
144 (2019) MATHEMATICA BOHEMICA No. 3, 241–250

NOTE ON α-FILTERS IN DISTRIBUTIVE NEARLATTICES

Ismael Calomino, Tandil

Received September 7, 2017. Published online September 25, 2018.
Communicated by Radomír Halaš

Abstract. In this short paper we introduce the notion of α-filter in the class of distributive
nearlattices and we prove that the α-filters of a normal distributive nearlattice are strongly
connected with the filters of the distributive nearlattice of the annihilators.
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1. Introduction and preliminaries

A nearlattice is a join-semilattice with greatest element in which every principal

filter is a bounded lattice. These structures are a natural generalization of the

implication algebras studied by Abbott in [1] and the bounded distributive lattices.

The nearlattices form a variety and has been studied by Cornish and Hickman in

[14] and [16], and by Chajda, Halaš, Kühr and Kolařík in [8], [9], [10] and [11]. A

particular class of nearlattices are the distributive nearlattices. In [6] and [7], a full

duality is developed for distributive nearlattices and some applications are given,

and recently in [15], the author proposes a sentential logic associated with the class

of distributive nearlattices.

On the other hand, Cornish in [13] introduced the notion of α-ideal in the class

of distributive lattices and characterizes Stone lattices in terms of α-ideals. These

results were extended to the Hilbert algebras in [4] and [5]. We can study a dual

notion of α-ideal in the class of distributive nearlattices, i.e. the concept of α-filter.

The main objective of this paper is to introduce the notion of α-filter in the variety

of distributive nearlattices. We see that the α-filters of a normal distributive near-
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lattice A are strongly connected with the filters of the distributive nearlattice R(A)

of the annihilators. This result extends those obtained by Cornish.

Let A = 〈A,∨, 1〉 be a join-semilattice with greatest element. A filter is a subset F

of A such that 1 ∈ F , if a 6 b and a ∈ F , then b ∈ F and if a, b ∈ F , then a ∧ b ∈ F

whenever a∧b exists. If X is a nonempty subset of A, the smallest filter containingX

is called the filter generated by X and will be denoted by F (X). A filter G is said

to be finitely generated if G = F (X) for some finite nonempty subset X of A. If

X = {a}, then F ({a}) = [a) = {x ∈ A : a 6 x}, called the principal filter of a. We

denote by Fi(A) the set of all filters of A. A subset I of A is called an ideal if for

every a, b ∈ A, if a 6 b and b ∈ I, then a ∈ I and for all a, b ∈ I, a ∨ b ∈ I. We say

that a nonempty proper ideal P is prime if for every a, b ∈ A, a∧ b ∈ I implies a ∈ I

or b ∈ I whenever a ∧ b exists. We denote by Id(A) and X(A) the set of all ideals

and prime ideals of A, respectively. Finally, we say that a nonempty ideal I of A is

maximal if it is proper and for every J ∈ Id(A), if I ⊆ J , then J = I or J = A. We

denote by Idm(A) the set of all maximal ideals of A. Note that every maximal ideal

is prime.

Definition 1. Let A be a join-semilattice with greatest element. Then A is a

nearlattice if each principal filter is a bounded lattice with respect to the induced

order.

Note that the operation meet is defined only in a corresponding principal filter.

We indicate this fact by indices, i.e. ∧a denotes the meet in [a). Then the operation

meet is not defined everywhere. However, the nearlattices can be regarded as total

algebras through a ternary operation. This fact was first proved by Hickman in [16]

and independently by Chajda and Kolařík in [11]. Araújo and Kinyon in [2] found a

smaller equational base.

Theorem 2 ([2]). Let A be a nearlattice. Let m : A3 → A be a ternary operation

given by m(x, y, z) = (x ∨ z) ∧z (y ∨ z). The following identities are satisfied:

(1) m(x, y, x) = x,

(2) m(m(x, y, z),m(y,m(u, x, z), z), w) = m(w,w,m(y,m(x, u, z), z)),

(3) m(x, x, 1) = 1.

Conversely, let A = 〈A,m, 1〉 be an algebra of type (3, 0) satisfying the identities

(1)–(3). If we define x ∨ y = m(x, x, y), then A is a join-semilattice with greatest

element. Moreover, for each a ∈ A, [a) is a bounded lattice, where for every x, y ∈ [a)

their infimum is x ∧a y = m(x, y, a). Hence, A is a nearlattice.

Definition 3. Let A be a nearlattice. Then A is distributive if each principal

filter is a bounded distributive lattice with respect to the induced order.
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E x am p l e 4 ([1]). An implication algebra can be defined as a join-semilattice

with greatest element such that each principal filter is a Boolean lattice. If A =

〈A,→, 1〉 is an implication algebra, then the join of two elements x and y is given

by x ∨ y = (x → y) → y and for each a ∈ A, [a) = {x ∈ A : a 6 x} is a Boolean

lattice, where for x, y ∈ [a) the meet is given by x ∧a y = (x → (y → a)) → a and

x→ a is the complement of x in [a). Thus, every implication algebra is a distributive

nearlattice.

From the results given in [14], we have the following characterization of the filter

generated by a nonempty subset X in a distributive nearlattice A:

F (X) = {a ∈ A : ∃x1, . . . , xn ∈ [X), ∃x1 ∧ . . . ∧ xn, a = x1 ∧ . . . ∧ xn}.

In [3] it was shown that if A is a distributive nearlattice, then the set of all filters

Fi(A) = 〈Fi(A),⊻,⊼,→, {1}, A〉 is a Heyting algebra, where the least element is {1},

the greatest element is A, G ⊻H = F (G ∪H), G ⊼H = G ∩H and

(⋆) G→ H = {a ∈ A : [a) ∩G ⊆ H}

for all G,H ∈ Fi(A). So, the pseudocomplement of F ∈ Fi(A) is F ∗ = F → {1}.

Theorem 5 ([9]). Let A be a distributive nearlattice. Let I ∈ Id(A) and let

F ∈ Fi(A) such that I ∩ F = ∅. Then there exists P ∈ X(A) such that I ⊆ P and

P ∩ F = ∅.

The following definition given in [3] is an alternative definition of relative annihi-

lator in distributive nearlattices different from that given in [10].

Definition 6. Let A be a join-semilattice with greatest element and a, b ∈ A.

The annihilators of a relative to b is the set

a ◦ b = {x ∈ A : b 6 x ∨ a}.

In particular, the relative annihilator a⊤ = a ◦ 1 = {x ∈ A : x ∨ a = 1} is called the

annihilator of a.

It follows that a nearlattice A is distributive if and only if a ◦ b ∈ Fi(A) for

all a, b ∈ A. Also note that by (⋆), we have that [a)∗ = {x ∈ A : x ∨ a = 1},

i.e. [a)∗ = a⊤, which is the dual notion of annulet given by Cornish in [13]. The

following result will be useful.

Lemma 7 ([3]). Let A be a distributive nearlattice. Let a, b ∈ A and I ∈ Id(A).

(1) I ∩ a⊤ = ∅ if only if there exists U ∈ Idm(A) such that I ⊆ U and a ∈ U .

(2) U ∈ Idm(A) if only if for every a ∈ A, a /∈ U if only if U ∩ a⊤ 6= ∅.

243



We are interested in a particular class of distributive nearlattices which generalize

the normal lattices given in [12].

Definition 8. Let A be a distributive nearlattice. Then A is normal if each

prime ideal is contained in a unique maximal ideal.

Theorem 9 ([3]). Let A be a distributive nearlattice. The following conditions

are equivalent:

(1) A is normal,

(2) (a ∨ b)⊤ = a⊤ ⊻ b⊤ for all a, b ∈ A.

2. α-filters

In this section we study the notion of α-filter in the class of distributive near-

lattices. First, we see some characteristics of annihilators. Let A be a distributive

nearlattice, a ∈ A and we consider the set

a⊤⊤ = {y ∈ A : ∀x ∈ a⊤, y ∨ x = 1}.

Lemma 10. Let A be a distributive nearlattice. The following properties are

satisfied for every a, b ∈ A:

(1) [a) ⊆ a⊤⊤.

(2) a⊤⊤⊤ = a⊤.

(3) a 6 b implies a⊤ ⊆ b⊤.

(4) a⊤ ⊆ b⊤ if only if b⊤⊤ ⊆ a⊤⊤.

(5) (a ∧ b)⊤ = a⊤ ∩ b⊤ whenever a ∧ b exists.

(6) (a ∨ b)⊤⊤ = a⊤⊤ ∩ b⊤⊤.

P r o o f. We prove only the assertions (2), (4) and (6).

(2) Let y ∈ a⊤⊤⊤. Thus, for every x ∈ a⊤⊤ we have y ∨ x = 1. In particular,

a ∈ a⊤⊤ and y ∨ a = 1. Therefore y ∈ a⊤. The reciprocal is similar.

(4) Suppose that a⊤ ⊆ b⊤. Let y ∈ b⊤⊤. If x ∈ a⊤, then x ∈ b⊤ and y ∨ x = 1.

So, y ∈ a⊤⊤ and b⊤⊤ ⊆ a⊤⊤. Conversely, suppose that b⊤⊤ ⊆ a⊤⊤ and let x ∈ a⊤.

Since b ∈ b⊤⊤, b ∈ a⊤⊤ and b ∨ x = 1. Therefore x ∈ b⊤ and a⊤ ⊆ b⊤.

(6) Since a, b 6 a ∨ b, we have (a ∨ b)⊤⊤ ⊆ a⊤⊤, b⊤⊤ and (a ∨ b)⊤⊤ ⊆ a⊤⊤ ∩ b⊤⊤.

Let y ∈ a⊤⊤ ∩ b⊤⊤ and suppose that y /∈ (a ∨ b)⊤⊤. Then there is x ∈ (a ∨ b)⊤

such that y ∨ x < 1 and by Theorem 5, there exists P ∈ X(A) such that y ∨ x ∈ P .

So, x, y ∈ P . Since y ∈ a⊤⊤ ∩ b⊤⊤, we have that for every z ∈ a⊤, y ∨ z = 1 and

for every w ∈ b⊤, y ∨ w = 1. On the other hand, as x ∈ (a ∨ b)⊤, it follows that
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a ∨ b ∨ x = 1 and a ∨ x ∈ b⊤. Consequently, y ∨ a ∨ x = 1. We have two cases: if

P ∩ a⊤ 6= ∅, then there is t ∈ a⊤ such that t ∈ P . Thus, y ∨ t = 1 ∈ P , which is a

contradiction. If P ∩ a⊤ = ∅, then by Lemma 7 there exists U ∈ Idm(A) such that

P ⊆ U and a ∈ U . So, x, y, a ∈ U and y ∨ a ∨ x = 1 ∈ U , which is a contradiction.

Therefore, we conclude that (a ∨ b)⊤⊤ = a⊤⊤ ∩ b⊤⊤. �

If A is a distributive nearlattice, then an element a ∈ A is dense if a⊤ = {1}. We

denote by D(A) the set of all dense elements of A. By Lemma 10, it is easy to prove

that D(A) ∈ Id(A) and a⊤⊤ ∈ Fi(A) for all a ∈ A. The following result gives an

equivalence of the implication algebras in terms of annihilators.

Theorem 11. Let A be a distributive nearlattice. The following conditions are

equivalent:

(1) A is an implication algebra,

(2) [a) ⊻ a⊤ = A for all a ∈ A.

P r o o f. (1) ⇒ (2): Suppose that A is an implication algebra. By the results

developed in [1], we know that X(A) = Idm(A). Let a ∈ A. Obviously [a) ⊻ a⊤ ⊆ A.

We prove the other inclusion. Let c ∈ A and suppose that c /∈ [a) ⊻ a⊤. So, by

Theorem 5 there exists P ∈ X(A) such that c ∈ P and P ∩ ([a) ⊻ a⊤) = ∅. Then

a /∈ P and P ∩ a⊤ = ∅. Thus, P is maximal and by Lemma 7 it follows that

P ∩ a⊤ 6= ∅, which is a contradiction. Therefore [a) ⊻ a⊤ = A.

(1) ⇒ (2): Let a ∈ A and b ∈ [a) such that b 6= a and b 6= 1. Let us prove that b

has a complement in [a). We know that a ∈ [b) ⊻ b⊤ = F ([b) ∪ b⊤). If only there is

x ∈ [b) such that a = x, then b 6 x = a and b = a, which is a contradiction. On the

other hand, if only there is x ∈ b⊤ such that a = x, then x ∨ b = a ∨ b = 1. Since

a 6 b, it follows that a∨ b = b and b = 1, which is a contradiction. Thus, there exists

x ∈ [b) and there exists y ∈ b⊤ such that x ∧ y exists and a = x ∧ y. Then

a = a ∧ b = (x ∧ y) ∧ b = (x ∧ b) ∧ y = b ∧ y,

i.e. a = b∧ y. Moreover, y ∈ b⊤ and b∨ y = 1. As y ∈ [a), then y is the complement

of b in [a) and A is an implication algebra. �

Let A be a normal distributive nearlattice and we consider the family

R(A) = {a⊤ : a ∈ A}.

Let m : R(A)3 → R(A) be a map given by m(a⊤, b⊤, c⊤) = (a⊤ ⊻ c⊤) ⊼ (b⊤ ⊻ c⊤).

By Theorems 9 and 2 and Lemma 10, it follows that the structure

R(A) = 〈R(A),m,A〉

is a distributive nearlattice.

245



Corollary 12. Let A be a normal distributive nearlattice. Then the relation θ⊤

on A defined by

(∗) (a, b) ∈ θ⊤ if only if a⊤ = b⊤

is a congruence on A.

Corollary 13. Let A be a normal distributive nearlattice and θ⊤ be the congru-

ence given by (∗). Then R(A) is isomorphic to A/θ⊤.

P r o o f. Let ̺ : A → R(A) be the map defined by ̺(a) = a⊤. By Theorem 9

and Lemma 10 we have that ̺(m(a, b, c)) = m(̺(a), ̺(b), ̺(c)), where the ternary

operation m(a, b, c) is given by Theorem 2. So, ̺ is an homomorphism onto such

that θ⊤ = Ker(̺). It follows by Isomorphism Theorem. �

E x am p l e 14. LetA be the normal distributive nearlattice from Figure 1. Then

R(A) = {1⊤, a⊤, b⊤, c⊤}. On the other hand, the congruence θ⊤ is given by the

partition {1}, {b}, {a, d} and {c, e}. Hence, R(A) and A/θ⊤ are isomorphic.

d e

a
b

c
a
⊤

b
⊤

c
⊤

1 1⊤

A R(A)

Figure 1.

Definition 15. Let A be a distributive nearlattice and F ∈ Fi(A). We say

that F is an α-filter if a⊤⊤ ⊆ F for all a ∈ F .

We denote by Fiα(A) the set of all α-filters of A.

E x am p l e 16. If A is a normal distributive nearlattice, then Ker(θ⊤) is an

α-filter.

E x am p l e 17. If A is a distributive nearlattice, then a⊤ is an α-filter for all

a ∈ A. Let x ∈ a⊤. We prove that x⊤⊤ ⊆ a⊤. If y ∈ x⊤⊤, then x⊤ ⊆ y⊤ and

since a⊤ is a filter, we have x ∨ y ∈ a⊤ and x ∨ y ∨ a = 1, i.e. y ∨ a ∈ x⊤. So,

y ∨ a ∈ y⊤ and y ∨ a = 1. It follows that y ∈ a⊤ and a⊤ is an α-filter.
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R em a r k 18. Not every filter is an α-filter. In Example 14, we consider the

filter F = {1, a, b}. Thus, a⊤⊤ = {1, a, d} and a⊤⊤ * F .

Theorem 19. Let A be a distributive nearlattice and F ∈ Fi(A). The following

conditions are equivalent:

(1) F is an α-filter.

(2) If a⊤ = b⊤ and a ∈ F , then b ∈ F for all a, b ∈ A.

(3) F =
⋃
{a⊤⊤ : a ∈ F}.

P r o o f. (1)⇒ (2): Let a, b ∈ A such that a⊤ = b⊤ and a ∈ F . Then a⊤⊤ = b⊤⊤

and since F is an α-filter, a⊤⊤ ⊆ F . Then b ∈ b⊤⊤ and b⊤⊤ ⊆ F , i.e. b ∈ F .

(2) ⇒ (3): Since a ∈ a⊤⊤ for all a ∈ A, we have F ⊆
⋃
{a⊤⊤ : a ∈ F}. We see

the other inclusion. If x ∈
⋃
{a⊤⊤ : a ∈ F}, then there is b ∈ F such that x ∈ b⊤⊤.

So, b⊤ ⊆ x⊤ and x⊤⊤ ⊆ b⊤⊤. Then by Lemma 10, x⊤⊤ = x⊤⊤ ∩ b⊤⊤ = (x ∨ b)⊤⊤

and x⊤ = (x ∨ b)⊤. As x ∨ b ∈ F , by hypothesis we have x ∈ F .

(3)⇒ (1): Let b ∈ F . If x ∈ b⊤⊤, then x ∈
⋃
{a⊤⊤ : a ∈ F} and x ∈ F . Therefore

b⊤⊤ ⊆ F and F is an α-filter. �

Theorem 20. Let A be a normal distributive nearlattice and F ∈ Fi(A). Then

α(F ) = {x ∈ A : ∃ a ∈ F, a⊤ ⊆ x⊤}

is the smallest α-filter containing F .

P r o o f. It is clear that F ⊆ α(F ). Let x, y ∈ A such that x 6 y and x ∈ α(F ).

Then by Lemma 10, x⊤ ⊆ y⊤ and there exists a ∈ F such that a⊤ ⊆ x⊤. So,

a⊤ ⊆ y⊤ and y ∈ α(F ). Let x, y ∈ α(F ) and suppose that x ∧ y exists. Then there

exist a, b ∈ F such that a⊤ ⊆ x⊤ and b⊤ ⊆ y⊤. Since F is a filter, m(a, b, x∧y) ∈ F ,

where the ternary operationm(a, b, x∧y) is given by Theorem 2. On the other hand,

a⊤ ⊻ (x ∧ y)⊤ ⊆ x⊤ and b⊤ ⊻ (x ∧ y)⊤ ⊆ y⊤. As A is normal,

m(a, b, x ∧ y)⊤ = m(a⊤, b⊤, (x ∧ y)⊤) ⊆ x⊤ ⊼ y⊤ = (x ∧ y)⊤.

Thus, m(a, b, x ∧ y)⊤ ⊆ (x ∧ y)⊤ and x ∧ y ∈ α(F ). Then α(F ) is a filter. Let

x ∈ α(F ). We see that x⊤⊤ ⊆ α(F ). If y ∈ x⊤⊤, then x⊤ ⊆ y⊤. Since x ∈ α(F ),

there exists a ∈ F such that a⊤ ⊆ x⊤. So, a⊤ ⊆ y⊤ and y ∈ α(F ). Then x⊤⊤ ⊆ α(F )

and α(F ) is an α-filter. Let H ∈ Fiα(A) such that F ⊆ H . If x ∈ α(F ), then there

exists a ∈ F such that a⊤ ⊆ x⊤, i.e. x⊤⊤ ⊆ a⊤⊤. As a ∈ H and H is an α-filter, we

have a⊤⊤ ⊆ H . Consequently, x ∈ H and α(F ) ⊆ H . �
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R em a r k 21. Let A be a normal distributive nearlattice.

(1) Note that the map α : Fi(A) → Fi(A) of Theorem 20 is a closure operator and

the α-filters are closed elements with respect to α.

(2) A proper α-filter contains non-dense elements. Indeed, if F is a proper α-filter

and x ∈ F ∩ D(A), then F = α(F ) and x⊤ = {1}. Thus, there exists a ∈ F

such that a⊤ ⊆ x⊤. So, a⊤ = {1} and a⊤⊤ = A. On the other hand, since F is

an α-filter, a⊤⊤ ⊆ F , i.e. A = F which is a contradiction.

Now, we define the operations of infimum ⊓, supremum ⊔, and implication ⇒ in

Fiα(A) as:

F ⊓G = F ∩G, F ⊔G = α(F ⊻G), F ⇒ G = α(F → G)

for each pair F,G ∈ Fiα(A). By Theorem 20, we have that F ⊓G, F ⊔G, F ⇒ G ∈

Fiα(A) for all F,G ∈ Fiα(A). Consider the structure

Fiα(A) = 〈Fiα(A),⊔,⊓,⇒, {1}, A〉.

Theorem 22. Let A be a normal distributive nearlattice. Then Fiα(A) is a

Heyting algebra.

P r o o f. It is easy to verify that 〈Fiα(A),⊔,⊓, {1}, A〉 is a bounded lattice. Let

F,H,K ∈ Fiα(A). Suppose that F ⊓H ⊆ K. If x ∈ F , then [x) ∩H ⊆ F ⊓H ⊆ K.

Thus, [x) ∩H ⊆ K and x ∈ H → K. Hence, x ∈ H ⇒ K and F ⊆ H ⇒ K.

Reciprocally, we assume that F ⊆ H ⇒ K. Let x ∈ F ⊓H . So, x ∈ F ⊆ H ⇒ K

and there exists a ∈ H → K such that a⊤ ⊆ x⊤. It follows that x∨ a ∈ [a)∩H ⊆ K

and x⊤ = x⊤ ⊻ a⊤ = (x ∨ a)⊤, i.e. x⊤ = (x ∨ a)⊤ and x ∨ a ∈ K. By Theorem 19,

we have x ∈ K. Therefore, F ⊓H ⊆ K and Fiα(A) is a Heyting algebra. �

Let A be a nearlattice. Following the results developed in [15], we introduce

the next notation. For each natural number n we define inductively for every

a1, . . . , an, b ∈ A, the element mn−1(a1, . . . , an, b) as follows:

(1) m0(a1, b) = m(a1, a1, b),

(2) for n > 1, mn−1(a1, . . . , an, b) = m(mn−2(a1, . . . , an−1, b), an, b).

Then mn−1(a1, . . . , an, b) = (a1 ∨ b) ∧b . . . ∧b (an ∨ b) and in particular, m0(a1, b) =

a1 ∨ b and m1(a1, a2, b) = m(a1, a2, b), where the operation m(a1, a2, b) is given by

Theorem 2. We are able to formulate our main result.

Theorem 23. Let A be a normal distributive nearlattice. Then Fiα(A) is iso-

morphic to the Heyting algebra Fi(R(A)).
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P r o o f. We consider the map ψ : Fiα(A) → Fi(R(A)) defined by

ψ(F ) = {a⊤ : a ∈ F}.

We prove that ψ is well-defined. Let F ∈ Fiα(A). It is clear that 1
⊤ ∈ ψ(F ). Let

a⊤, b⊤ ∈ R(A) such that a⊤ ⊆ b⊤ and a⊤ ∈ ψ(F ). Then b⊤⊤ ⊆ a⊤⊤ and a ∈ F .

Thus, b ∈ a⊤⊤ and as F is an α-filter, a⊤⊤ ⊆ F . So, b ∈ F and b⊤ ∈ ψ(F ). Let

a⊤, b⊤ ∈ ψ(F ) and suppose that a⊤ ⊼ b⊤ exists in R(A), i.e. there is c ∈ A such that

a⊤ ⊼ b⊤ = c⊤. Then a, b ∈ F and as F is a filter, m(a, b, c) ∈ F . It follows that

m(a, b, c)⊤ = m(a⊤, b⊤, c⊤) = (a⊤ ⊼ b⊤) ⊻ c⊤ = c⊤

and c⊤ ∈ ψ(F ). Thus, a⊤ ⊼ b⊤ ∈ ψ(F ) and ψ(F ) ∈ Fi(R(A)).

Let F,H ∈ Fiα(A). It is immediate that ψ(F ⊓H) = ψ(F ) ⊼ ψ(H). We see that

ψ(F ⊔ H) = ψ(F ) ⊻ ψ(H). Let x⊤ ∈ ψ(F ⊔ H). Then x ∈ α(F ⊻ H) and there

exists a ∈ F ⊻H such that a⊤ ⊆ x⊤. So, there exist x1, . . . , xn ∈ F ∪ H such that

x1 ∧ . . . ∧ xn exists and a = x1 ∧ . . . ∧ xn. Then x⊤1 , . . . , x
⊤
n ∈ ψ(F ) ∪ ψ(H). On the

other hand, a⊤ = (x1 ∧ . . . ∧ xn)⊤ = x⊤
1
⊼ . . . ⊼ x⊤

n
and a⊤ ∈ ψ(F ) ⊻ ψ(H). Since

ψ(F ) ⊻ ψ(H) is a filter, we have x⊤ ∈ ψ(F ) ⊻ ψ(H) and ψ(F ⊔H) ⊆ ψ(F ) ⊻ ψ(H).

Conversely, if x⊤ ∈ ψ(F ) ⊻ ψ(H), then there exist x⊤
1
, . . . , x⊤

n
∈ ψ(F ) ∪ ψ(H) such

that x⊤
1
⊼ . . . ⊼ x⊤n exists and x

⊤ = x⊤
1
⊼ . . . ⊼ x⊤n . It follows that x1, . . . , xn ∈ F ∪H

and mn−1(x1, . . . , xn, x) ∈ F ⊻H . So,

mn−1(x1, . . . , xn, x)
⊤ = mn−1(x⊤

1
, . . . , x⊤

n
, x⊤) = (x⊤

1
⊼ . . . ⊼ x⊤

n
) ⊻ x⊤ = x⊤

and mn−1(x1, . . . , xn, x)
⊤ ⊆ x⊤. Thus, x ∈ α(F ⊻H) = F ⊔H , i.e. x⊤ ∈ ψ(F ⊔H)

and ψ(F ) ⊻ ψ(H) ⊆ ψ(F ⊔H). Therefore, ψ(F ⊔H) = ψ(F ) ⊻ ψ(H).

Now, we prove that ψ(F ⇒ H) = ψ(F ) → ψ(H). Let x⊤ ∈ ψ(F ⇒ H). Then

x ∈ F ⇒ H = α(F → H) and there exists a ∈ F → H such that a⊤ ⊆ x⊤.

So, [a) ∩ F ⊆ H . We see that x⊤ ∈ ψ(F ) → ψ(H), i.e. [x⊤) ∩ ψ(F ) ⊆ ψ(H). If

y⊤ ∈ [x⊤) ∩ ψ(F ), then x⊤ ⊆ y⊤ and y ∈ F . Thus, a ∨ y ∈ [a) ∩ F and a ∨ y ∈ H .

On the other hand, since a⊤ ⊆ y⊤, we have y⊤ = (a ∨ y)⊤. As a ∨ y ∈ H and H is

an α-filter, by Theorem 19, y ∈ H . Then y⊤ ∈ ψ(H) and x⊤ ∈ ψ(F ) → ψ(H). So,

ψ(F ⇒ H) ⊆ ψ(F ) → ψ(H). We prove the other inclusion. Let x⊤ ∈ ψ(F ) → ψ(H),

i.e. [x⊤) ∩ ψ(F ) ⊆ ψ(H). Then x⊤ ∈ ψ(F ⇒ H) if and only if x ∈ α(F → H) if

and only if there exists a ∈ F → H such that a⊤ ⊆ x⊤. We see that x ∈ F → H .

If y ∈ [x) ∩ F , then by Lemma 10, x⊤ ⊆ y⊤ and y ∈ F , i.e. y⊤ ∈ [x⊤) ∩ ψ(F ).

Since [x⊤) ∩ ψ(F ) ⊆ ψ(H), we have y⊤ ∈ ψ(H) and y ∈ H . Then [x) ∩ F ⊆ H and

x ∈ F → H . Thus, x⊤ ∈ ψ(F ⇒ H) and ψ(F ⇒ H) = ψ(F ) → ψ(H).

Let π : Fi(R(A)) → Fiα(A) be the map given by π(G) = {a : a⊤ ∈ G}. By

Lemma 10, it follows that π(G) ∈ Fiα(A). So, ψ and π are the inverses of each other

and ψ is 1-1 and onto. Therefore ψ is an isomorphism. �
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