗, (WM)-

∫

Sk

f dµ〉

∣

∣

∣

∣

= 0,(3.1)

lim
m→∞

lim sup
n→∞

∣

∣

∣

∣

σn(1S\Sk
‖f‖,Pm

∞)−

∫

S\Sk

‖f‖ dµ

∣

∣

∣

∣

= 0(3.2)

for every x∗ ∈ X∗ and for every sequence (Pm
∞) of McShane partitions of S adapted

to (∆k
m). For each m > 1 define the gauge ∆m from S into T by

∆m(t) :=

m
⋂

k=1

∆k
m(t), t ∈ S

and let (Pm
∞) be a sequence of generalized McShane partitions of S adapted to (∆m).

Let x∗ ∈ X∗ be arbitrary fixed. Then by the triangle inequality we have

∣

∣

∣

∣

〈x∗, σn(1Sk
f,Pm

∞)〉 −

∫

S\Sk

〈x∗, f〉dµ

∣

∣

∣

∣

6 σn(1S\Sk
‖f‖,Pm

∞) +

∣

∣

∣

∣

∫

S\Sk

〈x∗, f〉dµ

∣

∣

∣

∣

6

∣

∣

∣

∣

σn(1S\Sk
‖f‖,Pm

∞)−

∫

S\Sk

‖f‖ dµ

∣

∣

∣

∣

+ 2

∫

S\Sk

‖f‖ dµ,

and hence, by (3.2),

lim sup
m→∞

lim sup
n→∞

∣

∣

∣

∣

〈x∗, σn(1Sk
f,Pm

∞)〉 −

∫

S\Sk

〈x∗, f〉dµ

∣

∣

∣

∣

6 2

∫

S\Sk

‖f‖ dµ.
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This inequality together with (3.1) entails

lim sup
m→∞

lim sup
n→∞

∣

∣

∣

∣

〈x∗, σn(f,P
m
∞)〉 −

〈

x∗, (Pe)-

∫

S

f dµ

〉∣

∣

∣

∣

6 lim sup
m→∞

lim sup
n→∞

∣

∣

∣

∣

〈x∗, σn(1Sk
f,Pm

∞)〉 −

∫

Sk

〈x∗, f〉dµ

∣

∣

∣

∣

+ lim sup
m→∞

lim sup
n→∞

∣

∣

∣

∣

〈x∗, σn(1S\Sk
f,Pm

∞)〉 −

∫

S\Sk

〈x∗, f〉dµ

∣

∣

∣

∣

6 2

∫

S\Sk

‖f‖ dµ

for every k > 1. This yields, by letting k → ∞ in the above inequality, to

lim sup
m→∞

lim sup
n→∞

∣

∣

∣

∣

〈x∗, σn(f,P
m
∞)〉 −

〈

x∗, (Pe)-

∫

S

f dµ

〉
∣

∣

∣

∣

= 0,

because (Sk) is an increasing sequence with union S and ‖f‖ is positive and integrable

(condition (ii)). Then f is WM-integrable on S and

(WM)-

∫

S

f dµ = (Pe)-

∫

S

f dµ.

�

P r o o f of Theorem 3.1.

Case 1: µ is finite. Without loss of generality we can assume that h is bounded, see

Theorem 2.4 (2). Then by [7], Theorem 11.35, there is a sequence (hk) of real-valued

simple functions such that
lim
k→∞

‖hk − h‖∞ = 0.

Let M := sup
k>1

‖hk − h‖∞ + ‖h‖∞. Then

‖hk(t)f(t)‖ 6 M‖f(t)‖,(3.3)

‖hk(t)f(t) − h(t)f(t)‖ 6 ‖hk − h‖∞‖f(t)‖(3.4)

for all k > 1 and for all t ∈ S. Let p > 1. For each k > 1 we consider the set Ak

defined as

Ak :=
{

t ∈ S : sup
i>k

‖h(t)f(t)− hi(t)f(t)‖ 6
1

p

}

.

By virtue of inequality (3.4), it is clear that µ∗
(

S \
⋃

k>1

Ak

)

= 0. Let Bk ∈ Σ be

such that Ak ⊂ Bk and µ(Bk) = µ∗(Ak) (Bk is a measurable envelope of Ak, that

is, Ak ⊂ Bk and µ(E ∩Bk) = µ∗(E ∩ Ak) for every E ∈ Σ). So we have

1Bk
|〈x∗, h(t)f(t)− hk(t)f(t)〉| 6

1

p
a.e.
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(the exceptional set depends on x∗). Since X is w∗-separable (condition (ii)), we

must have

(3.5) 1Bk
‖h(t)f(t)− hk(t)f(t)‖ 6

1

p
∀ t ∈ S \N with µ(N) = 0.

Since by (ii) f is integrably bounded, the same is true by (3.3) for hkf . Moreover,

Theorem 2.4 (1) shows that hkf isWM-integrable on S, therefore by Remark 2.2 and

Theorem 2.5 it follows that the set {〈x∗, hkf〉 : x∗ ∈ BX∗} is uniformly integrable

for each k > 1. Using again Theorem 2.5 we obtain that each function hkf is

WM-integrable on Σ and so Pettis integrable. On the other hand, inequality (3.4)

implies

∣

∣

∣

∣

∫

E

〈x∗, hkf〉dµ−

∫

E

〈x∗, hf〉dµ

∣

∣

∣

∣

6

∫

S

|〈x∗, hkf〉dµ− 〈x∗, hf〉| dµ

6 ‖hk − h‖∞

∫

S

‖f‖ dµ

for all x∗ ∈ X∗ and E ∈ Σ. Then

lim
k→∞

∫

E

〈x∗, hkf〉dµ =

∫

E

〈x∗, hf〉dµ

for all x∗ ∈ X∗ and E ∈ Σ. Since the set {〈x∗, hf〉 : x∗ ∈ BX∗} is uniformly

integrable by inequality (3.3), then, by virtue of the Theorem 2.2, we have that hf

is Pettis integrable and

(3.6) (Pe)-

∫

E

hf dµ = w- lim
k→∞

(Pe)-

∫

E

hkf dµ ∀E ∈ Σ.

Using again the WM-integrability of hkf on Σ and the fact that each real-valued

function 1S\Bk
‖f‖ is Lebesgue integrable (i.e. McShane integrable, see Theo-

rem 2.3 (3)), we obtain the existence of a sequence (∆k
m)m>1 of gauges from S

into T such that

lim
m→∞

lim sup
n→∞

∣

∣

∣

∣

〈x∗, σn(1Bk
hkf,P

m
∞)〉 −

〈

x∗, (WM)-

∫

Bk

hkf dµ

〉
∣

∣

∣

∣

= 0,(3.7)

lim
m→∞

lim sup
n→∞

∣

∣

∣

∣

σn(1S\Bk
‖f‖,Pm

∞)−

∫

S\Bk

‖f‖ dµ

∣

∣

∣

∣

= 0(3.8)

for every x∗ ∈ X∗ and for every sequence (Pm
∞) of McShane partitions of S adapted

to (∆k
m). For each m > 1 we define the gauge ∆m from S into T by

∆m(t) :=

m
⋂

k=1

∆k
m(t), t ∈ S.
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Let (Pm
∞) = ({(Em

i , tmi )}i>1)m>1 be a sequence of generalized McShane partitions

of S adapted to (∆m). Let x∗ ∈ X∗ be arbitrary fixed. Then, by the triangle

inequality, we have

∣

∣

∣

∣

〈x∗, σn(1Bk
hf,Pm

∞)〉 −

∫

Bk

〈x∗, hf〉dµ

∣

∣

∣

∣

6 |〈x∗, σn(1Bk
hf,Pm

∞)〉 − 〈x∗, σn(1Bk
hkf,P

m
∞)〉|

+

∣

∣

∣

∣

〈x∗, σn(1Bk
hkf,P

m
∞)〉 −

∫

Bk

〈x∗, hkf〉dµ

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Bk

〈x∗, hkf〉dµ−

∫

Bk

〈x∗, hf〉dµ

∣

∣

∣

∣

6

i=n
∑

i=1

µ(Em
i )1Bk

(tmi )|〈x∗, h(tmi )f(tmi )〉 − 〈x∗, hk(t
m
i )f(tmi )〉|

+

∣

∣

∣

∣

〈x∗, σn(1Bk
hkf,P

m
∞)〉 −

〈

x∗, (WM)-

∫

Bk

hkf dµ

〉
∣

∣

∣

∣

+ ‖h− hk‖∞

∫

S

‖f‖ dµ

6
µ(S)

p
+

∣

∣

∣

∣

〈x∗, σn(1Bk
hkf,P

m
∞)〉 −

∫

Bk

〈x∗, hkf〉dµ

∣

∣

∣

∣

+ ‖h− hk‖∞

∫

S

‖f‖ dµ by (3.4) and (3.5),

and

∣

∣

∣

∣

〈x∗, σn(1S\Bk
hf,Pm

∞)〉 −

∫

S\Bk

〈x∗, hf〉dµ

∣

∣

∣

∣

6 ‖h‖∞σn(1S\Bk
‖f‖,Pm

∞) +

∣

∣

∣

∣

∫

S\Bk

〈x∗, hf〉dµ

∣

∣

∣

∣

6 ‖h‖∞

∣

∣

∣

∣

σn(1S\Bk
‖f‖,Pm

∞)−

∫

S\Bk

‖f‖ dµ

∣

∣

∣

∣

+ 2‖h‖∞

∫

S\Bk

‖f‖ dµ.

By letting, respectively, n → ∞ and m → ∞ in the above two inequalities, and

together with (3.7) and (3.8), we get

lim sup
m→∞

lim sup
n→∞

∣

∣

∣

∣

〈x∗, σn(1Bk
hf,Pm

∞)〉 −

∫

Bk

〈x∗, hf〉dµ

∣

∣

∣

∣

6
µ(S)

p
+ ‖h− hk‖∞

∫

S

‖f‖ dµ
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and

lim sup
m→∞

lim sup
n→∞

∣

∣

∣

∣

〈x∗, σn(1S\Bk
hf,Pm

∞)〉 −

∫

S\Bk

〈x∗, hf〉dµ

∣

∣

∣

∣

6 2‖h‖∞

∫

S\Bk

‖f‖ dµ,

consequently,

lim sup
m→∞

lim sup
n→∞

∣

∣

∣

∣

〈x∗, σn(hf,P
m
∞)〉 −

∫

S

〈x∗, hf〉dµ

∣

∣

∣

∣

6 lim sup
k→∞

lim sup
m→∞

lim sup
n→∞

∣

∣

∣

∣

〈x∗, σn(1Bk
hf,Pm

∞)〉 −

∫

Bk

〈x∗, hf〉dµ

∣

∣

∣

∣

+ lim sup
k→∞

lim sup
m→∞

lim sup
n→∞

∣

∣

∣

∣

〈x∗, σn(1S\Bk
hf,Pm

∞)〉 −

∫

S\Bk

〈x∗, hf〉dµ

∣

∣

∣

∣

6
µ(S)

p
.

Since lim
k→∞

µ(S \ Bk) = 0 and the function ‖f‖ is positive and integrable, by the

arbitrariness of p > 1 we get

lim sup
m→∞

lim sup
n→∞

∣

∣

∣

∣

〈x∗, σn(hf,P
m
∞)〉 −

∫

S

〈x∗, hf〉dµ

∣

∣

∣

∣

= 0

for all x∗ ∈ X∗. Thus, hf is WM-integrable on S and

(WM)-

∫

S

hf dµ = (Pe)-

∫

S

hf dµ.

Case 2: µ is σ-finite. Let (Si)i>1 be a sequence in Σf such that S =
∞
⋃

i=1

Si. Set

S′
k :=

k
⋃

i=1

Si, k > 1.

Clearly, (S′
k)k>1 is a non-decreasing sequence in Σf with union S. By condition (i),

we can invoke Theorem 2.5, which shows that each function 1S′

k
f is WM-integrable

on S. Equivalently, Theorem 2.4 (3) shows that f|S′

k
is WM-integrable on S′

k,

then by case 1, the restriction (hf)|S′

k
= h|S′

k
f|S′

k
is WM-integrable on S′

k, and

equivalently by Theorem 2.4 (3), 1S′

k
hf is WM-integrable on S and by remarking

that hf is integrably bounded (since ‖h(t)f(t)‖ = |h(t)|‖f(t)‖ 6 ‖h‖∞‖f(t)‖), we

show that hf is WM-integrable on S, in view of Lemma 3.1. �
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To close this section we would like to mention the following problem:

Problem. Let f : S → X be a McShane integrable in the limit function on S and

h ∈ L∞(S,R). Does hf : S → X have to be McShane integrable in the limit on S?

If the answer is no, what are the conditions for hf becoming McShane integrable in

the limit on S?

Recall that a function f : S → X is said to be McShane integrable in the limit on S

with McShane integral in the limit ̟ if for every ε > 0 there is a gauge ∆: S → T

such that

lim sup
n→∞

|〈x∗, σn(f,P∞)〉 − 〈x∗, ̟〉| 6 ε

for all x∗ ∈ BX∗ and for every generalized McShane partition P∞ of S subordinate

to ∆. We set ̟ := (ML)-
∫

S
f dµ (see [10]).

A c k n ow l e d gm e n t. The author wishes to thank the referee for their con-

structive critique of the first draft.
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