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Abstract. Let p1, p2, . . . be the sequence of all primes in ascending order. Using explicit
estimates from the prime number theory, we show that if k > 5, then

(pk+1 − 1)! | (
1
2
(pk+1 − 1))! pk!,

which improves a previous result of the second author.
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1. Introduction

Let n be a positive integer. The sequence of products of n consecutive positive

integers is an important arithmetic sequence in number theory. There are many

interesting related problems (see for example [6]–[9]). In 1975, Erdős and Selfridge

in [9] proved that the product of two or more consecutive integers is never a power.

One can also refer to the results on the index decomposition of prime numbers of n!

obtained by Erdős and Graham (see [7], [8]). For the past ten years, many scholars

such as Berend in [2], Chen and Zhu in [3], Le in [11], Luca and Stănică in [13],

Moree and Roskam in [14], Sándor in [17]–[18] and others studied the arithmetic

of n! obtaining many important results.

Let pk be the kth prime. In 1999, Sándor in [17]–[18] set forward the following

conjecture:

Conjecture 1.1 ([17]). For every k > 5, the integer (pk − 2)! pk! is divisible by

(pk+1 − 1)!.
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In 2000, Luca in [12] confirmed Sándor’s conjecture and proved the following

theorem.

Theorem 1.2 (Sándor-Luca theorem). When k > 5, we have

(1) (pk+1 − 1)! | (pk − 2)! pk!.

In 2002, Atanassov in [1] gave a further strengthening of Theorem 1.2 by proving

the following result.

Theorem 1.3. If k > 5, then

(2) (pk+1 − 1)! | pk−1! pk!.

In this paper, using explicit estimates from the prime number theory we prove the

following result.

Theorem 1.4. If k > 5, we have

(3) (pk+1 − 1)! | (12 (pk+1 − 1))! pk!.

R em a r k 1.5. When k > 5, we have 1
2 (pk+1 − 1) < pk−1. Therefore, Theo-

rem 1.4 improves Theorem 1.2 and Theorem 1.3. If 1
2 (pk+1 − 1) = p, where p is a

prime, then p ‖ (12 (pk+1 − 1))!, where we use the notation dk ‖ n to mean that dk | n

but dk+1 ∤ n. Then, we get

(pk+1 − 1)! ‖ (12 (pk+1 − 1))! pk!.

Therefore, Theorem 1.4 shows that the best (smallest) answer to the question of what

ism such that (pk+1−1)! | m! pk! ism = 1
2 (pk+1−1). For example, taking k = 22, we

have 82! | 41! 79!. Obviously, 41 cannot be replaced by any smaller positive integer

in the above divisibility relation.

We organize this paper as follows. In Section 2, we prove Theorem 1.4. In Sec-

tion 3, we prove a corollary to Theorem 1.4. Furthermore, setting

Qk =
(pk+1 − 1)!

pk!
,

we propose a problem concerning numbers k for which the prime factors of Qk

occupy an initial interval of primes. We suggest a conjectural answer and provide

some heuristic and numerical evidence in order to support it.

126



2. Proof of Theorem 1.4

When k > 5, formula (3) is equivalent to

(4) (pk + 1)(pk + 2) . . . (pk+1 − 1) | (12 (pk+1 − 1))!.

If pk, pk+1 are two adjacent primes, then pk+1, pk+2, . . . , pk+1−1 are all composite

numbers and each of their prime factors p satisfies p 6 1
2 (pk+1 − 1). Thus, for every

prime 2 6 p 6 1
2 (pk+1 − 1), we just need to prove that

(5) vp((pk + 1)(pk + 2) . . . (pk+1 − 1)) 6 vp((
1
2 (pk+1 − 1))!),

where vp(n) denotes the p-adic valuation of a positive integer n.

We assume that n, l are positive integers such that l < 1
2n. Let p be a prime

satisfying 2 6 p 6 n. Next, we prove that

(6) vp((2n− l + 2)(2n− l + 3) . . . (2n− 1)(2n)) 6 vp(n!), n > 30.

Writing

(7) n = a0 + a1p+ . . .+ as−1p
s−1 + asp

s, 0 6 a0, a1, . . . , as < p, as > 1,

we get

(8) 2n = 2a0 + 2a1p+ . . .+ 2as−1p
s−1 + 2asp

s

= b0 + b1p+ . . .+ br−1p
r−1 + brp

r,

where 0 6 b0, b1, . . . , br < p and br > 1. From (8), we have s 6 r 6 s + 1 and then

inequality (6) is equivalent to

(9)

s+1
∑

j=1

⌊2n

pj

⌋

−

s+1
∑

j=1

⌊2n− l

pj

⌋

6

s+1
∑

j=1

⌊ n

pj

⌋

,

where ⌊x⌋ denotes the largest integer less than or equal to x. Since l < 1
2n, and

⌊x⌋+ ⌊y⌋ > ⌊x+ y⌋ − 1, it follows that

(10)
⌊ n

pj

⌋

+
⌊2n− l

pj

⌋

−
⌊2n

pj

⌋

>

⌊ 5
2n

pj

⌋

− 1−
⌊2n

pj

⌋

=
⌊

5
2 (asp

s−j + . . .+ as−j+1p+ as−j)
⌋

− 2(asp
s−j + . . .+ as−j+1p+ as−j)− 1

=: Aj .
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Suppose that s > 4. When j 6 s− 2, we have

Aj > ⌊ 5
2 (asp

2 + as−1p)⌋ − 2(asp
2 + as−1p)− 1 > 2.

When j = s− 1, we obtain

Aj > ⌊ 5
2asp⌋ − 2asp− 1 > 0.

When j = s, one can see that

Aj > ⌊ 5
2as⌋ − 2as − 1 > −1.

When j = s+ 1, we deduce that

Aj >

⌊ 5
2as

p

⌋

−
2as
p

− 1 > −1.

Therefore, from (10) we get

s+1
∑

j=1

⌊ n

pj

⌋

+

s+1
∑

j=1

⌊2n− l

pj

⌋

−

s+1
∑

j=1

⌊2n

pj

⌋

> 2 + 0− 1− 1 = 0.

Thus, we conclude that inequality (9) holds.

If s = 3, then Aj > −1 and further

(11) A1 +A2 +A3 +A4

>
⌊

5
2 (a3p

2 + a2p+ a1)
⌋

− 2(a3p
2 + a2p+ a1)− 1

+
⌊

5
2 (a3p+ a2)

⌋

− 2(a3p+ a2)− 1− 1− 1

>
⌊

5
2 (4a3 + 2a2)

⌋

− 2(4a3 + 2a2) +
⌊

5
2 · 2a3

⌋

− 2 · 2a3 − 4 > 0.

So, (9) is verified for s = 3 also.

If s = 2, when p > 7, we have

A1 +A2 +A3 >
⌊

5
2 (a2p+ a1)

⌋

− 2(a2p+ a1)− 1− 1− 1

>
⌊

35
2 a2

⌋

− 14a2 − 3 > 0,

so (9) holds. When p 6 5, from (7) we get n < 125. For p = 2, 3, 5, one can directly

verify the validity of (9).

If s = 1, by (7), we get n = a1p+ a0. When a1 > 4, since

A1 +A2 >
⌊

5
2a1

⌋

− 2a1 − 1− 1 > 10− 8− 2 = 0,
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it follows that formula (9) holds. When a1 6 3, if p > 7, then (8) implies 2n =

2a1p+ 2a0 and r = s = 1. As a0 < p, we then get

⌊2n

p

⌋

−
⌊2n− l

p

⌋

−
⌊n

p

⌋

6

⌊ l

p

⌋

+ 1−
⌊n

p

⌋

6

⌊ 1
2n

p

⌋

+ 1−
⌊n

p

⌋

=
⌊

1
2a1 +

1
2a0

p

⌋

+ 1− a1 6 a1 − 1 + 1− a1 = 0.

Thus, (9) also holds. When a1 6 3 and p 6 5, it follows from (7) that n < 20, which

contradicts the condition n > 30. Thus, if n > 30, then (9) holds.

Next, we show that

(12) pk+1 − pk < 1
4 (pk+1 − 1) ∀ k > 7.

Notice that inequality (12) is equivalent to

(13) pk+1 < 4
3pk −

1
3 ∀ k > 7.

We first check (13) numerically for k ∈ {7, 8, 9}, and then assume k > 10, so that

pk > 25. From [15], the interval (pk,
6
5pk) contains at least one prime number, the

smallest of them being pk+1. Consequently,

pk + 1 < 6
5pk 6 4

3pk −
1
3 ,

as required.

Thus, pk+1 − pk < 1
4 (pk+1 − 1). Therefore, we can take n = 1

2 (pk+1 − 1) and

l = pk+1 − pk and the inequality l < 1
2n is satisfied. If k > 18, then n > 30, so we

can apply (5) and obtain

(14) vp((
1
2 (pk+1 − 1))!) > vp((pk+1 − 1)(pk+1 − 2) . . . (pk+1 − l + 2)(pk+1 − l + 1))

= vp((pk+1 − 1)(pk+1 − 2) . . . (pk + 2)(pk + 1)).

Thus, (4) is verified for k > 18. For 5 6 k 6 17, we verified (5) using Maple. This

completes the proof of Theorem 1.4. �

129



3. A corollary and a problem

Let us recall the following result.

Lemma 3.1. Let pn be the nth prime. If n > 198, we have

(15) n(logn+ log logn− 1) < pn < n
(

log n+ log logn− 1 +
log logn− 2

logn

)

.

P r o o f. See (2) and (3) of [4]. �

Using Theorem 1.4 and the above prime number estimate (15), we can deduce the

following corollary.

Corollary 3.2. If k > 5, we have

(16) (pk+1 − 1)! | p⌊ 2
3
k⌋! pk!.

P r o o f. From (15), when k > 198, we have

(17) p⌊ 2
3
k⌋ > (23k − 1)(log(23k − 1) + log log(23k − 1)− 1)

> 1
2 (k + 1)(log(k + 1) + log log(k + 1)− 1

2 )

> 1
2 (pk+1 − 1).

Then, from (3) we get (16).

For 7 6 k < 198, using Maple, we can directly verify (16). This completes the

proof of Corollary 3.2. �

R em a r k 3.3. The referee pointed out that for the proof of Corollary 3.2, the

weaker upper bound pn 6 n(logn + log logn) valid for n > 6 (see [16], Theorem 3)

instead of the upper bound on pn from (15) suffices.

Since for k > 7, ⌊ 2
3k⌋ < k − 1, we conclude that (16) improves (1) and (2).

Consider the standard decomposition

Qk =
(pk+1 − 1)!

pk!
= (pk + 1)(pk + 2) . . . (pk+1 − 1).

Calculations show that there are only 35 values of k such that Qk can be written

as the product of the powers of consecutive prime numbers when k < 1000. For
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example, we have

Q8 = 23 · 3 · 5 · 7 · 11,

Q70 = 26 · 33 · 52 · 7 · 11 · 13,

Q85 = 24 · 32 · 5 · 72 · 11 · 13 · 17,

Q646 = 26 · 3 · 52,

Q936 = 2 · 3 · 52 · 72.

Therefore, it is natural to ask the following question:

P r o b l e m 3.4. Are there infinitely many positive integers k such that

(18) Qk = pα1

1 pα2

2 . . . pαs

s ,

where s > 1 and α1, α2, . . . , αs > 1?

We offer the following conjecture.

Conjecture 3.5. There are infinitely many positive integers k verifying the con-

dition of Problem 3.4 but only finitely many for which pk+1 − pk > 2.

Below we offer some heuristics towards Conjecture 3.5. In what follows, we use

c1, c2, . . . for positive constants. Assume that k satisfies the condition of Problem 3.4.

Crámer’s conjecture asserts that pk+1 − pk = O((log k)2). We assume that it holds

in order to justify our heuristic. Then

Qk 6 p
pk+1−pk

k+1 = exp(O((log k)3)).

By the Prime Number Theorem

Qk >
∏

p6ps

p > exp((1 + o(1))ps)

as s → ∞. Thus, ps 6 c1(log k)
3. Letting P (m) be the maximal prime factor of m,

it follows that

P (m) 6 c1(log k)
3

holds for all m ∈ [pk + 1, . . . , pk+1 − 1]. Thus, all such m are c1(log k)
3-smooth.

Let Ψ(x, y) be the function that counts the number of n 6 x with P (n) 6 y.

By [10], (1.14), we know that for fixed α > 1, the following estimate holds:

Ψ(x, (log x)α) = x1−1/α+o(1) as x → ∞.
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Taking x = pk+1 and α = 3 + ε for any ε > 0 small but fixed, and using the fact

that k < pk+1, we get

Ψ(pk+1, c1(log k)
3) 6 Ψ(pk+1, (log pk+1)

3+ε) 6 p
1−1/(3+ε)+o(1)
k+1

for k > c2(ε). Making ε tend to 0 and k tend to infinity we get that

Ψ(pk+1, c1(log k)
3) 6 p

2/3+o(1)
k+1

as k → ∞. We interpret this as saying that the probability of a number m 6 pk+1

to be c1(log k)
3-smooth is

(19)
p
2/3+o(1)
k+1

pk+1
=

1

p
1/3+o(1)
k+1

as k → ∞.

Assume now that pk+1 − pk > 6. Then pk + 1, pk + 2, pk + 3, pk + 4 are all

in [pk + 1, pk+1 − 1] and are all c1(log k)
3-smooth as k → ∞. Assuming that the

events “n+ i 6 x is y-smooth” are independent for i = 1, 2, 3, 4, it follows that the

“probability” that pk + i are all c1(log k)
3-smooth for i = 1, 2, 3, 4 is at most

(

1

p
1/3+o(1)
k+1

)4

=
1

p
4/3+o(1)
k+1

as k → ∞.

The above number is smaller than p
−5/4
k+1 for large k and since the series

(20)
∑

k>1

1

p
5/4
k+1

is convergent, we infer that there should be only finitely many instances of k satisfying

Problem 3.4 with pk+1 − pk > 6. Assume next that pk+1 − pk = 4. Then

Qk = (pk + 1)(pk + 2)(pk + 3) < p3k+1 = exp(3 log pk+1).

Since Qk > exp((1 + o(1))ps), we get that ps 6 (3 + o(1)) log k 6 (3 + o(1)) log pk+1

as k → ∞. By a result of de Bruijn (see [19], Theorem 2), if we put

Z =
log x

log y
log

(

1 +
y

log x

)

+
y

log y
log

(

1 +
log x

y

)

,

then

logΨ(x, y) = (1 + o(1))Z
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uniformly as x and y tend to infinity. For us, taking x = pk+1 and y = (3 + o(1))×

log pk+1 as k → ∞, a quick calculation shows that

Z = (c3 + o(1))
log pk+1

log log k
, where c3 = log(1 + 3) + 3 log(1 + 1

3 ) = log 256
27

as k → ∞. In particular, Ψ(pk+1, (3+o(1)) log pk+1) = p
o(1)
k+1 as k → ∞. We interpret

this by saying that the probability that m 6 pk+1 has P (m) 6 (3 + o(1)) log pk+1 is

p
o(1)
k+1

pk+1
=

1

p
1+o(1)
k+1

as k → ∞.

Assuming again that n + i 6 x being y-smooth are independent events for i = 1, 2

and taking n = pk, we get that the probability that both pk + 1 and pk + 2 are

(3 + o(1)) log pk+1-smooth is at most

(

1

p
1+o(1)
k+1

)2

=
1

p
2+o(1)
k+1

as k → ∞. By the heuristic used at the convergence of series (20), it follows that

there should be only finitely many k with pk+1 − pk = 4 satisfying Problem 3.4.

When pk+1− pk = 2, then Qk = pk +1. So, instead of asking Problem 3.4, we can

reformulate the problem by saying:

P r o b l e m 3.6. Are there infinitely many numbers of the form

M = pα1

1 . . . pαs

s

for positive s and α1, . . . , αs such that both M − 1 and M + 1 are primes?

If the answer to Problem 3.6 is affirmative, letting k be such that M − 1 = pk,

then certainly M + 1 = pk+1, therefore for this k we have that Qk = M satisfies the

requirement of Problem 3.4. To see why perhaps there are infinitely many solutions

to Problem 3.6, we just take any s, let ps = p and search for numbers

M = pα1

1 . . . pαs

s , α1, . . . , αs ∈ {1, 2, . . . , a}

where a is some fixed number. By the Prime Number Theorem,M 6 exp((a+o(1))p)

as s → ∞, so

(21) logM 6 2ap

as s → ∞. Also by the Prime Number Theorem, the “probability” that a number n

is prime is (1 + o(1))/ logn as n → ∞. Assuming that M − 1 and M + 1 being
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primes are “almost” independent events, that is, the probability of them being both

prime is some constant times ((1 + o(1))/ logM)2 (an assumption backed up by the

Twin Prime Conjecture or the Bateman-Horn heuristics), we would get that the

probability that both M − 1 and M + 1 are primes is greater than

c4

( 1

logM

)2

>
c5

(ap)2
as p → ∞,

with c5 = 1
4c4 by (21). Now we vary (α1, . . . , αs) ∈ [1, a] obtaining

as = aπ(p) = exp
(

(log a+ o(1))
p

log p

)

choices for M as p → ∞. Thus, the number of “twin primes” obtainable in this way

should be at least

c5 exp((log a+ o(1))p/ log p)

(ap)2
= c5 exp

(

(log a+ o(1))
p

log p
− 2 log(ap)

)

,

an amount which tends to infinity with p. For fun, we took p = 29, and a = 2

obtaining 41 examples. The largest is

M = 181986654305686230 = 2 · 32 · 5 · 72 · 112 · 132 · 172 · 192 · 23 · 292.

When we increased a = 2 to a = 4 (keeping the same p), we got 13746 examples.

The largest one is

M = 9368998021767173907463983973766430000

= 24 · 34 · 54 · 74 · 113 · 134 · 173 · 194 · 234 · 294.
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