SOME RESULTS ON SEMI-STRATIFIABLE SPACES

WEI-FENG XUAN, YAN-KUI SONG, Nanjing

Received May 9, 2017. Published online April 12, 2018. Communicated by Pavel Pyrih

Abstract. We study relationships between separability with other properties in semistratifiable spaces. Especially, we prove the following statements:

(1) If X is a semi-stratifiable space, then X is separable if and only if X is $DC(\omega_1)$;

(2) If X is a star countable extent semi-stratifiable space and has a dense metrizable subspace, then X is separable;

(3) Let X be a ω -monolithic star countable extent semi-stratifiable space. If $t(X) = \omega$ and $d(X) \leq \omega_1$, then X is hereditarily separable.

Finally, we prove that for any T_1 -space X, $|X| \leq L(X)^{\Delta(X)}$, which gives a partial answer to a question of Basile, Bella, and Ridderbos (2011). As a corollary, we show that $|X| \leq e(X)^{\omega}$ for any semi-stratifiable space X.

Keywords: semi-stratifiable space; separable space; dense subset; feebly compact space; ω -monolithic space; property $DC(\omega_1)$; star countable extent space; cardinal equality; countable chain condition; perfect space; G^*_{δ} -diagonal

MSC 2010: 54D20, 54E35

1. INTRODUCTION

All topological spaces in this paper are assumed to be T_1 -spaces unless stated otherwise. The notation of semi-stratifiable spaces was first introduced in [5] by Creede in 1970.

Definition 1.1. A space X is called semi-stratifiable (see [5]) if there is a function G which assigns to each $n \in \omega$ and a closed set $H \subset X$, an open set G(n, H)containing H such that

(1)
$$H = \bigcap G(n, H);$$

(2) $H \subset \overset{n}{K} \Rightarrow G(n, H) \subset G(n, K).$

The paper is supported by NSFC project 11626131 and 11771029.

DOI: 10.21136/MB.2018.0043-17

113

It is well known that the class of semi-stratifiable spaces can be characterized by a q-function.

Lemma 1.2 ([5]). A topological space (X, τ) is semi-stratifiable if there exists a function $q: \omega \times X \to \tau$ such that:

- (1) $\{x\} = \bigcap_{n \in \omega} g(n, x)$ for any $x \in X$; (2) if $x \in g(n, x_n)$ for each n, then $x_n \to x$.

This class of spaces lies between the class of semi-metric spaces and the class of spaces in which closed sets are G_{δ} (i.e. perfect spaces). It turns out that a T₁-space is semi-metric if and only if it is first countable and semi-stratifiable. A completely regular space is a Moore space if and only if it is a semi-stratifiable *p*-space.

In this paper, we study the relationships between separability with other properties in semi-stratifiable spaces. In Section 3, we prove the following statements:

(1) If X is a semi-stratifiable space, then X is separable if and only if X is $DC(\omega_1)$ (see Theorem 3.6);

(2) If X is a star countable extent semi-stratifiable space and has a dense metrizable subspace, then X is separable (see Theorem 3.12);

(3) Let X be a ω -monolithic star countable extent semi-stratifiable space. If $t(X) = \omega$ and $d(X) \leq \omega_1$, then X is hereditarily separable (see Theorem 3.17).

In Section 4, we prove that for any T_1 -space $X, |X| \leq L(X)^{\Delta(X)}$ (see Theorem 4.2), which gives a partial answer to a question of [4]. As a corollary, we show that $|X| \leq e(X)^{\omega}$ for any semi-stratifiable space X (see Corollary 4.5).

2. NOTATION AND TERMINOLOGY

The cardinality of a set A is denoted by |A|. Let ω denote the first infinite cardinal and ω_1 the first uncountable cardinal. We also write 2^{ω} for the cardinality of the continuum. As usual, a cardinal is the initial ordinal and an ordinal is the set of smaller ordinals.

If X is a space and \mathcal{U} is a family of subsets of X, then the star of a subset $A \subset X$ with respect to \mathcal{U} is the set

$$\operatorname{St}(A,\mathcal{U}) = \bigcup \{ U \in \mathcal{U} \colon U \cap A \neq \emptyset \}.$$

Definition 2.1 ([14]). Let \mathcal{P} be a topological property. A space X is said to be star \mathcal{P} if for any open cover \mathcal{U} of X there is a subset $A \subset X$ with property \mathcal{P} such that St(A, U) = X. The set A will be called a *star kernel* of the cover U.

Therefore, a space X is said to be *star countable extent* (SCE) (see [12]) if for any open cover \mathcal{U} of X there is a subspace $A \subset X$ of countable extent such that $\operatorname{St}(A,\mathcal{U}) = X$. We have the well-known implications:

separable \Rightarrow star countable \Rightarrow star Lindelöf \Rightarrow SCE.

In general, none of the implications can be reversed (see [2], [12]).

Definition 2.2 ([10]). We say that a space X has property $DC(\omega_1)$ if it has a dense subspace every uncountable subset of which has a limit point in X.

Definition 2.3. The *density* of a space X is defined as the smallest cardinal number of the form |A|, where A is a dense subset of X; this cardinal number is denoted by d(X).

Definition 2.4. We say that X has *countable tightness* if for any $x \in \overline{A}$ for any A of X there exists a countable subset A_0 of A such that $x \in \overline{A_0}$; it is denoted by $t(X) = \omega$.

Definition 2.5 ([9]). The *extent* of a topological space X, denoted by e(X), is the supremum of the cardinalities of closed discrete subsets of X.

Definition 2.6. The *Lindelöf number* is defined in the following way: $L(X) = \min\{\tau: \text{ for any open cover } \gamma \text{ there exists a subcover } \gamma' \text{ such that } |\gamma'| \leq \tau \}.$

Definition 2.7 ([18]). We say that a space X has a G_{δ} -diagonal if there is a countable family $\{U_n: n \in \omega\}$ of open neighbourhoods of the diagonal Δ_X in the square $X \times X$ such that $\Delta_X = \bigcap \{U_n: n \in \omega\}$.

Definition 2.8 ([3]). A space X has a strong rank 1-diagonal or G^*_{δ} -diagonal if there exists a sequence $\{\mathcal{U}_n : n \in \omega\}$ of open covers of X such that for each $x \in X$, $\{x\} = \bigcap\{\overline{\operatorname{St}(x, \mathcal{U}_n)} : n \in \omega\}.$

Definition 2.9. A topological space X is called *perfect* if every closed subset of X is a G_{δ} -set.

Definition 2.10. A space X is subparacompact if every open cover of X has a σ -discrete closed refinement.

Definition 2.11 ([15]). A space X has countable chain condition (abbreviated as CCC) if any disjoint family of open sets in X is countable, that is, the Souslin number (or cellularity) of X is at most ω .

All notations and terminology not explained in the paper are given in [6].

3. The separability of semi-stratifiable spaces

With the aid of the following lemma, we can deduce Proposition 3.2.

Lemma 3.1 ([8]). Every semi-stratifiable space is perfect, subparacompact and has a G_{δ} -diagonal. Moreover, if the space is regular, then it has a G_{δ}^* -diagonal.

Proposition 3.2. Every Tychonoff pseudocompact semi-stratifiable space is separable.

Proof. Since every regular semi-stratifiable space has a G_{δ}^* -diagonal (i.e. strong rank 1-diagonal) by Lemma 3.1, the conclusion is an easy corollary of [3], Theorem 3.12.

Theorem 3.3 ([5]). In a semi-stratifiable space X, the following statements are equivalent:

- (1) X is Lindelöf;
- (2) X is hereditarily separable;
- (3) X has countable extent.

Lemma 3.4 ([5]). A semi-stratifiable space is hereditarily semi-stratifiable.

Lemma 3.5. If X is a perfect space and D is an uncountable discrete subset of X, then there exists an uncountable subset $E \subset D$ which is closed and discrete in X.

Proof. Let $\mathcal{U} = \{U(d): d \in D\}$ be an uncountable family of open subsets of X such that $U(d) \cap D = \{d\}$ for each $d \in D$. Since X is perfect, there are closed subsets F_n for $n \in \omega$ such that

$$\bigcup_{d\in D} U_d = \bigcup_{n\in\omega} F_n.$$

It is evident that there is an uncountable subset $E = D \cap F_{n_0} \subset X$ for some $n_0 \in \omega$. Now we show that E is closed and discrete in X. Suppose it is not, then there is an accumulation point ξ for E. Since F_{n_0} is closed, we have

$$\xi \in F_{n_0} \subset \bigcup_{n \in \omega} F_n = \bigcup_{d \in D} U_d.$$

Therefore there exists $d' \in D$ such that $\xi \in U(d')$, and hence U(d') shall contain infinite points of E, which contradicts with the choice of \mathcal{U} . This completes the proof.

116

Theorem 3.6. If X is a semi-stratifiable space, then X is separable if and only if X is $DC(\omega_1)$.

Proof. The necessity yields immediately from the definition of $DC(\omega_1)$. Now we prove the sufficiency. Assume that Y is the dense subspace of X which witnesses that X is $DC(\omega_1)$. We claim that Y is Lindelöf. Suppose it is not. Let \mathcal{U} be an open cover of Y and suppose that \mathcal{U} has no countable subcover. Since Y is semi-stratifiable (and hence subparacompact) by Lemma 3.4, \mathcal{U} has a closed refinement $\mathcal{F} = \bigcup_{n=1}^{\infty} \mathcal{F}_n$, where each \mathcal{F}_n is discrete in Y. Since \mathcal{U} has no countable subcover, there is an n such that \mathcal{F}_n is uncountable. Let D be a subset of Y consisting of exactly one point of each nonempty element of \mathcal{F}_n . It is evident that D is uncountable and discrete in Y. Since X is perfect (Lemma 3.1), there exists an uncountable subset $E \subset D \subset Y$ which is closed and discrete in X by Lemma 3.5, which contradicts the hypothesis on Y. It follows from Theorem 3.3 that Y is hereditarily separable, so X is separable since Y is dense in X.

Corollary 3.7. Every $DC(\omega_1)$ Moore space is separable.

Proof. Immediately follows from the fact that a Moore space is always semi-stratifiable (see [8], page 484). $\hfill \Box$

Corollary 3.8. If a semi-stratifiable space X has a dense subspace of countable extent, then X is separable.

Proof. Let Y be a dense subspace of X of countable extent, then every uncountable subset of Y has an accumulation point in Y. It remains to apply Theorem 3.6. (Note that Corollary 3.8 also follows directly from Theorem 3.3 and Lemma 3.4.) \Box

Corollary 3.9. Each semi-stratifiable space with a dense Lindelöf subspace is separable.

Corollary 3.10. Each semi-stratifiable space with a dense σ -compact subspace is separable.

Lemma 3.11 ([12]). Let X be a semi-stratifiable space. The following statements are equivalent:

- (1) X is star countable;
- (2) X is star Lindelöf;
- (3) X is SCE.

Theorem 3.12. Let X be a SCE semi-stratifiable space. If X has a dense metrizable subspace, then X is separable.

Proof. We claim that X is CCC. Suppose it is not. Let $\mathcal{W} = \{U_{\alpha}: \alpha < \omega_1\}$ be an uncountable pairwise disjoint family of nonempty open sets of X. For each $\alpha < \omega_1$, pick a point $x_{\alpha} \in U_{\alpha}$ and let $D = \{x_{\alpha}: \alpha < \omega_1\}$. It follows from Lemma 3.5 that there exists an uncountable subset $E \subset D$ which is closed and discrete in X, since X is perfect (see Lemma 3.1). Let $\mathcal{U} = \{U_{\alpha}: x_{\alpha} \in E\} \cup \{X \setminus E\}$. Clearly, \mathcal{U} is an open cover for which there is no countable subset A of X such that $St(A, \mathcal{U}) = X$. This shows that X is not star countable, and therefore X is not SCE (see Lemma 3.11). A contradiction. Let Y be the dense metrizable subspace of X. Since X is CCC, Y is also CCC. Therefore Y and X are separable. \Box

Corollary 3.13. If X is a SCE semi-stratifiable space and has a dense paracompact subspace, then X is separable.

Proof. Let Y be a dense paracompact subspace of X. Using the proof of Theorem 3.12, it can be shown that Y is CCC. Since every CCC paracompact space is Lindelöf, X has a dense Lindelöf subspace Y. Therefore, by Corollary 3.9, X is separable. \Box

Corollary 3.14. If X is a SCE semi-stratifiable space and has a dense subspace of isolated points, then X is separable.

Proof. Note that every discrete space is metrizable. \Box

Corollary 3.15. If X is a SCE semi-stratifiable space and has a dense GO-subspace, then X is separable.

Proof. Note that the property of being semi-stratifiable is equivalent to being metrizable for any GO-space. $\hfill \Box$

Corollary 3.16. If X is a Čech-complete, SCE semi-stratifiable space, then X is separable.

Proof. Since X is Čech-complete, X contains a dense paracompact Čech-complete subspace Y (see [13]). Hence, Y is metrizable (see [6]). Therefore, by Theorem 3.12, X and Y are separable. (Since Y is paracompact, we also can get to the conclusion by Corollary 3.13.)

For any infinite cardinal κ , a space is called κ -monolithic if $nw(\overline{A}) \leq \kappa$ for any set $A \subset X$ with $|A| \leq \kappa$.

Theorem 3.17. Let X be a ω -monolithic, SCE and semi-stratifiable space. Then X is hereditarily separable if X satisfies one of the following conditions:

- (1) X is first countable;
- (2) $|X| \leq \omega_1;$
- (3) $t(X) = \omega$ and $d(X) \leq \omega_1$.

Proof. (1) It was established in [17] that the extent of a ω -monolithic star countable W-space (see [17], Definition 1.8) is countable, so we have $e(X) = \omega$ since every first countable space is a W-space. Hence, by Theorem 3.3, X is hereditarily separable.

(2) It follows from Proposition 1.16 in [1] that if X is a star countable ω -monolithic space with $|X| = \omega_1$, then $e(X) \leq \omega$, so X has countable extent. Hence, by Theorem 3.3, X is hereditarily separable.

(3) Since $d(X) \leq \omega_1$, there exists a dense subset A of X with $|A| \leq \omega_1$. If $|A| < \omega_1$, it is obvious that X is separable. We assume that $|A| = \omega_1$. Enumerate A as $\{x_{\alpha} : \alpha < \omega_1\}$ and let $F_{\alpha} = \overline{\{x_{\beta} \in A : \beta < \alpha\}}$ for each $\alpha < \omega_1$. Then we have an ω_1 -sequence $\mathcal{F} = \{F_{\alpha} : \alpha < \omega_1\}$ of increasing closed separable subsets of X.

Suppose that there exists a closed and discrete set $D \subset X$ with $|D| = \omega_1$. By ω monolithity of X, for any subset $F_{\alpha} \subset X$ we have the inequality $|F_{\alpha} \cap D| \leq \omega < \omega_1$, so we can construct by induction a set $D' = \{d_{\alpha} : \alpha < \omega_1\} \subset D$ and an open expansion $\mathcal{U} = \{U_{\alpha} : \alpha < \omega_1\}$ of D' such that $\alpha \neq \beta$ implies $d_{\alpha} \neq d_{\beta}$ while $U_{\alpha} \cap D' = \{d_{\alpha}\}$ and $U_{\alpha} \cap F_{\alpha} = \emptyset$ for every $\alpha < \omega_1$.

Now we check that \mathcal{U} is point-countable. For any point $x \in X$, $x \in \overline{A}$. Since $t(X) = \omega$, there exists a countable subset A_0 of A such that $x \in \overline{A_0}$, and hence there exists some F_{α} such that $x \in A_0 \subset F_{\alpha}$. By the construction of \mathcal{F} and \mathcal{U} , it is not difficult to see that $x \in F_{\beta}$ and $F_{\beta} \cap U_{\beta} = \emptyset$ for any $\beta > \alpha$, which implies $x \notin U_{\beta}$ for any $\beta > \alpha$. This shows that \mathcal{U} is point-countable.

Let $\mathcal{W} = \{U_{\alpha} : \alpha < \omega_1\} \cup \{X \setminus D'\}$. Clearly, \mathcal{W} is an open cover of X. Since X is star countable (see Lemma 3.11), there is a countable subset C of X such that $\operatorname{St}(C, \mathcal{W}) = X$. It is evident that $|\{U_{\alpha} \in \mathcal{U} : U_{\alpha} \cap C \neq \emptyset\}| \leq \omega$, since \mathcal{U} is point-countable. It follows that there exists $U_{\beta} \in \mathcal{U}$ such that $U_{\beta} \cap C = \emptyset$ and hence there is $d_{\beta} \in D'$ such that $d_{\beta} \notin \operatorname{St}(C, \mathcal{W}) = X$. A contradiction.

This proves that X has countable extent. Hence, by Theorem 3.3, X is hereditarily separable. $\hfill \Box$

4. CARDINAL EQUALITIES

Before giving the main results, let us recall some definitions from [4]. We say that a space X has a G_{κ} -diagonal if there is a family $\{G_{\alpha}: \alpha < \kappa\}$ of open sets in $X \times X$ such that $\Delta_X = \bigcap_{\alpha < \kappa} G_{\alpha}$, where $\Delta_X = \{(x, x): x \in X\}$. The diagonal degree of X, denoted by $\Delta(X)$, is the smallest infinite cardinal κ such that X has a G_{κ} -diagonal. Clearly, $\Delta(X) = \omega$ if and only if X has a G_{δ} -diagonal.

The following question was posted in [4] by Basile, Bella, and Ridderbos.

Question 4.1. Does the inequality $|X| \leq e(X)^{\Delta(X)}$ hold for any T_1 -space X? We will give a partial answer to this question by proving the following result.

Theorem 4.2. For any T_1 -space X, $|X| \leq L(X)^{\Delta(X)}$.

Proof. Since X is T_1 , Δ_X can be written as the intersection of some family of open sets of $X \times X$, so $\Delta(X)$ is well defined. Suppose that $\Delta(X) = \kappa$ and $L(X) = \tau$. Then X has a G_{κ} -diagonal, i.e. $\Delta_X = \bigcap \{G_{\alpha} : \alpha < \kappa\}$, where each G_{α} is open in $X \times X$. So for each $\alpha < \kappa$ and $x \in X$ there exists an open subset $B_{\alpha}(x)$ of X containing x, with $B_{\alpha}(x) \times B_{\alpha}(x) \subset G_{\alpha}$. For each $\alpha < \kappa$ let \mathcal{V}_{α} be a subcover of $\{B_{\alpha}(x) : x \in X\}$ such that $\mathcal{V}_{\alpha} \leq \tau$ and $X = \bigcup \{U : U \in \mathcal{V}_{\alpha}\}$.

Let $x \in X$. For each $\alpha < \kappa$ we fix $U_{x,\alpha} \in \mathcal{V}_{\alpha}$ such that $x \in U_{x,\alpha}$. Note that $U_{x,\alpha}$ may not be $B_{\alpha}(x)$. Now, let $y \in X \setminus \{x\}$. Then there is $\alpha < \kappa$ such that $(x, y) \notin G_{\alpha}$. Therefore $y \notin U_{x,\alpha}$; otherwise $(x, y) \in U_{x,\alpha} \times U_{x,\alpha} \subset G_{\alpha}$, a contradiction. This shows that $\{x\} = \bigcap U_{x,\alpha}$.

Since each $U_{x,\alpha}$ could be chosen out of τ many sets, there are τ^{κ} such possible intersections. Therefore we conclude that $|X| \leq \tau^{\kappa}$.

The referee reminded us that Theorem 4.2 should be compared to Theorem 4.18 of Gotchev (see [7]): If X is a Urysohn space, then $|X| \leq aL(X)^{\overline{\Delta}(X)}$, where aL(X)is the almost Lindelöf number and $\overline{\Delta}(X)$ is the regular diagonal degree of a Urysohn space X, i.e. the smallest infinite cardinal κ such that X has a regular G_{κ} -diagonal, i.e. there is a family $\{G_{\alpha}: \alpha < \kappa\}$ of open sets in X^2 such that $\Delta_X = \bigcap_{\alpha < \kappa} \overline{G}_{\alpha}$. The referee also pointed out that by applying the method of proof in Theorem 4.2, we can also prove Gotchev's result.

For the reader's convenience, we give its new proof: Suppose $\Delta(X) = \kappa$ and $aL(X) = \tau$. Then X has a regular G_{κ} -diagonal, i.e. $\Delta_X = \bigcap \{\overline{G}_{\alpha} : \alpha < \kappa\}$, where each G_{α} is open in X^2 . So for each $\alpha < \kappa$ and $x \in X$ there exists an open subset $B_{\alpha}(x)$ of X containing x, with $B_{\alpha}(x) \times B_{\alpha}(x) \subset G_{\alpha}$. For each $\alpha < \kappa$ let \mathcal{V}_{α} be a subcover of $\{B_{\alpha}(x) : x \in X\}$ such that $\mathcal{V}_{\alpha} \leq \tau$ and $X = \bigcup \{\overline{U} : U \in \mathcal{V}_{\alpha}\}$. Let $x \in X$. For each $\alpha < \kappa$ we fix $U_{x,\alpha} \in \mathcal{V}_{\alpha}$ such that $x \in \overline{U}_{x,\alpha}$. Now let $y \in X \setminus \{x\}$.

Then there is $\alpha < \kappa$ such that $(x, y) \notin \overline{G}_{\alpha}$. Therefore $y \notin \overline{U}_{x,\alpha}$; otherwise $(x, y) \in \overline{U}_{x,\alpha} \times \overline{U}_{x,\alpha} \subset \overline{G}_{\alpha}$, a contradiction. This shows that $\{x\} = \bigcap_{\alpha < \kappa} \overline{U}_{x,\alpha}$. Since each $U_{x,\alpha}$ could be chosen out of τ many sets, there are τ^{κ} such possible intersections. Therefore we conclude that $|X| \leq \tau^{\kappa}$. The proof is complete.

Corollary 4.3. If X is a space with a G_{δ} -diagonal and $L(X) \leq 2^{\omega}$, then $|X| \leq 2^{\omega}$.

Since e(X) = L(X) for any *D*-space *X*, we have the following corollary by Theorem 4.2.

Corollary 4.4. If X is a D-space, then $|X| \leq e(X)^{\Delta(X)}$.

Since every semi-stratifiable space is a *D*-space and has a G_{δ} -diagonal, we have the following corollary by Theorem 4.2 and Corollary 4.4.

Corollary 4.5. If X is a semi-stratifiable space, then $|X| \leq e(X)^{\omega}$.

Proposition 4.6. If X is a regular semi-stratifiable space, then $|X| \leq 2^{d(X)}$.

Proof. Since a regular and semi-stratifiable space has a strong rank 1-diagonal by Lemma 3.1, it follows that $s\Delta(X) = \omega$ (see [4], page 2). It has been established in [4], Proposition 4.1, that $|X| \leq 2^{d(X)s\Delta(X)}$ for any Hausdorff space X, so we have $|X| \leq 2^{d(X)\cdot\omega} = 2^{d(X)}$.

Corollary 4.7. If X is a regular separable semi-stratifiable space, then $|X| \leq 2^{\omega}$.

Note that the regularity is necessary in Corollary 4.7, which can be seen in the following example.

E x a m p l e 4.8 ([11], page 64). Let $\kappa\omega$ denote the Katětov's extension of ω with the discrete topology. Recall that $\kappa\omega = \omega \cup T$, where T is a set of cardinality $2^{2^{\omega}}$ that indexes the collection of all free ultrafilters on ω . For $t \in T$ let \mathcal{U}_t be the ultrafilter indexed by t; a local base for t is the collection $\{\{t\} \cup U : U \in \mathcal{U}_t\}$. The space $\kappa\omega$ has the following properties:

- (1) $\kappa\omega$ is Hausdorff and non-regular;
- (2) $\kappa\omega$ is separable;
- (3) $\kappa\omega$ is semi-stratifiable;
- (4) $\kappa \omega = 2^{2^{\omega}}$.

Proof. Points (1), (2) and (4) are obvious. It suffices to prove that $\kappa\omega$ is semi-stratifiable. To see it, define a function $g: \omega \times \kappa\omega \to \tau$ such that

$$g(n,x) = \begin{cases} \{x\}, & x \in \omega; \\ \{x\} \cup (\omega \setminus n), & x \in T. \end{cases}$$

Clearly, $\{x\} = \bigcap_{n \in \omega} g(n, x)$ holds for any $x \in \kappa \omega$. Now suppose that $x \in g(n, x_n)$ for every $n \in \omega$. It is not difficult to see that there exists $n_0 \in \omega$ such that $x = x_n$ for any $n \ge n_0$ by the definition of g. Hence, we have $x_n \to x$. Therefore, by Lemma 1.2, the space $\kappa \omega$ is semi-stratifiable. This completes the proof.

We say that a space X satisfies the discrete countable chain condition (DCCC for short) if every discrete family of nonempty open subsets of X is countable.

E x a m p l e 4.9 ([16], Proposition 3.10). For any cardinal κ there exists a regular DCCC and semi-stratifiable space whose cardinality is greater than κ .

Proposition 4.10. Let X be a semi-stratifiable space and let g be the function which witnesses that X is semi-stratifiable. If $X = \bigcup \{g(n,x) \colon x \in Y\}$ for each $n \in \omega$, then $|X| \leq |Y|^{\omega}$.

Proof. To see it, fix any $x \in X$. For each $n \in \omega$ there exists $x_n \in Y$ such that $x \in g(n, x_n)$ since $X = \bigcup \{g(n, x) \colon x \in Y\}$. It follows from Lemma 1.2 that x is the limit point of the sequence $\{x_n\} \subset Y$. Therefore we have $|X| \leq |Y|^{\omega}$.

We finish this section with the following questions.

Question 4.11. Is the cardinality of a regular CCC semi-stratifiable space at most 2^{ω} ?

Q u e s t i o n 4.12. Is the cardinality of a regular SCE and semi-stratifiable space at most 2^{ω} ?

A c k n o w l e d g e m e n t. We would like to thank the referee for his or her valuable remarks and suggestions which greatly improved the paper.

References

Authors' addresses: Wei-Feng Xuan, School of Statistics and Mathematics, Nanjing Audit University, Nanjing, China, 211815, e-mail: wfxuan@nau.edu.cn; Yan-Kui Song, Institute of Mathematics, School of Mathematical Science, Nanjing Normal University, Nanjing, China, 210046, e-mail: songyankui@njnu.edu.cn.