A USEFUL ALGEBRA FOR FUNCTIONAL CALCULUS

Mohammed Hemdaoui, Oujda
Received June 16, 2017. Published online June 6, 2018.
Communicated by Vladimír Müller

Remembering my Professor L. Waelbroeck 1929-2009

Abstract. We show that some unital complex commutative LF-algebra of $\mathcal{C}^{(\infty)} \mathbb{N}$ tempered functions on \mathbb{R}^{+}(M. Hemdaoui, 2017) equipped with its natural convex vector bornology is useful for functional calculus.

Keywords: bornology; inductive limit; Fréchet space; functional calculus
MSC 2010: 46A08, 46A13, 46A17, 47A60

1. Introduction

Let $(\mathbf{A},\|\cdot\|)$ be a unital commutative complex Banach algebra, $a \in \mathbf{A}$ and $\operatorname{sp}(a)$ be the spectrum of the element a. The positive function defined as

$$
\delta(t)= \begin{cases}\left\|(a-t)^{-1}\right\|^{-1} & \text { if } t \notin \operatorname{sp}(a) \\ 0 & \text { if } t \in \operatorname{sp}(a)\end{cases}
$$

is a Lipschitz function and it satisfies $\lim _{|t| \rightarrow \infty} \delta(t) /|t|=1$.
The set $\left\{\delta(t)(a-t)^{-1} ; t \notin \operatorname{sp}(a)\right\}$ is obviously bounded in \mathbf{A}.
More generally, Waelbroeck (see [16]) considered a unital locally convex complete commutative complex algebra \mathbf{A} and a positive Lipschitz function δ on \mathbb{C} satisfying as $|t| \rightarrow \infty$,

$$
\begin{equation*}
\varepsilon \leqslant \frac{\delta(t)}{|t|} \leqslant M \tag{1.1}
\end{equation*}
$$

where $\varepsilon>0, M>0$ are two positive real numbers independent of the variable t.

Let $a \in \mathbf{A}$ satisfy the following conditions:
$\triangleright \operatorname{sp}(a)=\delta^{-1}\{0\} ;$
\triangleright The set $\left\{\delta(t)(a-t)^{-1} ; t \notin \delta^{-1}\{0\}\right\}$ is bounded in \mathbf{A}.
$\mathrm{Sp}(a)$ is obviously compact. Waelbroeck in [16] showed that the closed subalgebra generated by a and its resolvent function $(a-t)^{-1}, t \notin \delta^{-1}\{0\}$ is a unital complex Banach algebra. He gave two different descriptions of this Banach algebra and studied the extension of the holomorphic functional calculus.

In this note, let δ be a positive Lipschitz function on \mathbb{C} and a be an element of a unital complex complete locally convex algebra (or a unital complex complete convex bornological algebra) A satisfying the following conditions:
$\triangleright \operatorname{sp}(a)=\delta^{-1}\{0\} ;$
\triangleright The set $\left\{\delta(t)(a-t)^{-1} ; t \notin \delta^{-1}\{0\}\right\}$ is bounded in \mathbf{A}.
Two questions come to mind:
(1) What can we say about the spectrum of a ?
(2) Can we describe the closed subalgebra generated by a and its resolvent function $(a-t)^{-1}, t \notin \delta^{-1}\{0\} ?$
The spectrum of the element a may be unbounded in \mathbb{C}. In this case, the closed subalgebra generated by a and its resolvent function $(a-t)^{-1}, t \notin \delta^{-1}\{0\}$ need not to be a Banach algebra. My goal is to describe this closed subalgebra and see what it looks like. Fearing of falling into a purely abstract study since the spectrum is unknown in advance, I think it is wise and prudent to treat this study on a concrete example that checks the above assumptions that surely makes this subject more interesting.

In this work bornological language is used (see [3], [4], [8], [9], [10], [15], [17]).
Consider the Laplace operator $-\Delta$ acting on $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$, the vector space of tempered distributions on \mathbb{R}^{n} (see [12]), such as

$$
T \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \rightarrow \mathfrak{F}(-\Delta T)=|\xi|^{2} \mathfrak{F}(T) \in \mathcal{S}^{\prime}\left(\mathbb{R}_{n}\right)
$$

where $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathbb{R}_{n}$, the dual space of \mathbb{R}^{n}.
For $t \in \mathbb{C} \backslash \mathbb{R}^{+}$the operator $(-\Delta-t)^{-1}$ also acts on $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ and is defined as

$$
T \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \rightarrow \mathfrak{F}\left((-\Delta-t)^{-1} T\right)=\left(|\xi|^{2}-t\right)^{-1} \mathfrak{F}(T) \in \mathcal{S}^{\prime}\left(\mathbb{R}_{n}\right),
$$

where $\mathfrak{F}(T)$ is the Fourier transform of the tempered distribution T. The spectrum of the Laplace operator $-\Delta$ is \mathbb{R}^{+}. It is closed and unbounded in \mathbb{C}.

Let δ be positive Lipschitz function on \mathbb{C} satisfying

$$
\delta(t)=\inf \left\{1, d^{n}\left(t, \mathbb{R}^{+}\right), \forall n \in \mathbb{N}\right\},
$$

where $d\left(t, \mathbb{R}^{+}\right)$is the distance from the point $t \in \mathbb{C}$ to the set \mathbb{R}^{+}.
Function δ is very flat around the positive half of the axis $\left(\mathbb{R}^{+}\right)$, for example one considers function

$$
\delta(t)=\mathrm{e}^{-1 / d^{2}\left(t, \mathbb{R}^{+}\right)} \quad \forall t \in \mathbb{C}
$$

The function δ satisfies

$$
\frac{\delta(t)}{|t|} \leqslant 1 \quad \forall t \in \mathbb{C}
$$

$\mathbb{C}_{\delta}(-\Delta)$ denotes the complex unital commutative algebra generated by $-\Delta$ and its resolvent function $(-\Delta-t)^{-1}, t \notin \delta^{-1}\{0\}=\mathbb{R}^{+}$. An element of this algebra is an operator of the form

$$
\sum_{\substack{0 \leqslant \leqslant \leqslant m \\ 0 \leqslant j \leqslant n}} C_{k_{i}, k_{j}^{\prime}}(-\Delta)^{k_{i}}(-\Delta-t)^{-k_{j}^{\prime}}, \quad t \in \mathbb{C} \backslash \mathbb{R}^{+}, C_{k_{i}, k_{j}^{\prime}} \in \mathbb{C}, k_{i}, k_{j}^{\prime}, m, n \in \mathbb{N} .
$$

Let $(M, m, n) \in \mathbb{R}^{+} \times \mathbb{N} \times \mathbb{N}$. Consider the convex and balanced subset in $\mathbb{C}_{\delta}(-\Delta)$ defined as

$$
B_{(M, m, n)}=\left\{\sum_{\substack{0 \leqslant i \leqslant m \\ 0 \leqslant j \leqslant n}} C_{k_{i}, k_{j}^{\prime}} \delta(t)(-\Delta)^{k_{i}}(-\Delta-t)^{-k_{j}^{\prime}}, t \notin \delta^{(-1)}\{0\}, \sum_{\substack{0 \leqslant i \leqslant m \\ 0 \leqslant j \leqslant n}}\left|C_{k_{i}, k_{j}^{\prime}}\right| \leqslant M\right\} .
$$

These subsets $\left(B_{(M, m, n)}\right)_{(M, m, n) \in \mathbb{R}^{+} \times \mathbb{N} \times \mathbb{N}}$ satisfy
(1) $B_{(M, m, n)}+B_{\left(M^{\prime}, m^{\prime}, n\right)} \subseteq B_{\left(M^{\prime \prime}, m^{\prime \prime}, n^{\prime \prime}\right)}$, where $M^{\prime \prime}=M+M^{\prime}, m^{\prime \prime}=\sup \left\{m, m^{\prime}\right\}$, $n^{\prime \prime}=\sup \left\{n, n^{\prime}\right\}$,
(2) $\lambda \cdot B_{(M, m, n)} \subseteq B_{(|\lambda| M, m, n)}$ for all $\lambda \in \mathbb{C}$,
(3) $B_{(M, m, n)} \cdot B_{\left(M^{\prime}, m^{\prime}, n^{\prime}\right)} \subseteq B_{\left(M^{\prime \prime}, m^{\prime \prime}, n^{\prime \prime}\right)}$, where $M^{\prime \prime}=M \cdot M^{\prime}$, $m^{\prime \prime}=m+m^{\prime}$, $n^{\prime \prime}=n+n^{\prime}$.
This family of subsets $\left(B_{(M, m, n)}\right)_{(M, m, n) \in \mathbb{R}^{+} \times \mathbb{N} \times \mathbb{N}}$ is a filter basis compatible with the algebraic structure of algebra $\mathbb{C}_{\delta}(-\Delta)$. It is also a convex vector bornology basis (see [9], [10]). A subset $B \subset \mathbb{C}_{\delta}(-\Delta)$ is said to be bounded if it is contained in some $B_{(M, m, n)}$. This natural convex vector bornology on algebra $\mathbb{C}_{\delta}(-\Delta)$ is separated since no one-dimensional vector subspace of algebra $\mathbb{C}_{\delta}(-\Delta)$ is bounded (see [9], [10]).

The positive Lipschitz function δ and the operator $-\Delta$ satisfy
(1) $(-\Delta-t)^{-1}$ exists for $t \notin \delta^{-1}\{0\}$ in $\mathbb{C}_{\delta}(-\Delta)$;
(2) The set $\left\{\delta(t)(-\Delta-t)^{-1}, t \notin \delta^{-1}\{0\}\right\} \subseteq B_{(1,0,1)}$ is bounded in $\mathbb{C}_{\delta}(-\Delta)$.

A bounded multiplicative linear functional φ on $\mathbb{C}_{\delta}(-\Delta)$ maps bounded sets in $\mathbb{C}_{\delta}(-\Delta)$ into bounded sets in \mathbb{C}. Functional φ is defined if and only if its value $\varphi(-\Delta)$ is defined. But $(-\Delta-t)^{-1}$ exists in $\mathbb{C}_{\delta}(-\Delta)$ if and only if $t \notin \delta^{-1}(0)=\mathbb{R}^{+}$. So, $\varphi\left((-\Delta-t)^{-1}\right)=(-\varphi(\Delta)-t)^{-1}$ exists in \mathbb{C} if and only if $t \notin \delta^{-1}(0)=\mathbb{R}^{+}$. This happens if and only if $-\varphi(\Delta) \in \mathbb{R}^{+}$.

The set $\Phi_{\mathbb{C}_{\delta}(-\Delta)}$ of bounded multiplicative linear functionals on $\mathbb{C}_{\delta}(-\Delta)$ is identified with \mathbb{R}^{+}in the sense

$$
\varphi \in \Phi_{\mathbb{C}_{\delta}(-\Delta)} \Leftrightarrow \exists!x \in \mathbb{R}^{+} \text {such that } \varphi(-\Delta)=x
$$

The separated convex bornological algebra $\mathbb{C}_{\delta}(-\Delta)$ is not necessarily complete. Its completion convex bornological algebra is $\widehat{\mathbb{C}_{\delta}(-\Delta)}$ (see [8], [9], [10]).

Our goal is to show that the completion convex bornological algebra $\widehat{\mathbb{C}_{\delta(-\Delta)}}$ is bornologically isomorphic to some unital complex commutative LF-algebra of class $\mathcal{C}^{(\infty)}$ functions \mathbb{N}-tempered on \mathbb{R}^{+}(see [7]) equipped with its natural convex vector bornology. This bornological isomorphism is obtained by using the functional calculus theorem (see [6]) and Gelfand transform.

2. Functional calculus theorem

For $\varepsilon \in] \frac{1}{2}, 1[$ consider the closed sector in the complex plan defined by

$$
T_{\varepsilon}=\{z \in \mathbb{C}: \Re e(z) \geqslant-\varepsilon \text { and }|\arg (z+\varepsilon)| \leqslant \varepsilon\}
$$

$\mathcal{C}^{(1)}\left(T_{\varepsilon}, \delta, \delta_{0}, \mathbb{C}\right)$ denotes the unital commutative algebra of complex continuous functions f on the closed sector T_{ε} and of class $\mathcal{C}^{(1)}$ in $\stackrel{\circ}{\tau}_{\varepsilon}$ satisfying for a certain positive integer $N \in \mathbb{N}$

$$
\begin{equation*}
\|f\|_{N}=\sup _{t \in T_{\varepsilon}} \delta_{0}^{N}(t)|f(t)|+\frac{1}{2 \pi} \int_{T_{\varepsilon}} \delta_{0}^{N}(t) \delta^{-1}(t)|\bar{\partial} f(t) \mathrm{d} t|<\infty \tag{2.1}
\end{equation*}
$$

where $\delta_{0}(t)=1 / \sqrt{1+|t|^{2}}, \bar{\partial} f(t)=\partial(f(t) \mathrm{d} \bar{t}) / \partial \bar{t}$ and δ is the positive Lipschitz function defined in the first paragraph.
$\mathcal{C}_{N}^{(1)}\left(T_{\varepsilon}, \delta, \delta_{0}, \mathbb{C}\right)$ denotes the vector subspace of $\mathcal{C}^{(1)}\left(T_{\varepsilon}, \delta, \delta_{0}, \mathbb{C}\right)$ of functions f satisfying equation (2.1) for the same positive integer N, which normed by (2.1) is a complex Banach space.

For any pair $\left(N, N^{\prime}\right) \in \mathbb{N} \times \mathbb{N}$ such that $N \leqslant N^{\prime}$ the canonical injection

$$
i_{N, N^{\prime}}: \mathcal{C}_{N}^{(1)}\left(T_{\varepsilon}, \delta, \delta_{0}, \mathbb{C}\right) \hookrightarrow \mathcal{C}_{N^{\prime}}^{(1)}\left(T_{\varepsilon}, \delta, \delta_{0}, \mathbb{C}\right)
$$

is continuous since it satisfies

$$
\left\|i_{N, N^{\prime}}(f)\right\|_{N^{\prime}}=\|f\|_{N^{\prime}} \leqslant\|f\|_{N}
$$

For any pair $\left(N, N^{\prime}\right) \in \mathbb{N} \times \mathbb{N}$ the bilinear mapping

$$
(f, g) \in \mathcal{C}_{N}^{(1)}\left(T_{\varepsilon}, \delta, \delta_{0}, \mathbb{C}\right) \times \mathcal{C}_{N^{\prime}}^{(1)}\left(T_{\varepsilon}, \delta, \delta_{0}, \mathbb{C}\right) \rightarrow f \cdot g \in \mathcal{C}_{N+N^{\prime}}^{(1)}\left(T_{\varepsilon}, \delta, \delta_{0}, \mathbb{C}\right)
$$

is continuous since it satisfies

$$
\|f \cdot g\|_{N+N^{\prime}} \leqslant\|f\|_{N}\|g\|_{N^{\prime}}
$$

The unital commutative algebra $\mathcal{C}^{(1)}\left(T_{\varepsilon}, \delta, \delta_{0}, \mathbb{C}\right)=\bigcup_{N \in \mathbb{N}} \mathcal{C}_{N}^{(1)}\left(T_{\varepsilon}, \delta, \delta_{0}, \mathbb{C}\right)$ is equipped with the inductive limit topology of Banach spaces $\mathcal{C}_{N}^{(1)}\left(T_{\varepsilon}, \delta, \delta_{0}, \mathbb{C}\right)$.

A set $B \subset \mathcal{C}^{(1)}\left(T_{\varepsilon}, \delta, \delta_{0}, \mathbb{C}\right)$ is bounded if there exists a pair $\left(N^{\prime}, M^{\prime}\right) \in \mathbb{N} \times \mathbb{R}^{+}$ such that $B \subset \mathcal{C}_{N^{\prime}}^{(1)}\left(T_{\varepsilon}, \delta, \delta_{0}, \mathbb{C}\right)$ and

$$
\|f\|_{N^{\prime}}=\sup _{t \in T_{\varepsilon}} \delta_{0}^{N^{\prime}}(t)|f(t)|+\frac{1}{2 \pi} \int_{T_{\varepsilon}} \delta_{0}^{N^{\prime}}(t) \delta^{-1}(t)|\bar{\partial} f(t) \mathrm{d} t| \leqslant M^{\prime} \quad \forall f \in B .
$$

The family of convex and balanced sets $\left(B_{\left(N^{\prime}, M^{\prime}\right)}\right)_{\left(N^{\prime}, M^{\prime}\right) \in \times \mathbb{R}^{+}}$, where

$$
B_{\left(N^{\prime}, M^{\prime}\right)}=\left\{f \in \mathcal{C}_{N^{\prime}}^{(1)}\left(T_{\varepsilon}, \delta, \delta_{0}, \mathbb{C}\right):\|f\|_{N^{\prime}} \leqslant M^{\prime}\right\},
$$

is a natural convex vector bornology basis (see [9] and [10]) on the algebra $\mathcal{C}^{(1)}\left(T_{\varepsilon}, \delta, \delta_{0}, \mathbb{C}\right)$.

The complete convex bornological algebra $\mathcal{C}^{(1)}\left(T_{\varepsilon}, \delta, \delta_{0}, \mathbb{C}\right)=\underset{\sim}{\lim } \mathcal{C}_{N}^{(1)}\left(T_{\varepsilon}, \delta, \delta_{0}, \mathbb{C}\right)$ is a b-algebra (see [15]).

Theorem 2.1 ([6]). There exists a bounded algebra homomorphism

$$
T: f \in \mathcal{C}^{(1)}\left(T_{\varepsilon}, \delta, \delta_{0}, \mathbb{C}\right) \rightarrow T(f)=f[-\Delta] \in \widehat{\mathbb{C}_{\delta}(-\Delta)} .
$$

The proof of Theorem 2.1 is very technical, so we omit it (see [5], [11], [13], [14] and [18]).

Corollary 2.2 ([6]). The kernel of the bounded algebra homomorphism

$$
T: f \in \mathcal{C}^{(1)}\left(T_{\varepsilon}, \delta, \delta_{0}, \mathbb{C}\right) \rightarrow T(f)=f[-\Delta] \in \widehat{\mathbb{C}_{\delta}(-\Delta)}
$$

is the closed ideal $\left\{f \in \mathcal{C}^{(1)}\left(T_{\varepsilon}, \delta, \delta_{0}, \mathbb{C}\right): f(x)=0\right.$ for all $\left.x \in \mathbb{R}^{+}\right\}$.

Theorem 2.3. Let $f \in \mathcal{C}_{N}^{(1)}\left(T_{\varepsilon}, \delta, \delta_{0}, \mathbb{C}\right)$. Then its restriction $\left.f\right|_{\mathbb{R}^{+}}$to \mathbb{R}^{+}satisfies (1) $\left.f\right|_{\mathbb{R}^{+}}$is of class $\mathcal{C}^{(\infty)}$ on \mathbb{R}^{+};
(2) for all $n \in \mathbb{N}$, $\sup \delta_{0}^{N}(x)\left|f^{(n)}(x)\right|<\infty$,
where $\delta_{0}(x)=1 / \sqrt{1+x^{2}}$ and $f^{(n)}$ is the nth derivative of f.
Proof. For $f \in \mathcal{C}_{N}^{(1)}\left(T_{\varepsilon}, \delta, \delta_{0}, \mathbb{C}\right)$ we have

$$
\|f\|_{N}=\sup _{t \in T_{\varepsilon}} \delta_{0}^{N}(t)|f(t)|+\frac{1}{2 \pi} \int_{T_{\varepsilon}} \delta_{0}^{N}(t) \delta^{-1}(t)|\bar{\partial} f(t) \mathrm{d} t|<\infty .
$$

Fix $\varepsilon \in] 0,1\left[\right.$ and x in \mathbb{R}^{+}. Put $\varrho=(x+\varepsilon) \sin \varepsilon>0$. Consider the closed discus centered at x with radius $\varrho>0$:

$$
D(x, \varrho)=\left\{z \in T_{\varepsilon}:|z-x| \leqslant \varrho\right\} .
$$

Function f is continuous on the sector T_{ε} and of class $\mathcal{C}^{(1)}$ in $\stackrel{\circ}{T}_{\varepsilon}$, using Pompieu formula (generalized Cauchy formula) on the closed discus $D(x, \varrho)$. We have

$$
f(x)=\frac{1}{2 \pi \mathrm{i}} \int_{\partial D(x, \varrho)} \frac{f(t)}{t-x} \mathrm{~d} t+\frac{1}{2 \pi \mathrm{i}} \int_{D(x, \varrho)} \frac{1}{t-x} \bar{\partial} f(t) \mathrm{d} t,
$$

where $\bar{\partial} f(t)=\partial(f(t) \mathrm{d} \bar{t}) / \partial \bar{t}$.
For all $n \in \mathbb{N}$ function $t \in \partial D(x, \varrho) \rightarrow f(t)(t-x)^{-n}$ is continuous on the compact boundary. So the integral $\int_{\partial D(x, \varrho)} f(t)(t-x)^{-n} \mathrm{~d} t$ exists for all $n \in \mathbb{N}$.

The differential form $t \in D(x, \varrho) \rightarrow(t-x)^{-n} \bar{\partial} f(t)$ is integrable on the compact discus $D(x, \varrho)$ since

$$
\frac{\delta(t)}{|t-x|^{n}} \leqslant 1 \quad \forall n \in \mathbb{N} \forall t \in D(x, \varrho)
$$

and

$$
\int_{\partial D(x, \varrho)} \delta_{0}^{N}(t) \delta^{-1}(t) \frac{\delta(t)}{|t-x|^{n}}|\bar{\partial} f(t) \mathrm{d} t| \leqslant \int_{T_{\varepsilon}} \delta_{0}^{N}(t) \delta^{-1}(t)|\bar{\partial} f(t) \mathrm{d} t|<\infty
$$

Thus, for every positive integer $n \in \mathbb{N}$ we have

$$
f^{(n)}(x)=\frac{n!}{2 \pi \mathrm{i}} \int_{\partial D(x, \varrho)} \frac{f(t)}{(t-x)^{n+1}} \mathrm{~d} t+\frac{n!}{2 \pi \mathrm{i}} \int_{D(x, \varrho)} \frac{1}{(t-x)^{n+1}} \bar{\partial} f(t) \mathrm{d} t
$$

So $\left.f\right|_{\mathbb{R}^{+}}$is of class $\mathcal{C}^{(\infty)}$ on \mathbb{R}^{+}.
Now, we show for all $n \in \mathbb{N}, \sup _{x \in \mathbb{R}^{+}} \delta_{0}^{N}(x)\left|f^{(n)}(x)\right|<\infty$. In fact:

$$
\delta_{0}^{N}(x) f^{(n)}(x)=\frac{n!}{2 \pi \mathrm{i}} \int_{\partial D(x, \varrho)} \delta_{0}^{N}(x) \frac{f(t)}{(t-x)^{n+1}} \mathrm{~d} t+\frac{n!}{2 \pi \mathrm{i}} \int_{D(x, \varrho)} \delta_{0}^{N}(x) \frac{\bar{\partial} f(t)}{(t-x)^{n+1}} \mathrm{~d} t
$$

For the first integral we have

$$
\left|\frac{n!}{2 \pi \mathrm{i}} \int_{\partial D(x, \varrho)} \delta_{0}^{N}(x) \frac{f(t)}{(t-x)^{n+1}} \mathrm{~d} t\right| \leqslant \frac{n!}{2 \pi \varrho^{n}} \sup _{t \in \partial B(x, \varrho)}\left(\frac{\delta_{0}(x)}{\delta_{0}(t)}\right)^{N} \sup _{t \in T_{\varepsilon}} \delta_{0}^{N}(t)|f(t)| .
$$

For the second integral, since $\delta(t) /|t-x|^{n} \leqslant 1$ for all $n \in \mathbb{N}$, we get

$$
\begin{aligned}
& \left|\frac{n!}{2 \pi \mathrm{i}} \int_{D(x, \varrho)} \delta_{0}^{N}(x) \frac{\bar{\partial} f(t)}{(t-x)^{n+1}} \mathrm{~d} t\right| \\
& \quad \leqslant \frac{n!}{2 \pi} \sup _{t \in B(x, \varrho)}\left(\frac{\delta_{0}(x)}{\delta_{0}(t)}\right)^{N} \int_{T_{\varepsilon}} \delta_{0}^{N}(t) \delta^{-1}(t)|\bar{\partial} f(t) \mathrm{d} t|<\infty .
\end{aligned}
$$

Since $|t-x|=\varrho$, we have $t=x+\varrho \mathrm{e}^{\theta \mathrm{i}}=x+\varrho \cos \theta+\varrho \sin \theta$ i. So

$$
|t|^{2}=(x+\varrho \cos \theta)^{2}+(\varrho \sin \theta)^{2} \leqslant(x+\varrho)^{2} .
$$

But $\varrho=(x+\varepsilon) \sin \varepsilon$, where $\varrho \in] 0,1\left[\right.$. We have $|t|^{2} \leqslant(2 x+1)^{2}$. So

$$
\left(\frac{\delta_{0}(x)}{\delta_{0}(t)}\right)^{N}=\left(\frac{1+|t|^{2}}{1+x^{2}}\right)^{N / 2} \leqslant\left(\frac{1+(2 x+1)^{2}}{1+x^{2}}\right)^{N / 2}=\sqrt[N]{\frac{4 x^{2}+4 x+2}{1+x^{2}}}
$$

The positive continuous function of one real variable

$$
x \in\left[0, \infty\left[\rightarrow \sqrt[N]{\frac{4 x^{2}+4 x+2}{1+x^{2}}}\right.\right.
$$

is bounded on \mathbb{R}^{+}. There exists a positive real number $C_{N}>0$ such that

$$
\sqrt[N]{\frac{4 x^{2}+4 x+2}{1+x^{2}}} \leqslant C_{N} \quad \forall x \geqslant 0
$$

So, for every positive integer n and ϱ fixed in $] 0,1[$ we get

$$
\left|\frac{n!}{2 \pi \mathrm{i}} \int_{\partial D(x, \varrho)} \delta_{0}^{N}(x) \frac{f(t)}{(t-x)^{n+1}} \mathrm{~d} t\right| \leqslant \frac{n!C_{N}}{2 \pi(\varepsilon \sin \varepsilon)^{n}} \sup _{t \in T_{\varepsilon}} \delta_{0}^{N}(t)|f(t)|<\infty
$$

and

$$
\left|\frac{n!}{2 \pi \mathrm{i}} \int_{D(x, e)} \delta_{0}^{N}(x) \frac{\bar{\partial} f(t)}{(t-x)^{n+1}} \mathrm{~d} t\right| \leqslant \frac{n!C_{N}}{2 \pi(\varepsilon \sin \varepsilon)^{n}} \int_{T_{\varepsilon}} \delta_{0}^{N}(t) \delta^{-1}(t)|\bar{\partial} f(t) \mathrm{d} t|<\infty .
$$

Finally, for all $n \in \mathbb{N} \Rightarrow \exists M_{(\varepsilon, n, N)}>0$ such that $\delta_{0}^{N}(x)\left|f^{(n)}(x)\right| \leqslant M_{(\varepsilon, n, N)}$,

$$
\sup _{t \in T_{\varepsilon}} \delta_{0}^{N}(t)|f(t)|+\frac{1}{2 \pi} \int_{T_{\varepsilon}} \delta_{0}^{N}(t) \delta^{-1}(t)|\bar{\partial} f(t) \mathrm{d} t|<\infty
$$

So

$$
\forall n \in \mathbb{N}, \quad \sup _{x \in \mathbb{R}^{+}} \delta_{0}^{N}(x)\left|f^{(n)}(x)\right| \leqslant M_{(\varepsilon, n, N)}\|f\|_{N}<\infty
$$

where $M_{(\varepsilon, n, N)}=n!C_{N} / 2 \pi(\varepsilon \sin \varepsilon)^{n}$.

Definition 2.4 ([7]). Let N be a positive integer. A $\mathcal{C}^{(\infty)}$ complex function f on \mathbb{R}^{+}is N-tempered if for any positive integer $n \in \mathbb{N}$ the nth derivative $f^{(n)}$ of f satisfies

$$
\sup _{x \in \mathbb{R}^{+}} \delta_{0}^{N}(x)\left|f^{(n)}(x)\right|<\infty,
$$

where $\delta_{0}(x)=1 / \sqrt{1+x^{2}}$.
For every positive integer $N \in \mathbb{N}, \mathcal{C}_{N}^{(\infty)}\left(\mathbb{R}^{+}, \delta_{0}, \mathbb{C}\right)$ denotes the vector space of functions of class $\mathcal{C}^{(\infty)} N$-tempered on \mathbb{R}^{+}equipped with the family of norms

$$
f \in \mathcal{C}_{N}^{(\infty)}\left(\mathbb{R}^{+}, \delta_{0}, \mathbb{C}\right) \rightarrow\|f\|_{N, n}=\sup _{0 \leqslant k \leqslant n} \sup _{x \in \mathbb{R}^{+}} \delta_{0}^{N}(x)\left|f^{(k)}(x)\right|, \quad n \in \mathbb{N}
$$

$\left(\mathcal{C}_{N}^{(\infty)}\left(\mathbb{R}^{+}, \delta_{0}, \mathbb{C}\right),\left(\|\cdot\|_{N, n}\right)_{n \in \mathbb{N}}\right)$ is a Fréchet space (see [12]).
For any pair $\left(N, N^{\prime}\right)$ of positive integers such that $N \leqslant N^{\prime}$ the canonical injection

$$
i_{N, N^{\prime}}: \mathcal{C}_{N}^{(\infty)}\left(\mathbb{R}^{+}, \delta_{0}, \mathbb{C}\right) \hookrightarrow \mathcal{C}_{N^{\prime}}^{(\infty)}\left(\mathbb{R}^{+}, \delta_{0}, \mathbb{C}\right)
$$

is obviously continuous since

$$
\left\|i_{N, N^{\prime}}(f)\right\|_{N^{\prime}, n}=\|f\|_{N^{\prime}, n} \leqslant\|f\|_{N, n} \quad \forall f \in \mathcal{C}_{N}^{(\infty)}\left(\mathbb{R}^{+}, \delta_{0}, \mathbb{C}\right)
$$

Consider the bilinear mapping

$$
(f, g) \in \mathcal{C}_{N}^{(\infty)}\left(\mathbb{R}^{+}, \delta_{0}, \mathbb{C}\right) \times \mathcal{C}_{N^{\prime}}^{(\infty)}\left(\mathbb{R}^{+}, \delta_{0}, \mathbb{C}\right) \rightarrow f \cdot g \in \mathcal{C}_{N+N^{\prime}}^{(\infty)}\left(\mathbb{R}^{+}, \delta_{0}, \mathbb{C}\right)
$$

Let $n \in \mathbb{N}$, the nth derivative $(f \cdot g)^{(n)}$ of the function $f \cdot g$ at any point $x \in \mathbb{R}^{+}$by Leibniz formula is

$$
(f(x) g(x))^{(n)}=\sum_{p=0}^{n}\binom{n}{p} f^{(n-p)}(x) \cdot g^{(p)}(x)
$$

where $\binom{n}{p}=n!/(n-p)!p!$ is the binomial coefficient.
So

$$
\delta_{0}^{N+N^{\prime}}(x)\left|(f(x) g(x))^{(n)}\right| \leqslant 2^{n} \sup _{x \in \mathbb{R}^{+}} \sup _{0 \leqslant k \leqslant n} \delta_{0}^{N}(x)\left|f^{(k)}(x)\right| \sup _{x \in \mathbb{R}^{+}} \sup _{0 \leqslant p \leqslant n} \delta_{0}^{N^{\prime}}(x)\left|g^{(p)}(x)\right| .
$$

Then

$$
\forall n \in \mathbb{N}, \quad\|f \cdot g\|_{N+N^{\prime}, n} \leqslant 2^{n}\|f\|_{N, n}\|g\|_{N^{\prime}, n}
$$

This inequality shows the continuity of the bilinear mapping

$$
(f, g) \in \mathcal{C}_{N}^{(\infty)}\left(\mathbb{R}^{+}, \delta_{0}, \mathbb{C}\right) \times \mathcal{C}_{N^{\prime}}^{(\infty)}\left(\mathbb{R}^{+}, \delta_{0}, \mathbb{C}\right) \rightarrow f \cdot g \in \mathcal{C}_{N+N^{\prime}}^{(\infty)}\left(\mathbb{R}^{+}, \delta_{0}, \mathbb{C}\right)
$$

The vector space $\mathcal{C}_{\mathbb{N}}^{(\infty)}\left(\mathbb{R}^{+}, \delta_{0}, \mathbb{C}\right)=\underset{\vec{N}}{\lim _{N}} \mathcal{C}_{N}^{(\infty)}\left(\mathbb{R}^{+}, \delta_{0}, \mathbb{C}\right)=\bigcup_{N \in \mathbb{N}} \mathcal{C}_{N}^{(\infty)}\left(\mathbb{R}^{+}, \delta_{0}, \mathbb{C}\right)$ of functions of class $\mathcal{C}^{(\infty)} \mathbb{N}$-tempered on \mathbb{R}^{+}equipped with the inductive limit topology of Fréchet spaces $\mathcal{C}_{N}^{(\infty)}\left(\mathbb{R}^{+}, \delta_{0}, \mathbb{C}\right)$ is a unital complex commutative topological algebra since the bilinear mapping

$$
(f, g) \in \mathcal{C}_{\mathbb{N}}^{(\infty)}\left(\mathbb{R}^{+}, \delta_{0}, \mathbb{C}\right) \times \mathcal{C}_{\mathbb{N}}^{(\infty)}\left(\mathbb{R}^{+}, \delta_{0}, \mathbb{C}\right) \rightarrow f \cdot g \in \mathcal{C}_{\mathbb{N}}^{(\infty)}\left(\mathbb{R}^{+}, \delta_{0}, \mathbb{C}\right)
$$

is continuous.
Let $\left(N,\left(M_{N, n}\right)_{n \in \mathbb{N}}\right) \in \mathbb{N} \times \mathbb{R}^{+\mathbb{N}}$ and the convex and balanced subset be defined as

$$
B_{\left(N,\left(M_{N, n}\right)_{n \in \mathbb{N}}\right)}=\left\{f \in \mathcal{C}_{N}^{(\infty)}\left(\mathbb{R}^{+}, \delta_{0}, \mathbb{C}\right): \forall n \in \mathbb{N},\|f\|_{N, n} \leqslant M_{N, n}\right\}
$$

The family $\left(B_{\left(N,\left(M_{N, n}\right)_{n \in \mathbb{N}}\right)}\right)_{\left(N,\left(M_{N, n}\right)_{n \in \mathbb{N}}\right) \in \mathbb{N} \times \mathbb{R}^{+N}}$ of subsets satisfies
(1) $B_{\left(N,\left(M_{N}, n\right)_{n \in \mathbb{N}}\right)}+B_{\left(N^{\prime},\left(M_{N^{\prime}}^{\prime}, n\right)_{n \in \mathbb{N}}\right)} \subseteq B_{\left(N^{\prime \prime},\left(M_{N^{\prime \prime}}^{\prime \prime}, n\right)_{n \in \mathbb{N}}\right)}$, where for all $n \in \mathbb{N}$, $M_{N^{\prime \prime}, n}^{\prime \prime}=M_{N, n}+M_{N^{\prime}, n}^{\prime}$ and $N^{\prime \prime}=\sup \left(N, N^{\prime}\right)$,
(2) $\lambda \cdot B_{\left(N,\left(M_{N}, n\right)_{n \in \mathrm{~N}}\right)} \subseteq B_{\left(N,\left(|\lambda| \cdot M_{N}, n\right)_{n \in \mathrm{~N}}\right)}$ for all $\lambda \in \mathbb{C}$,
(3) $B_{\left(N,\left(M_{N}, n\right)_{n \in \mathbb{N}}\right)} \cdot B_{\left(N^{\prime},\left(M_{N^{\prime}}^{\prime}, n\right)_{n \in \mathbb{N}}\right)} \subseteq B_{\left(N^{\prime \prime},\left(M_{N^{\prime \prime}}^{\prime \prime}, n\right)_{n \in \mathbb{N}}\right)}$, where for all $n \in \mathbb{N}$, $M_{N^{\prime \prime}, n}^{\prime \prime}=\sum_{p=0}^{n} M_{N, n-p} \cdot M_{N^{\prime}, p}^{\prime}$.
This family $\left(B_{\left(N,\left(M_{N, n}\right)_{n \in \mathbb{N}}\right)}\right)_{\left(N,\left(M_{N, n}\right)_{n \in \mathbb{N}}\right) \in \mathbb{N} \times \mathbb{R}^{+\mathbb{N}}}$ of subsets is a natural convex vector bornology basis (see [9], [10]) compatible with the vector structure of the algebra $\mathcal{C}_{\mathbb{N}}^{(\infty)}\left(\mathbb{R}^{+}, \delta_{0}, \mathbb{C}\right)$.

A set $B \subset \mathcal{C}_{\mathbb{N}}^{(\infty)}\left(\mathbb{R}^{+}, \delta_{0}, \mathbb{C}\right)$ is bounded if there exists a pair $\left(N,\left(M_{N, n}\right)_{n \in \mathbb{N}}\right)$ in $\mathbb{N} \times \mathbb{R}^{+\mathbb{N}}$ such that $B \subset B_{\left(N,\left(M_{N, n}\right)_{n \in \mathbb{N}}\right)} \subset \mathcal{C}_{N}^{(\infty)}\left(\mathbb{R}^{+}, \delta_{0}, \mathbb{C}\right)$.
$\mathcal{C}_{\mathbb{N}}^{(\infty)}\left(\mathbb{R}^{+}, \delta_{0}, \mathbb{C}\right)$ equipped with this family of bounded sets becomes a unital complex complete commutative convex bornological algebra (see [9], [10]). $\mathcal{C}_{\mathbb{N}}^{(\infty)}\left(\mathbb{R}^{+}, \delta_{0}, \mathbb{C}\right)$ is a unital complex commutative LF-algebra.

Theorem 2.3 ensures that the restriction mapping

$$
\mathcal{R}_{N}: \mathcal{C}_{N}^{(1)}\left(T_{\varepsilon}, \delta, \delta_{0}, \mathbb{C}\right) \rightarrow \mathcal{C}_{N}^{(\infty)}\left(\mathbb{R}^{+}, \delta_{0}, \mathbb{C}\right)
$$

is continuous. Since

$$
\mathcal{C}^{(1)}\left(T_{\varepsilon}, \delta, \delta_{0}, \mathbb{C}\right)=\underset{N}{\lim } \mathcal{C}_{N}^{(1)}\left(T_{\varepsilon}, \delta, \delta_{0}, \mathbb{C}\right) \text { and } \mathcal{C}_{\mathbb{N}}^{(\infty)}\left(\mathbb{R}^{+}, \delta_{0}, \mathbb{C}\right)=\underset{\vec{N}}{\lim } \mathcal{C}_{N}^{(\infty)}\left(\mathbb{R}^{+}, \delta_{0}, \mathbb{C}\right),
$$

(see [1], [2], [12]) there exists a unique continuous restriction mapping

$$
\mathcal{R}: f \in \mathcal{C}^{(1)}\left(T_{\varepsilon}, \delta, \delta_{0}, \mathbb{C}\right) \rightarrow \mathcal{R}(f)=\left.f\right|_{\mathbb{R}^{+}} \in \mathcal{C}_{\mathbb{N}}^{(\infty)}\left(\mathbb{R}^{+}, \delta_{0}, \mathbb{C}\right)
$$

satisfying for every positive integer $N \in \mathbb{N}$ the commutative diagram

$$
\begin{align*}
& \mathcal{C}_{N}^{(1)}\left(T_{\varepsilon}, \delta, \delta_{0}, \mathbb{C}\right) \xrightarrow{\mathcal{C}_{N}} \mathcal{C}_{N}^{\mathcal{R}_{N}}\left(\mathbb{R}^{(\infty)}\right) \tag{2.2}\\
& \left.\mathbb{R}^{+}, \delta_{0}, \mathbb{C}\right) \\
& \mathcal{C}^{(1)}\left(T_{\varepsilon}, \delta, \delta_{0}, \mathbb{C}\right) \xrightarrow{\mathcal{R}} \stackrel{i}{N}^{\mathcal{C}_{\mathbb{N}}^{(\infty)}}\left(\mathbb{R}^{+}, \delta_{0}, \mathbb{C}\right),
\end{align*}
$$

where

$$
\mathcal{P}_{N}=i_{N} \circ \mathcal{R}_{N}=\mathcal{R} \circ j_{N} \quad \forall N \in \mathbb{N}
$$

and
$i_{N}: \mathcal{C}_{N}^{(\infty)}\left(\mathbb{R}^{+}, \delta_{0}, \mathbb{C}\right) \rightarrow \mathcal{C}_{\mathbb{N}}^{(\infty)}\left(\mathbb{R}^{+}, \delta_{0}, \mathbb{C}\right)$ is the continuous canonical injection,
$j_{N}: \mathcal{C}_{N}^{(1)}\left(T_{\varepsilon}, \delta, \delta_{0}, \mathbb{C}\right) \rightarrow \mathcal{C}^{(1)}\left(T_{\varepsilon}, \delta, \delta_{0}, \mathbb{C}\right)$ is the continuous canonical injection,
$\mathcal{R}_{N}: \mathcal{C}_{N}^{(1)}\left(T_{\varepsilon}, \delta, \delta_{0}, \mathbb{C}\right) \rightarrow \mathcal{C}_{N}^{(\infty)}\left(\mathbb{R}^{+}, \delta_{0}, \mathbb{C}\right)$ is the continuous restriction mapping.
3. Bornological isomorphism between $\widehat{\mathbb{C}_{\delta}(-\Delta)}$ AND $\mathcal{C}_{\mathbb{N}}^{(\infty)}\left(\mathbb{R}^{+}, \delta_{0}, \mathbb{C}\right)$

In Section 1, we considered the Laplace operator acting on $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ (the space of tempered distributions on \mathbb{R}^{n}) and δ being the Lipschitz function considered in the first paragraph.

The spectrum of the Laplace operator is \mathbb{R}^{+}.
$\mathbb{C}_{\delta}(-\Delta)$ denotes the unital commutative complex algebra generated by the Laplace operator $-\Delta$ and the resolvent function $(-\Delta-t)^{-1}, t \notin \delta^{-1}(0)=\mathbb{R}^{+}$equipped with the described convex vector bornology. Its completion convex bornological algebra is $\widehat{\mathbb{C}_{\delta}(-\Delta)}$ (see [8], [9], [10]).
$\Phi_{\mathbb{C}_{\delta}(-\Delta)}=\left(\varphi_{x}\right)_{x \in \mathbb{R}^{+}}$denotes the set of all bounded multiplicative linear functionals on the convex bornological algebra $\mathbb{C}_{\delta}(-\Delta)$ identified with \mathbb{R}^{+}.

The Gelfand transform is the algebra homomorphism defined by

$$
\begin{gathered}
u \in \mathbb{C}_{\delta}(-\Delta) \rightarrow \widehat{G}(u)=\widehat{u}: \mathbb{R}^{+} \rightarrow \mathbb{C} \\
\widehat{u}\left(\varphi_{x}\right)=\varphi_{x}(u)=u(x) \in \mathbb{C}, \quad x \in \mathbb{R}^{+} .
\end{gathered}
$$

But $u \in \mathbb{C}_{\delta}(-\Delta)$, so it is an operator of the form

$$
u=\sum_{\substack{0 \leqslant i \leqslant m \\ 0 \leqslant j \leqslant n}} C_{k_{i}, k_{j}^{\prime}}(-\Delta)^{k_{i}}(-\Delta-t)^{-k_{j}^{\prime}}, \quad t \in \mathbb{C} \backslash \mathbb{R}^{+}, C_{k_{i}, k_{j}^{\prime}} \in \mathbb{C}, k_{i}, k_{j}^{\prime}, m, n \in \mathbb{N} .
$$

So,

$$
u(x)=\sum_{\substack{0 \leqslant i \leqslant m \\ 0 \leqslant j \leqslant n}} C_{k_{i}, k_{j}^{\prime}} \frac{x^{k_{i}}}{(x-t)^{k_{j}^{\prime}}} \quad \forall t \in \mathbb{C} \backslash \mathbb{R}^{+} .
$$

For a fixed t the function of variable $x \in \mathbb{R}^{+}$

$$
\delta(t) u(x)=\sum_{\substack{0 \leqslant i \leqslant m \\ 0 \leqslant j \leqslant n}} C_{k_{i}, k_{j}^{\prime}} \delta(t) \frac{x^{k_{i}}}{(x-t)^{k_{j}^{\prime}}} \quad \forall t \in \mathbb{C} \backslash \mathbb{R}^{+}
$$

is of class $\mathcal{C}^{(\infty)}$ and k-tempered on \mathbb{R}^{+}since by Leibniz formula, the derivative of order n of the function u with respect to the variable x is

$$
\delta(t) u^{(n)}(x)=\sum_{\substack{0 \leqslant i \leqslant m \\ 0 \leqslant j \leqslant n}} C_{k_{i}, k_{j}^{\prime}} \delta(t) \sum_{p=0}^{n}\binom{n}{p}\left(x^{k_{i}}\right)^{(n-p)}\left(\frac{1}{(x-t)^{k_{j}^{\prime}}}\right)^{(p)}
$$

It is a finite sum of terms each one of which is at most k-tempered on \mathbb{R}^{+}since we have

$$
\frac{\delta(t)}{|x-t|^{l}} \leqslant 1 \quad \forall l \in \mathbb{N}, \forall x \in \mathbb{R}^{+}, \forall t \in \mathbb{C} \backslash \mathbb{R}^{+}
$$

Thus, we have

$$
\forall n \in \mathbb{N}, \quad \sup _{x \in \mathbb{R}^{+}} \delta_{0}^{k}(x) \delta(t)\left|u^{(n)}(x)\right|<\infty
$$

where $k=\sup _{0 \leqslant i \leqslant m} k_{i} \in \mathbb{N}$.
Obviously, the Gelfand transform $\widehat{G}: \mathbb{C}_{\delta}(-\Delta) \rightarrow \mathcal{C}_{\mathbb{N}}^{(\infty)}\left(\mathbb{R}^{+}, \delta_{0}, \mathbb{C}\right)$ is injective and bounded algebra homomorphism. It can be extended (see [8], [9], [10]) as a unique bounded algebra homomorphism $\widetilde{\widehat{G}}: \widehat{\mathbb{C}_{\delta(-\Delta)}} \rightarrow \mathcal{C}_{\mathbb{N}}^{(\infty)}\left(\mathbb{R}^{+}, \delta_{0}, \mathbb{C}\right)$ satisfying the diagram

where $\widetilde{\widehat{G}} \circ \mathcal{J}=\widehat{G}$ and $\mathcal{J}: \mathbb{C}_{\delta}(-\Delta) \rightarrow \widehat{\mathbb{C}_{\delta}(-\Delta)}$ is the canonical bounded algebra homomorphism.

Theorem 3.1. The continuous restriction mapping

$$
\mathcal{R}: \mathcal{C}^{(1)}\left(T_{\varepsilon}, \delta, \delta_{0}, \mathbb{C}\right) \rightarrow \mathcal{C}_{\mathbb{N}}^{(\infty)}\left(\mathbb{R}^{+}, \delta_{0}, \mathbb{C}\right)
$$

is surjective.

Proof. Let $f \in \mathcal{C}_{\mathbb{N}}^{(\infty)}\left(\mathbb{R}^{+}, \delta_{0}, \mathbb{C}\right) \Rightarrow \exists\left(N,\left(M_{N}, n\right)_{n \in \mathbb{N}}\right) \in \mathbb{N} \times \mathbb{R}^{+\mathbb{N}}$ such that

$$
\forall n \in \mathbb{N}, \quad \sup _{x \in \mathbb{R}^{+}} \delta_{0}^{N}(x)\left|f^{(n)}(x)\right|=M_{N, n}<\infty
$$

Applying Borel theorem and Lemma 3.1 of [7] for all $\varepsilon>0, f$ can be extended as a $\mathcal{C}^{(1)}$ function $\widetilde{f}_{\varepsilon}$ defined in $[-\varepsilon, \infty[+\mathbb{R i}$ by a locally finite series

$$
\widetilde{f}_{\varepsilon}(x+y \mathrm{i})=\sum_{n=0}^{\infty} \frac{1}{n!} f_{\varepsilon}^{(n)}(x) \varphi_{n}(y)(y \mathrm{i})^{n}
$$

such that

$$
\left.\frac{\partial}{\partial \bar{z}} \widetilde{f}_{\varepsilon}(z)\right|_{\{z=x\}}=0 \quad \forall x \in[-\varepsilon, \infty[,
$$

where $\left(\varphi_{n}\right)_{n \in \mathbb{N}}$ is a sequence of $\mathcal{C}^{(\infty)}$ positive functions with compact support in]-1, 1 [satisfying
(1) $\varphi_{n}(y)=1$ if $|y| \leqslant \frac{1}{2} \alpha_{n}^{-1}$ for all $n \in \mathbb{N}$,
(2) $\operatorname{supp}\left(\varphi_{n+1}\right) \subset \operatorname{supp}\left(\varphi_{n}\right)$ for all $n \in \mathbb{N}$,
where

$$
\forall n \in \mathbb{N}, \quad M_{N, n}=\sup _{x \in[-\varepsilon, \infty[} \delta_{0}^{N}(x)\left|f_{\varepsilon}^{(n)}(x)\right| \quad \text { and } \quad \alpha_{n}=\sum_{p=0}^{n+1}\left(M_{N, p}+1\right) .
$$

$\widetilde{f}_{\varepsilon}$ is defined on the sector T_{ε} since $T_{\varepsilon} \subset[-\varepsilon, \infty[+\mathbb{R}$.
A calculation leads to

$$
\left\|\widetilde{f}_{\varepsilon}\right\|_{N+2}=\sup _{z \in T_{\varepsilon}} \delta_{0}^{N+2}(z)\left|\widetilde{f}_{\varepsilon}(z)\right|+\frac{1}{2 \pi} \int_{T_{\varepsilon}} \delta_{0}^{N+2}(t) \delta^{-1}(t)\left|\frac{\partial}{\partial \bar{t}} \widetilde{f}_{\varepsilon}(t) \mathrm{d} \bar{t} \mathrm{~d} t\right|<\infty
$$

where $\delta_{0}(z)=1 / \sqrt{1+|z|^{2}}$ and $\delta(z)=\inf \left\{1, d^{n}\left(z, \mathbb{R}^{+}\right)\right.$for all $\left.n \in \mathbb{N}\right\}$.
Thus $\widetilde{f}_{\varepsilon} \in \mathcal{C}_{N+2}^{(1)}\left(T_{\varepsilon}, \delta, \delta_{0}, \mathbb{C}\right) \subset \mathcal{C}^{(1)}\left(T_{\varepsilon}, \delta, \delta_{0}, \mathbb{C}\right)$.
Since the bounded restriction algebra homomorphism \mathcal{R} is surjective (Theorem 3.1) there exists a bounded algebra homomorphism

$$
\widetilde{T}: \mathcal{C}_{\mathbb{N}}^{(\infty)}\left(\mathbb{R}^{+}, \delta_{0}, \mathbb{C}\right) \rightarrow \widehat{\mathbb{C}_{\delta}(-\Delta)}
$$

satisfying the commutative diagram

where $\widetilde{T} \circ \mathcal{R}=T$, and $\mathcal{C}_{\mathbb{N}}^{(\infty)}\left(\mathbb{R}^{+}, \delta_{0}, \mathbb{C}\right)$ is the algebra of $\mathcal{C}^{(\infty)} \mathbb{N}$-tempered functions on \mathbb{R}^{+}.
$\mathcal{C}^{(1)}\left(T_{\varepsilon}, \delta, \delta_{0}, \mathbb{C}\right)$ is the algebra of functions defined in Section 2.
From diagrams 3.1 and 3.2 we get the following equations

$$
\begin{array}{lll}
\widetilde{\widehat{G}} \circ \mathcal{J}=\widehat{G} & \text { and } & \widetilde{T} \circ \mathcal{R}=T, \\
\widetilde{T} \circ \widehat{G}=\mathcal{J} & \text { and } & \widetilde{\widehat{G}} \circ T=\mathcal{R} . \tag{3.4}
\end{array}
$$

From equations (3.3) and (3.4) we get the following new equations

$$
\begin{equation*}
\widetilde{\widehat{G}} \circ \widetilde{T}=1_{\mathcal{C}_{N}^{(\infty)}\left(\mathbb{R}+\delta_{0}, \mathbb{C}\right)} \quad \text { and } \quad \widetilde{T} \circ \widetilde{\widehat{G}}=1_{\widehat{\mathbb{C}_{\delta}(-\Delta)}}, \tag{3.5}
\end{equation*}
$$

where $1_{\widehat{C_{\delta(-\Delta)}}}$ and $1_{\mathcal{C}_{N}^{(\infty)}\left(\mathbb{R}^{+}, \delta_{0}, \mathbb{C}\right)}$ are, respectively, the identity operators on $\widehat{\mathbb{C}_{\delta(-\Delta)}}$ and $\mathcal{C}_{\mathbb{N}}^{(\infty)}\left(\mathbb{R}^{+}, \delta_{0}, \mathbb{C}\right)$.

The algebras $\mathcal{C}_{\mathbb{N}}^{(\infty)}\left(\mathbb{R}^{+}, \delta_{0}, \mathbb{C}\right)$ and $\widehat{\mathbb{C}_{\delta}(-\Delta)}$ are bornologically isomorphic.
The complete convex bornological algebra $\mathcal{C}_{\mathbb{N}}^{(\infty)}\left(\mathbb{R}^{+}, \delta_{0}, \mathbb{C}\right)$ of $\mathcal{C}^{(\infty)} \mathbb{N}$-tempered functions on \mathbb{R}^{+}is then useful for functional calculus.

Acknowledgements. The author would like to express his thanks to the referee for his suggestions and remarks concerning this paper.

References

[1] N. Bourbaki: Éléments de Mathématique. Fasc. XXVII: Algèbre Commutative. Hermann, Paris, 1961. (In French.)
[2] N. Bourbaki: Éléments de Mathématique. Fasc. XXXII: Théories spectrales. Hermann, Paris, 1967. (In French.)
[3] H. Buchwalter: Espaces vectoriels bornologiques. Publ. Dép. Math., Lyon 2 (1965), 2-53. (In French.)
zbl MR
[4] J. P. Ferrier: Séminaire sur les Algèbres complètes. Lectures Notes in Mathematics 164. Berlin, Springer, 1970. (In French.)
zbl MR doi
[5] M. Hemdaoui: Approximations analytique sur les compacts de \mathbb{C}^{n}. Thèse $3^{\text {ème }}$ cycle. Année universitaire (Février) 1982. Université des Sciences et Technologies. Lille 1, France (In French.); Avaible at https://ori-nuxeo.univ-lille1.fr/nuxeo/site/ esupversions/1b9d01d3-5d59-496d-877d-9ca2a836b129.
[6] M. Hemdaoui: Calcul symbolique et l'opérateur de Laplace. Thèse Année Académique 1986-1987: ULB. Bruxelles, Belgique (In French.); Avaible at https://dipot.ulb.ac.be/dspace/bitstream/2013/213480/1/680effa8-3d2a-4225-bcb6-c0c6e156cac8.txt.
[7] M. Hemdaoui: An application of Mittag-Leffler lemma to the L.F algebra of $\mathcal{C}^{(\infty)}$ \mathbb{N}-tempered functions on \mathbb{R}^{+}. Sarajevo J. Math. 13 (2017), 61-70.
[8] H. Hogbe-Nlend: Complétion, tenseurs et nucléarité en bornologie. J. Math. Pures Appl., IX. Sér. 49 (1970), 193-288. (In French.)
[9] H. Hogbe-Nlend: Theory of Bornologies and Application. Lecture Notes 213. Springer, Berlin, 1971. (In French.)
zbl MR doi
[10] H. Hogbe-Nlend: Bornologies and Functional Analysis. Introductory Course on the Theory of Duality Topology-Bornology and Its Use in Functional Analysis. North-Holland Mathematics Studies 26; Notas de Matematica 62. North Holland Publishing Company, Amsterdam, 1977.

```
zbl MR doi
```

[11] Nguyen The Hoc: Croissance des coefficients spectraux et calcul fonctionnel. Thèse Année Académique 1975-1976. ULB. Bruxelles, Belgique (In French.); Avaible at https://dipot.ulb.ac.be/dspace/bitstream/2013/214383/1/62487895-bcef-4c2e-b604-8eab9d4023a7.txt.
[12] J. Horvarth: Topological Vector Spaces and Distributions. Vol. 1. Addison-Wesley Series in Mathematics. Addison-Wesley, Ontario, 1966.
zbl MR
[13] F. H. Vasilescu: Analytic Functional Calculus and Spectral Decompositions. Mathematics and Its Applications 1 (East European Series). D. Reidel Publishing compagny, Dordrecht, 1982.
zbl MR
[14] L. Waelbroeck: Le calcul symbolique dans les algèbres commutatives. C. R. Acad. Sci., Paris 238 (1954), 556-558. (In French.)
zbl MR
[15] L. Waelbroeck: Études spectrales des algèbres complètes. Mém. Cl. Sci., Collect. Octavo, Acad. R. Belg. 31 (1960), 142 pages. (In French.)
zbl MR
[16] L. Waelbroeck: Calcul symbolique lié à la croissance de la résolvante. Rend. Sem. Mat. Fis. Milano 34 (1964), 51-72. (In French.)
zbl MR doi
[17] L. Waelbroeck: The holomorphic functional calculus and non-Banach algebras. Algebras in Analysis. Proc. Instr. Conf. and NATO Advanced Study Inst., Birmingham 1973. Academic Press, London, 1975, pp. 187-251.
zbl MR
[18] W. Wrobel: Extension du calcul fonctionnel holomorphe et applications à l'approximation. C. R. Acad. Sci. Paris, Sér. A 275 (1972), 175-177. (In French.)

Author's address: Mohammed Hemdaoui, Laboratoire Analyse Géométrie et Applications (LAGA), Université Mohamed Premier, Faculté des Sciences, Département de Mathématiques, Oujda, Maroc, e-mail: mhemdaoui@yahoo.fr.

