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Abstract. We begin by giving a criterion for a number field K with 2-class group of rank 2
to have a metacyclic Hilbert 2-class field tower, and then we will determine all real quadratic
number fields Q(v/d) that have a metacyclic nonabelian Hilbert 2-class field tower.
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1. INTRODUCTION

Let K be a number field and Ck be the class group of K. The maximal unramified
abelian extension of K denoted by K1) is called the Hilbert class field of K. We recall
that by the Artin reciprocity law we have Gal(K () /K) ~ Ck. For a nonnegative
integer n, let K™ be defined inductively as K(®) = K and K+ = (K ()(M); then

KcKOWcK®c...cK™c...

is called the Hilbert class field tower of K. If n is the minimal integer such that
K™ = K+ then the tower is called to be finite of length n. If there is no such n,

then the tower is called to be infinite. We denote K(°°) = |J K. We recall that
=N

K(®) /K is a Galois extension and the tower of K is finite if and only if K(>°) /K is

of finite degree.

Let p be a prime integer number, K, ,(,1), the maximal unramified abelian p-extension
of K, is called the Hilbert p-class field of K. We recall that by the class field theory
we have Gal(K,(Jl)/K) = Ck,p, the p-Sylow subgroup of C'x which is called the p-class
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group of K. For a nonnegative integer n let K. ,(,n) be defined inductively as K,(,O) =K
and K,(,nJrl) = (K[(,n))(,}); then

1 2
KcKVcK®Pc...ckMc...

is called the Hilbert p-class field tower of K. If n is the minimal integer such that
K,(,n) = KI(,HH), then this tower is called to be finite of length n. If there is no such n,
then the tower is called to be infinite. We denote K,(Joo) = U Kz(f). We recall that
ieN

KZ(,OO) /K is a Galois extension and the tower of K is finite if and only if KZ(,OO) /K is
of finite degree.

We recall that the 2-rank of Cx denoted by ranks(C) is defined as the dimension
of the Fa-vector space C /C%.

It is well known that:

> If ranks(Ck) > 6, then K has an infinite Hilbert 2-class field tower.

> If ranks(Ck) = 4 or 5, then there is no known real quadratic field with finite
Hilbert 2-class field tower. In these cases, according to Martinet’s conjecture, the
Hilbert 2-class field tower of K is infinite (see [5]).

> Ifranks(Cx) = 2 or 3, then there are both real quadratic number fields with a finite
Hilbert 2-class field tower and real quadratic number fields with infinite Hilbert
2-class field tower (see the works of Schoof, Martinet, Mouhib ([8] and [7]), ...).

> If ranks(Ck) = 1, then K has a finite Hilbert 2-class field tower of length 1.

So for the case ranks(Crk) = 2 there is no known decision procedure to determine
whether or not the Hilbert 2-class field tower of a given number field K is infi-
nite. In this paper, we give a new family of real quadratic number fields K with
ranks(Ck) = 2 and finite Hilbert 2-class field tower. More precisely, we will deter-
mine all real quadratic number fields K that have a metacyclic Hilbert 2-class field
tower.

2. PRELIMINARY RESULTS

2.1. The rank of a group. Let G be a group.

> If there exists a finite subset X of G such that G = (X)), then we say that G has
a finite rank defined as

rank(G) = min{|X|: X C G and G = (X)}.

If no such subset exists, then G is called to be of infinite rank.
> Let G’ = [G, G] be the commutator subgroup of G. The quotient G/G’ is called
the abelianization of G and is denoted by G®*. G/p = G /(G*)? is a vector
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space over [, = 7/pZ and the integer rank, (G) = dimg,(G/p) is called the p-rank
of G. We note that:

> if G is abelian, then rank,(G) = dimg, (G/GP);

> rank,(G) = rank,(G?P).

2.2. Metacyclic group. A group G is called metacyclic if there is a normal
subgroup N of G such that N and G/N are cyclic. We recall that:

(1) if G is metacyclic, then any subgroup H of G is metacyclic;
(2) if G is metacyclic and H is a normal subgroup of G, then G/H is metacyclic.

Let G be a metacyclic group and N a normal cyclic subgroup of G such that G/N
is cyclic. If we denote N = (a) and G/N = (bN), then G = (a,b) and thus, G is
generated by 2 elements.

Proposition 1. Let K be a number field and p a prime integer.
(1) if G = Gal(K(*™)/K) is metacyclic, then K(*) = K?);
(2) if G, = Gal(K,(,oo)/K) is metacyclic, then K,(,OO) = KI(,2).

Proof. (1) Wehave K ¢ K\ ¢ K(*). By definition, KV is the largest abelian
extension of K contained in K(>). We deduce that Gal(K(*) /K1) = G'. Let N
be a normal cyclic subgroup of G such that G/N is cyclic. Since G/N is abelian,
G’ C N and then G is cyclic. We deduce that K /K1) is abelian unramified. So
K c K® and then K() = K(?),

(2) Using the same proof we prove 2. |

Proposition 2. Let K be a number field and p a prime number. If G, =
Gal(KZ(,OO)/K) is metacyclic nonabelian, then rank,(Ck) = 2.

Proof. Since G, is nonabelian, then K,(,l) # K,(,Q) = K,(,OO). We have Ck ) ~
Gp/[Gp,G,], thus Ck, is metacyclic and we have rank(Cgk,) < 2 and so
rank(Ck ) = 1 or 2. If rank(Ck ) = 1, then according to the result of Taussky
(see [9]), K,(,Q) = K,(,l), which is impossible. In conclusion, rank,(Ck) = 2. O

Remark 1. Let K be a quadratic number field.

(1) If Gy = Gal(Kéoo) /K) is metacyclic nonabelian, then K has three quadratic
extensions Ly, Lo and L3 contained in KO,

(2) According to Proposition 2, we will be limited to determine the real quadratic
number fields K = Q(\/E) with ranks(C'x) = 2 that have a metacyclic Hilbert
2-class field tower. To select those with non abelian tower, we can use Theorem 1
or Theorem 2 in [3] depending on whether d is the sum of two squares or not,
respectively.
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Lemma 1. If G is a nonmetacyclic two-generator 2-group, then the number of
two-generator maximal subgroups of G is even.

Proof. See [4]. O

Theorem 1. Let K be a number field such that ranks(Ck) = 2 and L1, Lo
and Ls be the three quadratic extensions of K contained in KV). Let us denote
G = Gal(KQ(OO)/K) and C; = Cp, 2 for i = 1,2,3. Then G is metacyclic if and only
if rank(C;) < 2 fori=1,2,3.

Proof. Suppose that G is metacyclic.

If G is abelian, then it is easy to see that for all 4, rank(C;) < rank(G) = 2.

Suppose that G is not abelian. For each ¢ € {1,2, 3}, Kél)/K is abelian unramified,
thus Kél)/L is also abelian unramified, hence Kél) C Lg). In the same way, we
prove that L(l) ) and thus

KcLicK{" cLl c k.

Let G; = Gal(K\? /L;) and H = Gal(K{? /L{})).

G, is a subgroup of G. So G; is metacyclic and thus C; = G;/H is metacyclic, too.
We deduce that rank(C;) < 2.

Suppose that rank(C;) < 2 for i = 1,2, 3.

If there exists ¢ such that rank(C;) = 1, then according to the result of Taussky
(see [9)), Lg) = Lg) and then K(Q) L(Q) L(l)

G

T

1 2
K Li\l<i/L£2) — Ké )

C;

We have C; is cyclic and G/C; = 7 /27 is cyclic, too. We deduce that G is metacyclic.

Suppose that rank(C;) = 2 for all ¢ € {1,2,3}. Let C' be a maximal subgroup
of G. We have [G: C] = 2, so if L is the subfield of Kéoo)/K fixed by C, then L = L;
for some i € {1,2,3}. Since Lél) is the maximal abelian extension of L contained
in Kéoo), then C; = C/C" and rank(C) = rank(C;) = 2. Using Lemma 1 and since
rank(G) = rank(Ck) = 2, G is metacyclic. O
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3. FieLDs Q(v/d) WITH d SUM OF TWO SQUARES HAVING
A NONABELIAN METACYCLIC TOWER

Lemma 2. Let L = Q(y/m,V/d) be a biquadratic field such that m = 2 or m is
a prime integer = 1 (mod 4) and ¢ is a square-free positive integer not divisible by
any prime = 3 (mod 4). If r is the number of primes of Q(y/m) that ramify in L
and H is the 2-class group of L, then we have rank(H) =r — 1 or r — 2 and

(1) if m=1 (mod 4), then rank(H) = r — 1 if and only if

for all q | 0 such that (%) =1 we have (%)4 = (%)4,

2

(E)4 = (=1)m=1/8 ifm =1 (mod 8) and § = 2¢;

(2) if m =2, thenrank(H) = r—1 if and only if for all ¢|§ such that ¢ =1 (mod 8)
we have (%)4 = (—1)a=1/8,

Proof. See Theorem 2 in [1]. O

Let d be a square-free integer which can be written as the sum of two squares
and K = Q(V/d). If ranky (Ck) = 2, then, by the genus theory, d can be written as
d = p1paps, where p;’s are distinct prime integers such that for all 4, p; # 3 (mod 4).

Theorem 2. Let K = Q(,/p1p2ps), where p1, ps and ps are distinct prime integers
such that p1,p2 3 (mod 4) and p3 = 1 (mod 4) or p3 = 2. Then the Hilbert 2-class
field tower of K is metacyclic except for the case:

after a permutation of p; we have (]2) = (@> =1 and

b1 p1

(2),(2),- (), (2),~

Proof. Let py, p2 and p3 be three prime numbers such that p; = ps =1 (mod 4)
and p3 = 1 (mod 4) or ps = 2. The three unramified quadratic extensions of K =
Q(y/p1p2p3) are L1 = K(/p1) = Q(/p1,/P2p3), L2 = K(/p2) = Q(/pz, /P1P3)
and L3 = K(\/p3s) = Q(/p3,/pP1p2). We put C; = Cr, 2. From Theorem 1, the
metacyclicity of G = Gal(Kéoo)/K) depends on rank(C;) for ¢ = 1,2,3. Let us
calculate them:

Assume for the moment that p3 = 1 (mod 4). Let us take m = p1, § = paps,
H = C; and apply Lemma 2: The primes of Q(,/pr) that ramify in L; = K(/p1)
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are exactly those which are above py and p3. The number r of those primes depends

on the two Legendre symbols (z—?) and (i—f), and we have the following table:

(12) (@) r rank(Ch)

b1 P1

1 1 4 3 if (12) = (&) and (@) = (]2) , 2 if not
p1/4 D2/ 4 p1/4 p3/ 4

1 -1 3 2if(12 :(pl , 1 if not
p1/4 p2/4

-1 1 3 2if(@ :(ﬂ , 1 if not
p1/4 p3/ 4

1 -1 2 1

We will have similar tables for Cy and Cj5.

Now suppose that ps = 2. We recall that for every prime integer p = 1 (mod 8)

(§)4 = (=1)P-1/8,

So the calculation of rank(C;) will be done in the same way as in the case p3 = 1
(mod 4).
We deduce, using Theorem 1, that G is metacyclic if and only if the following

we have

condition (C) is not satisfied:

After a permutation of p;’s, we have:

© G =G) = () G= G =

4. F1ELDS Q(v D) WHERE D IS NOT THE SUM OF TWO SQUARES HAVING
A NON ABELIAN METACYCLIC TOWER

Let K = Q(v/D), where D is a square-free integer which is not the sum of two
squares and Dy the discriminant of K. If ranks(Cx ) = 2, then, by the genus theory,
we will have one of the following cases: D = q192q3q4, D = p1p2q1q2, D = q1G24s3,
D = p1p2q1, D = 2q1q2q3, D = 2p1g1g2 or D = 2p1p2q1, where the p;’s are distinct
prime integers = 1 (mod 4) and the ¢;’s are distinct prime integers = 3 (mod 4).

We will discuss all these cases using the number of negative prime discriminants
dividing Dk and we will determine all the fields of the above forms that have a
metacyclic tower.
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4.1. Some lemmas. Let d and m be two positive square-free integers, L =
Q(y/m,/d) be a biquadratic field,  the number of primes of Q(/m) that ramify
in L, H the 2-ideal class group of L and

S = {ql odd prime integer: ¢; | d and (@) - 1}.
q1

In the rest of this paper, we will use these notations for any unramified quadratic
extension of a quadratic field K = Q(v/D) after writing it in the form Q(y/m, Vd).

Lemma 3. Suppose that m = 2 or m is a prime integer = 1 (mod 4). If there is
a prime integer ¢ = 3 (mod 4) that divides d, then rank(H) =r — 2 or r — 3 and we
have:

> Ifm=2orm=5 (mod 8), then rank(H) =r — 2 < (;—11) =1forall € S;

> Ifm =1 (mod 8), then rank(H) = r — 2 if and only if the following two conditions
are satisfied:
(c1) () =1forallq € 8S.

q1

(c2) d=2c with (=) =1 ord =1 (mod 4).

Proof. See Theorem 1 in [1]. O

Lemma 4. Let q, ¢’ and ¢ be three prime integers such that g = ¢ = ¢" = —1
(mod 4), m € {q,2q,q4'q"}. Let €, be the fundamental unit of Q(\/m). Then &,
can be written as €,, = a,u?, where u € Q(y/m) and a,, = 2 if m = q or 2q, and

am =¢q orq" ifm=qq".

Proof. Let m € {q,2¢,¢'¢"} and k,,, = Q(y/m), and let N be the norm map
of the extension k,,/Q. Since m is not the sum of two squares, then N(e,,) = 1.
By Lemma 2.3 in [6] there exists a positive square free integer b,,, dividing D,,, the
discriminant of k,, such that b,,&,, = o2, where o € k,,. We note that b,, # 1
since &,, is a fundamental unit of k,,.

If m = ¢'q", then D,, = mand b,, = ¢, ¢" or ¢'¢". It b, = ¢'¢", then g, = (\/LE)Q
which is impossible since ¢,, is a fundamental unit of k,,. We conclude that b,,, = ¢’
or q". If b,, = ¢, for example, then

1, a\2 a \2
=gt = (G) =7 ()
If m = q, then b,, = 2, q or 2¢q. If b,, = ¢, then ¢, = (\/_%)2 which is impossible
since &, is a fundamental unit of k,,. We conclude that b,, = 2 or 2¢. If b,, = 2,
a2 _ _ a \2
then €, = 2(5) . If by, = 2¢q, then ¢, = 2(m) .
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If m = 2q, then b,, = 2, q or 2q. If b,,, = 2q, then ¢, = (\/L‘m)2 which is impossible
since &, is a fundamental unit of k,,,. We conclude that b,, = 2 or q. If b,,, = ¢, then
em =2()". 1 by, =2, then &, = 2(%)" O

Let q, ¢, ¢", m, €, and a,, be as in the above lemma and d a positive square-free
integer. Let L = Q(y/m,/d) and H the 2-ideal class group of L.

We note that we will use these notations in the rest of this paper.

Lemma 5. With the above assumptions and notations, if m = q,2q or m =

q¢'q¢" =5 (mod 8), then rank(H) =r — 1 — e, where e = 0,1 or 2, and we have:
> e = 0 if and only if (;—11) = (‘;—1) =1forall 1 € S;
> e = 2 if and only if exists distinct primes ¢, g2, q3 € S such that

(7= ()=t aa ()2 ()
Proof. See Theorem 3 in [2]. O

Lemma 6. If m = ¢'¢” = 1 (mod 8), then rank(H) = r —1—e with e = 0,1
or 2, and we have:
> einfandon]yif(;—ll) = ((2—1") =1forallg: € Sandd=1 (mod 4) ord = 2c
with () = (2) = 1
> e = 2 if and only if one of the following conditions is satisfied:

(i) d=-1 (mod 4) and exists ¢; € S: (_—1) + (m)’

q1 q1
(ii) d =1 (mod 4) and exists g1, q2,q3 € S such that

()-() - wr (D#(2)

(iii) d = 2c with

and exists q; € S such that

)4 () « (3)--)--

and exists q; € S such that (;—11) =—1lor (%) = (_71) = 1 and exists distinct

primes q1,q2,q3 € S such that
()= ()1 ot () ().
Proof. See Theorem 4 in [2]. O
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4.2. Case where Dy is divisible by at least 3 odd negative prime dis-
criminants.

Theorem 3. The Hilbert 2-class field tower of K is metacyclic for the cases

K = Q(V192304), K = Q(/1¢2q3) and K = Q(v/2q1q2q3), where the ¢;’s are

primes = 3 (mod 4).

Proof. We discuss the 3 cases:

Case K = Q(\/q162q3q2): The quadratic extensions of K contained in K M) are
L1 = K(y51a2) = Q(@142, /3394), L2 = K(\/0143) = Q(\/91¢3,/32G2) and L3 =
K(y/a1q1) = Q(y/q144, /32G3). We put C; = C, 2.

Let us obtain an upper bound for the value of rank(C;). We put m = g1¢2 and
d = q3q4. The primes of Q(y/m) that ramify in L; are exactly those which are above
g3 and gq4. Their number r is < 4 and r = 4 if and only if (qﬂs) = (q%) = 1. In this
case S = {gs3,q4}.

If r < 3, then by Lemma 5 in the case m = 5 (mod 8) or Lemma 6 in the case
m =1 (mod 8), we have rank(C;) = 1.

If r = 4, then the condition to have ¢ = 0 in Lemma 5 and Lemma 6 is not satisfied
since (;—31) = —1 and then rank(Cy) < 2.

In the same way, we have rank(Cs),rank(Cs) < 2 and we conclude using Theo-
rem 1.

Case K = Q(,/q1q2¢3): The quadratic extensions of K contained in K M) are
Ly = K(voi2) = Q33,1 @2), Le = K(/23) = Q(/q1,/323) and Lz =
K(33q1) = Q(/a2,/q3q1)). We put C; = Cp, 2. Let us compute rank(C1). We
put d = g3 and m = g1q2. The only primes of Q(y/m) that ramify in L; are those
which are above 2 and g3, so r < 4 and then rank(C;) =r—1—-e<4—-1—-e=3—c.

In the case m =5 (mod 8), 2 is inert in Q(y/m), then r < 3 and rank(C7) < 2. If
m =1 (mod 8), then according to Lemma 6, e # 0 and then rank(C4) < 2. Similarly,
we have rank(C;) < 2 for ¢ = 2,3 and the proof for this case is completed.

Case K = Q(v/2¢1¢2¢3): The quadratic extensions of K contained in K1) are
the L; = Q(y/2q;, V@), where i € {1,2,3} and {7, j,k} = {1,2,3}. Let us put
C; = Cp, 2 for i =1,2,3. To calculate rank(C1), we apply Lemma 5 with m = 2¢
and d = g2q3. The primes of Q(y/m) that ramify in L; = Q(y/m,/d) are those
which are above ¢ and ¢3. If ((m), (m)) # (1,1), then their number r is < 3, and

a2/’ \q3
rank(Cy) =r—1—e < 2. If ((;”—2), (;”—3)) = (1,1), then r = 4, but by Lemma 5,
e # 0 and then rank(Cy) =r—1—e < 2.
Similarly, we prove that rank(Cs) < 2 and rank(C3) < 2. We conclude using The-

orem 1. O
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4.3. Case where D is divisible by exactly 1 odd negative prime dis-
criminant.

Theorem 4. For K = Q(\/pipa2q1) and K = Q(v/2pip2¢q1) with p1 = py =
—q1 =1 (mod 4), the Hilbert 2-class field tower is metacyclic except for the following

two cases:
(i) after permutations of p;’s, we have: (p%) = (p—z) = (q—l) =1;
i) () =(2)=G)=G) =1

Proof. We discuss the 2 cases:

Case K = Q(,/p1p2q1): The quadratic extensions of K contained in KW are L, =
K(y/p1) = Q(/p1, vp2q1), L2 = K(/p2) = Q(y/p2, /P1a1) and L3 = K(/p1p2) =
K(\/q1) = Q(\/q1,/P1p2). We put C; = Cy, o.

To compute the rank of Ci, let us apply Lemma 3 with m = p; and d = paq;.
The primes of Q(y/m) that ramify in L; are those which are above 2, ps and ¢;. We
have the following table:

(3) (]2) (q—l) T rank(C1)
P1 p1 P1
1 1 1 6 3
1 1 —1 5 2
1 -1 1 5 2
1 -1 -1 4 1
—1 1 1 5 2
—1 1 —1 4 2
—1 —1 1 4 1
-1 -1 -1 3 1

Similarly, we calculate rank(C5).

To calculate the rank of Cs, let us apply Lemma 5 with m = ¢; and d = pips.
Note that in this case a,, = 2. The primes of Q(y/m) that ramify in L3 are those
which are above p; and p». We have the following table:

(q—l) (2) T rank(Cs)
p1 P2
1 1 4 3if(3)=(3)=1, 2 if not
b1 P2
1 -1 3  2if (3) -1, 1 if not
b1
P
1 1 3 2if (—) -1, 1 if not
D2
1 -1 21
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We conclude using Theorem 1 and the above tables.

Case K = Q(/2p1p2q1): the quadratic extensions of K contained in K) are
Ly = Q(y/pr, vZ21), Lz = Q/Fz, vZ1a1) and Ly = Q(v/241, y/Pipa)-

To calculate rank(C7) we take m = p; and d = 2p2q; and apply Lemma 3. We
have the following table:

(3) (}2) (q—l) r rank(Cy)
p1 p1 P1
1 1 1 6 3
1 1 -1 5 2
1 —1 1 5 2
1 —1 —1 4 1
—1 1 1 5 2
-1 1 -1 4 2
-1 -1 1 4 1
—1 —1 —1 3 1

We would have a similar table for rank(Cs).
To calculate rank(C3) we put m = 2¢; and d = p;p2 and we apply Lemma 5. We
have the following table:

2 2
(ﬂ) (ﬂ) r rank(Cj3)
D1 P2
2 2
1 1 4 3if(—):(—):1, 2 if not
D1 P2
1 1 3 2if (3) —1, 1 if not
b1
o (2 .
1 1 3 2if (—) —1, 1 if not
D2
1 1 2 1
We conclude by using Theorem 1. O

4.4. Case where Dy is divisible by exactly 2 odd negative prime dis-
criminants.

Theorem 5. Let K = Q(,/p1p2q1g2) withpy =pa =1 (mod 4) and ¢1 = g2 = 3
(mod 4). Then the Hilbert 2-class field tower of K is metacyclic except for the
following two cases:

(i) After a permutation of p;’s, we have (p—?) = (Z—i) = (g—f) =1;
(i) () =) =) =) =1
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Proof. The quadratic extensions of K contained in K1) are L; = K(\/p1) =

@(\/ﬁlv\/m% Ly = K(\/p_Q) = Q(\/ﬁgv\/W) and L3 = K(\/ZTPQ)
Q(/P1P2, /q1q2)- We put C; = Cp, 2.

Let us apply Lemma 3 with m = p1, d = p2q1g2 and H = Cy: The primes
of Q(y/p1) that ramify in L; = K(,/p1) are exactly those which are above ps, ¢
and ¢2. Their number r depends on (i—;), (p—l) and (5—;). Since d = 1 (mod 4), the

q1
study of the cases m = 1 (mod 8) and m = 5 (mod 8) is the same and so we have

the following table:

) @ (@ e
P1 p1 pP1

1 1 1 6 3

1 1 -1 5 2

1 -1 1 5 2

1 -1 -1 4 2

-1 1 1 5 2

-1 1 -1 4 1

-1 -1 1 4 1

-1 -1 -1 3 1

We would have a similar table for rank(Cs).

To calculate rank(C3) we take m = q1¢2, am = ¢1 and d = p1p2. The primes of
Q(y/m) that ramify in L3 are exactly those which are above p; and ps. Depending
on whether m = 5 (mod 8) or m = 1 (mod 8), we apply Lemma 5 or Lemma 6,
respectively. In the two cases we have the following table:

(ﬁ) (ﬂ) T rank(Cs)
P1 b2
1 1 4 3if(q—1):(2):1, 2 if not
Y41 b2
o (D .
1 -1 3 2if (—) —1, 1 if not
Y41
-1 -1 2 1
We conclude using Theorem 1 and the two last tables above. O

Theorem 6. Let K = Q(v/2p1q1g2) with p1 = —g2 = —q3 = 1 (mod 4). The
Hilbert 2-class field tower of K is metacyclic except for the following cases:
@) (2)= (2) = (2) =1,
(b) (pz—l) = (qQ—l) =(z) =1
© () =(5)=E)=(E) =1
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Proof. The quadratic extensions of K contained in K are L, = Q(y/pr1,
V201¢2), Ly = Q(V2, P1¢igz) and Ly = Q(\/q1q2, v/2p1). Let us put C; = Cyr, »
fori=1,2,3.

To compute rank(Cy) we apply Lemma 3 with m = p; and d = 2¢1¢2, and we
have the following table:

Z) (2 (@) r e
P1 P1 p1

1 1 1 6 3

1 1 -1 5 2

1 -1 1 5 2

1 -1 -1 4 2

-1 1 1 5 2

-1 1 -1 4 1

-1 -1 1 4 1

-1 -1 -1 3 1

To compute rank(Cs) we apply Lemma 3 with m = 2 and d = p1¢1¢2 and we have
the following table:

(3) (3) (3) r rank(Cb)
p1 Q1 42

1 1 1 6 3

1 1 -1 5 2

1 -1 1 5 2

1 -1 -1 4 2
-1 1 1 5 2
-1 1 -1 4 1
-1 -1 1 4 1
-1 -1 -1 3 1

To compute rank(Cs) we take m = q1¢2, am = ¢1 and d = 2p; and apply Lemma 5
or Lemma 6 depending on whether m = 1 or 5 (mod 8), respectively, and we have
the following table:

)
(—) (p_1) T rank(Cls)
q1492 q142
7
1 1 4 3if(72):(—):1 2 if not
q1 q1
1 1 3 <2
1 13 <2
~1 1 2 1
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We conclude by Theorem 1. O

References

[1] A. Azizi, A. Mouhib: On the rank of the 2-class group of Q(y/m, v/d) where m = 2 or a

prime p =1 (mod 4). Trans. Am. Math. Soc. 353 (2001), 2741-2752. (In French.) MR
[2] A. Azizi, A. Mouhib: Capitulation of the 2-ideal classes of biquadratic fields whose class

field differs from the Hilbert class field. Pac. J. Math. 218 (2005), 17-36. (In French.) MR
[3] E. Benjamin, F.Lemmermeyer, C.Snyder: Real quadratic fields with abelian 2-class

field tower. J. Number Theory 73 (1998), 182-194. IMR]
[4] Y. Berkovich, Z. Janko: On subgroups of finite p-group. Isr. J. Math. 171 (2009), 29-49. MR]
[5] J. Martinet: Tours de corps de classes et estimations de discriminants. Invent. Math. 44

(1978), 65-73. (In French.) MR]
[6] A. Mouhib: On the parity of the class number of multiquadratic number fields. J. Number

Theory 129 (2009), 1205-1211. MR]
[7] A. Mouhib: On 2-class field towers of some real quadratic number fields with 2-class

groups of rank 3. Ill. J. Math. 57 (2013), 1009-1018. |zb] IMR]
[8] A. Mouhib: A positive proportion of some quadratic number fields with infinite Hilbert

2-class field tower. Ramanujan J. 40 (2016), 405-412. MR

[9] O. Taussky: A remark on the class field tower. J. London Math. Soc. 12 (1937), 82-85. MR

Authors’ address: Said Essahel, Ahmed Dakkak, Ali Mouhib, Sidi Mohammed Ben
Abdellah University, Sciences and Engineering Laboratory, Polydisciplinary Faculty of
Taza, Taza-Gare PB 1223, Taza, Morocco, e-mail: essahel69@yahoo.fr, dakkakahmed@
hotmail.com, mouhibali@yahoo.fr.

190


https://zbmath.org/?q=an:0986.11073
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1828471
http://dx.doi.org/10.1090/S0002-9947-01-02753-2
https://zbmath.org/?q=an:1152.11345
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2224587
http://dx.doi.org/10.2140/pjm.2005.218.17
https://zbmath.org/?q=an:0919.11073
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1658015
http://dx.doi.org/10.1006/jnth.1998.2291
https://zbmath.org/?q=an:1181.20017
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2520099
http://dx.doi.org/10.1007/s11856-009-0038-5
https://zbmath.org/?q=an:0369.12007
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0460281
http://dx.doi.org/10.1007/BF01389902
https://zbmath.org/?q=an:1167.11039
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2521470
http://dx.doi.org/10.1016/j.jnt.2008.12.013
https://zbmath.org/?q=an:1302.11090
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3285864
https://zbmath.org/?q=an:06580117
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3490564
http://dx.doi.org/10.1007/s11139-015-9713-9
https://zbmath.org/?q=an:0016.20002
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1574658
http://dx.doi.org/10.1112/jlms/s1-12.1.82

