NOTE ON α -FILTERS IN DISTRIBUTIVE NEARLATTICES

ISMAEL CALOMINO, Tandil

Received September 7, 2017. Published online September 25, 2018. Communicated by Radomír Halaš

Abstract. In this short paper we introduce the notion of α -filter in the class of distributive nearlattices and we prove that the α -filters of a normal distributive nearlattice are strongly connected with the filters of the distributive nearlattice of the annihilators.

Keywords: distributive nearlattice; annihilator; α -filter

MSC 2010: 06A12, 03G10, 06D50

1. INTRODUCTION AND PRELIMINARIES

A nearlattice is a join-semilattice with greatest element in which every principal filter is a bounded lattice. These structures are a natural generalization of the implication algebras studied by Abbott in [1] and the bounded distributive lattices. The nearlattices form a variety and has been studied by Cornish and Hickman in [14] and [16], and by Chajda, Halaš, Kühr and Kolařík in [8], [9], [10] and [11]. A particular class of nearlattices are the distributive nearlattices. In [6] and [7], a full duality is developed for distributive nearlattices and some applications are given, and recently in [15], the author proposes a sentential logic associated with the class of distributive nearlattices.

On the other hand, Cornish in [13] introduced the notion of α -ideal in the class of distributive lattices and characterizes Stone lattices in terms of α -ideals. These results were extended to the Hilbert algebras in [4] and [5]. We can study a dual notion of α -ideal in the class of distributive nearlattices, i.e. the concept of α -filter. The main objective of this paper is to introduce the notion of α -filter in the variety of distributive nearlattices. We see that the α -filters of a normal distributive near-

DOI: 10.21136/MB.2018.0101-17

241

This work was supported by the CONICET under Grant PIP 112-201501-00412.

lattice \mathbf{A} are strongly connected with the filters of the distributive nearlattice $\mathbf{R}(\mathbf{A})$ of the annihilators. This result extends those obtained by Cornish.

Let $\mathbf{A} = \langle A, \vee, 1 \rangle$ be a join-semilattice with greatest element. A filter is a subset F of A such that $1 \in F$, if $a \leq b$ and $a \in F$, then $b \in F$ and if $a, b \in F$, then $a \wedge b \in F$ whenever $a \wedge b$ exists. If X is a nonempty subset of A, the smallest filter containing X is called the filter generated by X and will be denoted by F(X). A filter G is said to be finitely generated if G = F(X) for some finite nonempty subset X of A. If $X = \{a\}$, then $F(\{a\}) = [a] = \{x \in A : a \leq x\}$, called the principal filter of a. We denote by Fi(A) the set of all filters of A. A subset I of A is called an ideal if for every $a, b \in A$, if $a \leq b$ and $b \in I$, then $a \in I$ and for all $a, b \in I$, $a \vee b \in I$. We say that a nonempty proper ideal P is prime if for every $a, b \in A, a \wedge b \in I$ implies $a \in I$ or $b \in I$ whenever $a \wedge b$ exists. We denote by Id(A) and X(A) the set of all ideals and prime ideals of A, respectively. Finally, we say that a nonempty ideal I of A is maximal if it is proper and for every $J \in Id(A)$, if $I \subseteq J$, then J = I or J = A. We denote by Idm(A) the set of all maximal ideals of A. Note that every maximal ideal is prime.

Definition 1. Let \mathbf{A} be a join-semilattice with greatest element. Then \mathbf{A} is a *nearlattice* if each principal filter is a bounded lattice with respect to the induced order.

Note that the operation meet is defined only in a corresponding principal filter. We indicate this fact by indices, i.e. \wedge_a denotes the meet in [a). Then the operation meet is not defined everywhere. However, the nearlattices can be regarded as total algebras through a ternary operation. This fact was first proved by Hickman in [16] and independently by Chajda and Kolařík in [11]. Araújo and Kinyon in [2] found a smaller equational base.

Theorem 2 ([2]). Let **A** be a nearlattice. Let $m: A^3 \to A$ be a ternary operation given by $m(x, y, z) = (x \lor z) \land_z (y \lor z)$. The following identities are satisfied:

(1) m(x, y, x) = x,

(2) m(m(x, y, z), m(y, m(u, x, z), z), w) = m(w, w, m(y, m(x, u, z), z)),

(3) m(x, x, 1) = 1.

Conversely, let $\mathbf{A} = \langle A, m, 1 \rangle$ be an algebra of type (3,0) satisfying the identities (1)–(3). If we define $x \lor y = m(x, x, y)$, then \mathbf{A} is a join-semilattice with greatest element. Moreover, for each $a \in A$, [a) is a bounded lattice, where for every $x, y \in [a)$ their infimum is $x \land_a y = m(x, y, a)$. Hence, \mathbf{A} is a nearlattice.

Definition 3. Let \mathbf{A} be a nearlattice. Then \mathbf{A} is *distributive* if each principal filter is a bounded distributive lattice with respect to the induced order.

Example 4 ([1]). An implication algebra can be defined as a join-semilattice with greatest element such that each principal filter is a Boolean lattice. If $\mathbf{A} = \langle A, \to, 1 \rangle$ is an implication algebra, then the join of two elements x and y is given by $x \lor y = (x \to y) \to y$ and for each $a \in A$, $[a] = \{x \in A : a \leq x\}$ is a Boolean lattice, where for $x, y \in [a]$ the meet is given by $x \land_a y = (x \to (y \to a)) \to a$ and $x \to a$ is the complement of x in [a]. Thus, every implication algebra is a distributive nearlattice.

From the results given in [14], we have the following characterization of the filter generated by a nonempty subset X in a distributive nearlattice **A**:

$$F(X) = \{a \in A \colon \exists x_1, \dots, x_n \in [X), \exists x_1 \land \dots \land x_n, a = x_1 \land \dots \land x_n\}.$$

In [3] it was shown that if **A** is a distributive nearlattice, then the set of all filters $Fi(\mathbf{A}) = \langle Fi(A), \forall, \bar{\wedge}, \rightarrow, \{1\}, A \rangle$ is a Heyting algebra, where the least element is $\{1\}$, the greatest element is $A, G \lor H = F(G \cup H), G \bar{\wedge} H = G \cap H$ and

$$(\star) \qquad \qquad G \to H = \{a \in A \colon [a) \cap G \subseteq H\}$$

for all $G, H \in Fi(A)$. So, the pseudocomplement of $F \in Fi(A)$ is $F^* = F \to \{1\}$.

Theorem 5 ([9]). Let **A** be a distributive nearlattice. Let $I \in Id(A)$ and let $F \in Fi(A)$ such that $I \cap F = \emptyset$. Then there exists $P \in X(A)$ such that $I \subseteq P$ and $P \cap F = \emptyset$.

The following definition given in [3] is an alternative definition of relative annihilator in distributive nearlattices different from that given in [10].

Definition 6. Let **A** be a join-semilattice with greatest element and $a, b \in A$. The *annihilators of a relative to b* is the set

$$a \circ b = \{ x \in A \colon b \leqslant x \lor a \}.$$

In particular, the relative annihilator $a^{\top} = a \circ 1 = \{x \in A : x \lor a = 1\}$ is called the *annihilator of a*.

It follows that a nearlattice **A** is distributive if and only if $a \circ b \in Fi(A)$ for all $a, b \in A$. Also note that by (\star) , we have that $[a)^* = \{x \in A : x \lor a = 1\}$, i.e. $[a)^* = a^{\top}$, which is the dual notion of annulet given by Cornish in [13]. The following result will be useful.

Lemma 7 ([3]). Let **A** be a distributive nearlattice. Let $a, b \in A$ and $I \in Id(A)$. (1) $I \cap a^{\top} = \emptyset$ if only if there exists $U \in Idm(A)$ such that $I \subseteq U$ and $a \in U$. (2) $U \in Idm(A)$ if only if for every $a \in A$, $a \notin U$ if only if $U \cap a^{\top} \neq \emptyset$. We are interested in a particular class of distributive nearlattices which generalize the normal lattices given in [12].

Definition 8. Let \mathbf{A} be a distributive nearlattice. Then \mathbf{A} is *normal* if each prime ideal is contained in a unique maximal ideal.

Theorem 9 ([3]). Let \mathbf{A} be a distributive nearlattice. The following conditions are equivalent:

- (1) \mathbf{A} is normal,
- (2) $(a \lor b)^{\top} = a^{\top} \lor b^{\top}$ for all $a, b \in A$.

2. α -filters

In this section we study the notion of α -filter in the class of distributive nearlattices. First, we see some characteristics of annihilators. Let **A** be a distributive nearlattice, $a \in A$ and we consider the set

$$a^{\top\top} = \{ y \in A \colon \forall x \in a^{\top}, y \lor x = 1 \}.$$

Lemma 10. Let **A** be a distributive nearlattice. The following properties are satisfied for every $a, b \in A$:

(1) $[a) \subseteq a^{\top \top}$. (2) $a^{\top \top \top} = a^{\top}$. (3) $a \leq b$ implies $a^{\top} \subseteq b^{\top}$. (4) $a^{\top} \subseteq b^{\top}$ if only if $b^{\top \top} \subseteq a^{\top \top}$. (5) $(a \wedge b)^{\top} = a^{\top} \cap b^{\top}$ whenever $a \wedge b$ exists. (6) $(a \vee b)^{\top \top} = a^{\top \top} \cap b^{\top \top}$.

Proof. We prove only the assertions (2), (4) and (6).

(2) Let $y \in a^{\top \top \top}$. Thus, for every $x \in a^{\top \top}$ we have $y \lor x = 1$. In particular, $a \in a^{\top \top}$ and $y \lor a = 1$. Therefore $y \in a^{\top}$. The reciprocal is similar.

(4) Suppose that $a^{\top} \subseteq b^{\top}$. Let $y \in b^{\top \top}$. If $x \in a^{\top}$, then $x \in b^{\top}$ and $y \lor x = 1$. So, $y \in a^{\top \top}$ and $b^{\top \top} \subseteq a^{\top \top}$. Conversely, suppose that $b^{\top \top} \subseteq a^{\top \top}$ and let $x \in a^{\top}$. Since $b \in b^{\top \top}$, $b \in a^{\top \top}$ and $b \lor x = 1$. Therefore $x \in b^{\top}$ and $a^{\top} \subseteq b^{\top}$.

(6) Since $a, b \leq a \lor b$, we have $(a \lor b)^{\top \top} \subseteq a^{\top \top}, b^{\top \top}$ and $(a \lor b)^{\top \top} \subseteq a^{\top \top} \cap b^{\top \top}$. Let $y \in a^{\top \top} \cap b^{\top \top}$ and suppose that $y \notin (a \lor b)^{\top \top}$. Then there is $x \in (a \lor b)^{\top}$ such that $y \lor x < 1$ and by Theorem 5, there exists $P \in X(A)$ such that $y \lor x \in P$. So, $x, y \in P$. Since $y \in a^{\top \top} \cap b^{\top \top}$, we have that for every $z \in a^{\top}, y \lor z = 1$ and for every $w \in b^{\top}, y \lor w = 1$. On the other hand, as $x \in (a \lor b)^{\top}$, it follows that $a \lor b \lor x = 1$ and $a \lor x \in b^{\top}$. Consequently, $y \lor a \lor x = 1$. We have two cases: if $P \cap a^{\top} \neq \emptyset$, then there is $t \in a^{\top}$ such that $t \in P$. Thus, $y \lor t = 1 \in P$, which is a contradiction. If $P \cap a^{\top} = \emptyset$, then by Lemma 7 there exists $U \in \text{Idm}(A)$ such that $P \subseteq U$ and $a \in U$. So, $x, y, a \in U$ and $y \lor a \lor x = 1 \in U$, which is a contradiction. Therefore, we conclude that $(a \lor b)^{\top \top} = a^{\top \top} \cap b^{\top \top}$.

If **A** is a distributive nearlattice, then an element $a \in A$ is *dense* if $a^{\top} = \{1\}$. We denote by D(A) the set of all dense elements of A. By Lemma 10, it is easy to prove that $D(A) \in \text{Id}(A)$ and $a^{\top\top} \in \text{Fi}(A)$ for all $a \in A$. The following result gives an equivalence of the implication algebras in terms of annihilators.

Theorem 11. Let **A** be a distributive nearlattice. The following conditions are equivalent:

- (1) \mathbf{A} is an implication algebra,
- (2) $[a) \leq a^{\top} = A$ for all $a \in A$.

Proof. (1) \Rightarrow (2): Suppose that **A** is an implication algebra. By the results developed in [1], we know that X(A) = Idm(A). Let $a \in A$. Obviously $[a) \forall a^{\top} \subseteq A$. We prove the other inclusion. Let $c \in A$ and suppose that $c \notin [a] \forall a^{\top}$. So, by Theorem 5 there exists $P \in X(A)$ such that $c \in P$ and $P \cap ([a] \forall a^{\top}) = \emptyset$. Then $a \notin P$ and $P \cap a^{\top} = \emptyset$. Thus, P is maximal and by Lemma 7 it follows that $P \cap a^{\top} \neq \emptyset$, which is a contradiction. Therefore $[a) \forall a^{\top} = A$.

 $(1) \Rightarrow (2)$: Let $a \in A$ and $b \in [a)$ such that $b \neq a$ and $b \neq 1$. Let us prove that b has a complement in [a). We know that $a \in [b) \lor b^{\top} = F([b) \cup b^{\top})$. If only there is $x \in [b)$ such that a = x, then $b \leqslant x = a$ and b = a, which is a contradiction. On the other hand, if only there is $x \in b^{\top}$ such that a = x, then $x \lor b = a \lor b = 1$. Since $a \leqslant b$, it follows that $a \lor b = b$ and b = 1, which is a contradiction. Thus, there exists $x \in [b)$ and there exists $y \in b^{\top}$ such that $x \land y$ exists and $a = x \land y$. Then

$$a = a \land b = (x \land y) \land b = (x \land b) \land y = b \land y,$$

i.e. $a = b \land y$. Moreover, $y \in b^{\top}$ and $b \lor y = 1$. As $y \in [a)$, then y is the complement of b in [a) and **A** is an implication algebra.

Let \mathbf{A} be a normal distributive nearlattice and we consider the family

$$\mathbf{R}(A) = \{ a^\top \colon a \in A \}.$$

Let \overline{m} : $\mathbb{R}(A)^3 \to \mathbb{R}(A)$ be a map given by $\overline{m}(a^{\top}, b^{\top}, c^{\top}) = (a^{\top} \lor c^{\top}) \land (b^{\top} \lor c^{\top})$. By Theorems 9 and 2 and Lemma 10, it follows that the structure

$$R(\mathbf{A}) = \langle R(A), \overline{m}, A \rangle$$

is a distributive nearlattice.

Corollary 12. Let **A** be a normal distributive nearlattice. Then the relation θ^{\top} on A defined by

(*)
$$(a,b) \in \theta^{\top}$$
 if only if $a^{\top} = b^{\top}$

is a congruence on A.

Corollary 13. Let **A** be a normal distributive nearlattice and θ^{\top} be the congruence given by (*). Then $R(\mathbf{A})$ is isomorphic to \mathbf{A}/θ^{\top} .

Proof. Let $\varrho: A \to \mathbf{R}(A)$ be the map defined by $\varrho(a) = a^{\top}$. By Theorem 9 and Lemma 10 we have that $\varrho(m(a, b, c)) = \overline{m}(\varrho(a), \varrho(b), \varrho(c))$, where the ternary operation m(a, b, c) is given by Theorem 2. So, ϱ is an homomorphism onto such that $\theta^{\top} = \operatorname{Ker}(\varrho)$. It follows by Isomorphism Theorem.

E x a m p l e 14. Let **A** be the normal distributive nearlattice from Figure 1. Then $R(A) = \{1^{\top}, a^{\top}, b^{\top}, c^{\top}\}$. On the other hand, the congruence θ^{\top} is given by the partition $\{1\}, \{b\}, \{a, d\}$ and $\{c, e\}$. Hence, $R(\mathbf{A})$ and \mathbf{A}/θ^{\top} are isomorphic.

Figure 1.

Definition 15. Let **A** be a distributive nearlattice and $F \in Fi(A)$. We say that F is an α -filter if $a^{\top \top} \subseteq F$ for all $a \in F$.

We denote by $\operatorname{Fi}_{\alpha}(A)$ the set of all α -filters of A.

Example 16. If **A** is a normal distributive nearlattice, then $\operatorname{Ker}(\theta^{\top})$ is an α -filter.

Example 17. If **A** is a distributive nearlattice, then a^{\top} is an α -filter for all $a \in A$. Let $x \in a^{\top}$. We prove that $x^{\top \top} \subseteq a^{\top}$. If $y \in x^{\top \top}$, then $x^{\top} \subseteq y^{\top}$ and since a^{\top} is a filter, we have $x \lor y \in a^{\top}$ and $x \lor y \lor a = 1$, i.e. $y \lor a \in x^{\top}$. So, $y \lor a \in y^{\top}$ and $y \lor a = 1$. It follows that $y \in a^{\top}$ and a^{\top} is an α -filter.

Remark 18. Not every filter is an α -filter. In Example 14, we consider the filter $F = \{1, a, b\}$. Thus, $a^{\top \top} = \{1, a, d\}$ and $a^{\top \top} \notin F$.

Theorem 19. Let **A** be a distributive nearlattice and $F \in Fi(A)$. The following conditions are equivalent:

- (1) F is an α -filter.
- (2) If $a^{\top} = b^{\top}$ and $a \in F$, then $b \in F$ for all $a, b \in A$.
- (3) $F = \bigcup \{ a^{\top \top} \colon a \in F \}.$

Proof. (1) \Rightarrow (2): Let $a, b \in A$ such that $a^{\top} = b^{\top}$ and $a \in F$. Then $a^{\top \top} = b^{\top \top}$ and since F is an α -filter, $a^{\top \top} \subseteq F$. Then $b \in b^{\top \top}$ and $b^{\top \top} \subseteq F$, i.e. $b \in F$.

(2) \Rightarrow (3): Since $a \in a^{\top \top}$ for all $a \in A$, we have $F \subseteq \bigcup \{a^{\top \top} : a \in F\}$. We see the other inclusion. If $x \in \bigcup \{a^{\top \top} : a \in F\}$, then there is $b \in F$ such that $x \in b^{\top \top}$. So, $b^{\top} \subseteq x^{\top}$ and $x^{\top \top} \subseteq b^{\top \top}$. Then by Lemma 10, $x^{\top \top} = x^{\top \top} \cap b^{\top \top} = (x \lor b)^{\top \top}$ and $x^{\top} = (x \lor b)^{\top}$. As $x \lor b \in F$, by hypothesis we have $x \in F$.

(3) \Rightarrow (1): Let $b \in F$. If $x \in b^{\top \top}$, then $x \in \bigcup \{a^{\top \top} : a \in F\}$ and $x \in F$. Therefore $b^{\top \top} \subseteq F$ and F is an α -filter.

Theorem 20. Let **A** be a normal distributive nearlattice and $F \in Fi(A)$. Then

$$\alpha(F) = \{ x \in A \colon \exists a \in F, a^\top \subseteq x^\top \}$$

is the smallest α -filter containing F.

Proof. It is clear that $F \subseteq \alpha(F)$. Let $x, y \in A$ such that $x \leq y$ and $x \in \alpha(F)$. Then by Lemma 10, $x^{\top} \subseteq y^{\top}$ and there exists $a \in F$ such that $a^{\top} \subseteq x^{\top}$. So, $a^{\top} \subseteq y^{\top}$ and $y \in \alpha(F)$. Let $x, y \in \alpha(F)$ and suppose that $x \wedge y$ exists. Then there exist $a, b \in F$ such that $a^{\top} \subseteq x^{\top}$ and $b^{\top} \subseteq y^{\top}$. Since F is a filter, $m(a, b, x \wedge y) \in F$, where the ternary operation $m(a, b, x \wedge y)$ is given by Theorem 2. On the other hand, $a^{\top} \preceq (x \wedge y)^{\top} \subseteq x^{\top}$ and $b^{\top} \preceq (x \wedge y)^{\top} \subseteq y^{\top}$. As **A** is normal,

$$m(a,b,x \wedge y)^{\top} = \overline{m}(a^{\top},b^{\top},(x \wedge y)^{\top}) \subseteq x^{\top} \overline{\wedge} y^{\top} = (x \wedge y)^{\top}.$$

Thus, $m(a, b, x \wedge y)^{\top} \subseteq (x \wedge y)^{\top}$ and $x \wedge y \in \alpha(F)$. Then $\alpha(F)$ is a filter. Let $x \in \alpha(F)$. We see that $x^{\top \top} \subseteq \alpha(F)$. If $y \in x^{\top \top}$, then $x^{\top} \subseteq y^{\top}$. Since $x \in \alpha(F)$, there exists $a \in F$ such that $a^{\top} \subseteq x^{\top}$. So, $a^{\top} \subseteq y^{\top}$ and $y \in \alpha(F)$. Then $x^{\top \top} \subseteq \alpha(F)$ and $\alpha(F)$ is an α -filter. Let $H \in \operatorname{Fi}_{\alpha}(A)$ such that $F \subseteq H$. If $x \in \alpha(F)$, then there exists $a \in F$ such that $a^{\top} \subseteq x^{\top}$, i.e. $x^{\top \top} \subseteq a^{\top \top}$. As $a \in H$ and H is an α -filter, we have $a^{\top \top} \subseteq H$. Consequently, $x \in H$ and $\alpha(F) \subseteq H$.

R e m a r k 21. Let A be a normal distributive nearlattice.

- (1) Note that the map α : Fi(A) \rightarrow Fi(A) of Theorem 20 is a closure operator and the α -filters are closed elements with respect to α .
- (2) A proper α -filter contains non-dense elements. Indeed, if F is a proper α -filter and $x \in F \cap D(A)$, then $F = \alpha(F)$ and $x^{\top} = \{1\}$. Thus, there exists $a \in F$ such that $a^{\top} \subseteq x^{\top}$. So, $a^{\top} = \{1\}$ and $a^{\top \top} = A$. On the other hand, since F is an α -filter, $a^{\top \top} \subseteq F$, i.e. A = F which is a contradiction.

Now, we define the operations of infimum $\overline{\sqcap}$, supremum $\underline{\sqcup}$, and implication \Rightarrow in $\operatorname{Fi}_{\alpha}(A)$ as:

$$F \overline{\sqcap} G = F \cap G, \quad F \sqcup G = \alpha(F \lor G), \quad F \Rightarrow G = \alpha(F \to G)$$

for each pair $F, G \in Fi_{\alpha}(A)$. By Theorem 20, we have that $F \sqcap G, F \sqcup G, F \Rightarrow G \in Fi_{\alpha}(A)$ for all $F, G \in Fi_{\alpha}(A)$. Consider the structure

$$\operatorname{Fi}_{\alpha}(\mathbf{A}) = \langle \operatorname{Fi}_{\alpha}(A), \underline{\sqcup}, \overline{\sqcap}, \Rightarrow, \{1\}, A \rangle.$$

Theorem 22. Let **A** be a normal distributive nearlattice. Then $Fi_{\alpha}(\mathbf{A})$ is a Heyting algebra.

Proof. It is easy to verify that $\langle \operatorname{Fi}_{\alpha}(A), \underline{\sqcup}, \overline{\sqcap}, \{1\}, A \rangle$ is a bounded lattice. Let $F, H, K \in \operatorname{Fi}_{\alpha}(A)$. Suppose that $F \overline{\sqcap} H \subseteq K$. If $x \in F$, then $[x) \cap H \subseteq F \overline{\sqcap} H \subseteq K$. Thus, $[x) \cap H \subseteq K$ and $x \in H \to K$. Hence, $x \in H \Rightarrow K$ and $F \subseteq H \Rightarrow K$.

Reciprocally, we assume that $F \subseteq H \Rightarrow K$. Let $x \in F \overline{\sqcap} H$. So, $x \in F \subseteq H \Rightarrow K$ and there exists $a \in H \to K$ such that $a^{\top} \subseteq x^{\top}$. It follows that $x \lor a \in [a) \cap H \subseteq K$ and $x^{\top} = x^{\top} \lor a^{\top} = (x \lor a)^{\top}$, i.e. $x^{\top} = (x \lor a)^{\top}$ and $x \lor a \in K$. By Theorem 19, we have $x \in K$. Therefore, $F \overline{\sqcap} H \subseteq K$ and $\operatorname{Fi}_{\alpha}(\mathbf{A})$ is a Heyting algebra.

Let **A** be a nearlattice. Following the results developed in [15], we introduce the next notation. For each natural number n we define inductively for every $a_1, \ldots, a_n, b \in A$, the element $m^{n-1}(a_1, \ldots, a_n, b)$ as follows:

(1)
$$m^0(a_1, b) = m(a_1, a_1, b),$$

(2) for n > 1, $m^{n-1}(a_1, \ldots, a_n, b) = m(m^{n-2}(a_1, \ldots, a_{n-1}, b), a_n, b)$.

Then $m^{n-1}(a_1, \ldots, a_n, b) = (a_1 \lor b) \land_b \ldots \land_b (a_n \lor b)$ and in particular, $m^0(a_1, b) = a_1 \lor b$ and $m^1(a_1, a_2, b) = m(a_1, a_2, b)$, where the operation $m(a_1, a_2, b)$ is given by Theorem 2. We are able to formulate our main result.

Theorem 23. Let \mathbf{A} be a normal distributive nearlattice. Then $\operatorname{Fi}_{\alpha}(\mathbf{A})$ is isomorphic to the Heyting algebra $\operatorname{Fi}(\mathbf{R}(\mathbf{A}))$.

Proof. We consider the map $\psi \colon \operatorname{Fi}_{\alpha}(A) \to \operatorname{Fi}(\operatorname{R}(A))$ defined by

$$\psi(F) = \{a^\top \colon a \in F\}.$$

We prove that ψ is well-defined. Let $F \in \operatorname{Fi}_{\alpha}(A)$. It is clear that $1^{\top} \in \psi(F)$. Let $a^{\top}, b^{\top} \in \operatorname{R}(A)$ such that $a^{\top} \subseteq b^{\top}$ and $a^{\top} \in \psi(F)$. Then $b^{\top \top} \subseteq a^{\top \top}$ and $a \in F$. Thus, $b \in a^{\top \top}$ and as F is an α -filter, $a^{\top \top} \subseteq F$. So, $b \in F$ and $b^{\top} \in \psi(F)$. Let $a^{\top}, b^{\top} \in \psi(F)$ and suppose that $a^{\top} \wedge b^{\top}$ exists in $\operatorname{R}(A)$, i.e. there is $c \in A$ such that $a^{\top} \wedge b^{\top} = c^{\top}$. Then $a, b \in F$ and as F is a filter, $m(a, b, c) \in F$. It follows that

$$m(a,b,c)^{\top} = \overline{m}(a^{\top},b^{\top},c^{\top}) = (a^{\top} \overline{\wedge} b^{\top}) \ \forall \ c^{\top} = c^{\top}$$

and $c^{\top} \in \psi(F)$. Thus, $a^{\top} \overline{\wedge} b^{\top} \in \psi(F)$ and $\psi(F) \in \operatorname{Fi}(\mathbf{R}(A))$.

Let $F, H \in \operatorname{Fi}_{\alpha}(A)$. It is immediate that $\psi(F \sqcap H) = \psi(F) \land \psi(H)$. We see that $\psi(F \sqcup H) = \psi(F) \lor \psi(H)$. Let $x^{\top} \in \psi(F \sqcup H)$. Then $x \in \alpha(F \lor H)$ and there exists $a \in F \lor H$ such that $a^{\top} \subseteq x^{\top}$. So, there exist $x_1, \ldots, x_n \in F \cup H$ such that $x_1 \land \ldots \land x_n$ exists and $a = x_1 \land \ldots \land x_n$. Then $x_1^{\top}, \ldots, x_n^{\top} \in \psi(F) \cup \psi(H)$. On the other hand, $a^{\top} = (x_1 \land \ldots \land x_n)^{\top} = x_1^{\top} \land \ldots \land x_n^{\top}$ and $a^{\top} \in \psi(F) \lor \psi(H)$. Since $\psi(F) \lor \psi(H)$ is a filter, we have $x^{\top} \in \psi(F) \lor \psi(H)$ and $\psi(F \sqcup H) \subseteq \psi(F) \lor \psi(H)$. Sonce that $x_1^{\top} \land \ldots \land x_n^{\top}$ exists and $x^{\top} = x_1^{\top} \land \ldots \land x_n^{\top}$. It follows that $x_1, \ldots, x_n \in F \cup H$ and $m^{n-1}(x_1, \ldots, x_n, x) \in F \lor H$. So,

$$m^{n-1}(x_1,\ldots,x_n,x)^{\top} = \overline{m}^{n-1}(x_1^{\top},\ldots,x_n^{\top},x^{\top}) = (x_1^{\top} \overline{\wedge} \ldots \overline{\wedge} x_n^{\top}) \stackrel{\vee}{=} x^{\top}$$

and $m^{n-1}(x_1, \ldots, x_n, x)^\top \subseteq x^\top$. Thus, $x \in \alpha(F \lor H) = F \sqcup H$, i.e. $x^\top \in \psi(F \sqcup H)$ and $\psi(F) \lor \psi(H) \subseteq \psi(F \sqcup H)$. Therefore, $\psi(F \sqcup H) = \psi(F) \lor \psi(H)$.

Now, we prove that $\psi(F \Rightarrow H) = \psi(F) \to \psi(H)$. Let $x^{\top} \in \psi(F \Rightarrow H)$. Then $x \in F \Rightarrow H = \alpha(F \to H)$ and there exists $a \in F \to H$ such that $a^{\top} \subseteq x^{\top}$. So, $[a) \cap F \subseteq H$. We see that $x^{\top} \in \psi(F) \to \psi(H)$, i.e. $[x^{\top}) \cap \psi(F) \subseteq \psi(H)$. If $y^{\top} \in [x^{\top}) \cap \psi(F)$, then $x^{\top} \subseteq y^{\top}$ and $y \in F$. Thus, $a \lor y \in [a) \cap F$ and $a \lor y \in H$. On the other hand, since $a^{\top} \subseteq y^{\top}$, we have $y^{\top} = (a \lor y)^{\top}$. As $a \lor y \in H$ and H is an α -filter, by Theorem 19, $y \in H$. Then $y^{\top} \in \psi(H)$ and $x^{\top} \in \psi(F) \to \psi(H)$. So, $\psi(F \Rightarrow H) \subseteq \psi(F) \to \psi(H)$. We prove the other inclusion. Let $x^{\top} \in \psi(F) \to \psi(H)$, i.e. $[x^{\top}) \cap \psi(F) \subseteq \psi(H)$. Then $x^{\top} \in \psi(F \Rightarrow H)$ if and only if $x \in \alpha(F \to H)$ if and only if there exists $a \in F \to H$ such that $a^{\top} \subseteq x^{\top}$. We see that $x \in F \to H$. If $y \in [x) \cap F$, then by Lemma 10, $x^{\top} \subseteq y^{\top}$ and $y \in F$, i.e. $y^{\top} \in [x^{\top}) \cap \psi(F)$. Since $[x^{\top}) \cap \psi(F) \subseteq \psi(H)$, we have $y^{\top} \in \psi(H)$ and $y \in H$. Then $[x) \cap F \subseteq H$ and $x \in F \to H$. Thus, $x^{\top} \in \psi(F \Rightarrow H)$ and $\psi(F \Rightarrow H) = \psi(F) \to \psi(H)$.

Let π : Fi(R(A)) \rightarrow Fi_{α}(A) be the map given by $\pi(G) = \{a: a^{\top} \in G\}$. By Lemma 10, it follows that $\pi(G) \in \text{Fi}_{\alpha}(A)$. So, ψ and π are the inverses of each other and ψ is 1-1 and onto. Therefore ψ is an isomorphism.

References

[1] [2]	J. C. Abbott: Semi-boolean algebra. Mat. Vesn., N. Ser. 4 (1967), 177–198. J. Araújo, M. Kinyon: Independent axiom systems for nearlattices. Czech. Math. J. 61	zbl <mark>MR</mark>
[2]	(2011), 975–992. <i>L. Colomino, S. Celani</i> : A note on annihilators in distributive nearlattices. Miskolc Math.	zbl <mark>MR</mark> doi
IJ	Notes 16 (2015), 65–78.	$\mathrm{zbl}\ \mathrm{MR}$
[4]	S. Celani: α -ideals and α -deductive systems in bounded Hilbert algebras. J. Mult Valued Logic and Soft Computing 21 (2013) 403-510	zhl MR
[5]	S. Celani: Notes on bounded Hilbert algebras with supremum. Acta Sci. Math. 80 (2014), 3–19	zbl MR doi
[6]	S. Celani, I. Calomino: Stone style duality for distributive nearlattices. Algebra Univers. 71 (2014), 127–153.	zbl MR doi
[7]	S. Celani, I. Calomino: On homomorphic images and the free distributive lattice exten-	
[0]	sion of a distributive nearlattice. Rep. Math. Logic 51 (2016), 57–73.	zbl MR doi
႞၀	<i>i. Chajaa, R. Hatas</i> : An example of a congruence distributive variety having no near-unanimity term. Acta Univ. M. Belii, Ser. Math. 13 (2006), 29–31.	zbl MR
[9]	I. Chajda, R. Halaš, J. Kühr: Semilattice Structures. Research and Exposition in Math-	
[10]	ematics 30. Heldermann, Lemgo, 2007.	$\mathrm{zbl}\ \mathbf{MR}$
[10]	<i>I. Chajda, M. Kolařik</i> : Ideals, congruences and annihilators on nearlattices. Acta Univ. Palacki Olomuc, Fac, Barum Nat, Math. <i>16</i> (2007) 25–33.	zhl MR
[11]	<i>I. Chajda, M. Kolařík</i> : Nearlattices. Discrete Math. 308 (2008), 4906–4913.	zbl MR doi
[12]	W. H. Cornish: Normal lattices. J. Aust. Math. Soc. 14 (1972), 200–215.	${ m zbl} { m MR} { m doi}$
[13]	W. H. Cornish: Annulets and α -ideals in distributive lattices. J. Aust. Math. Soc. 15	
[14]	(1973), 70-77. W H Cornish B C Hickman: Weakly distributive semilattices Acta Math Acad Sci	ZDI MIR doi
[**]	Hung. 32 (1978), 5–16.	zbl MR doi
[15]	L.J.González: The logic of distributive nearlattices. Soft Computing 22 (2018),	
[16]	2797-2807. <i>P. Hickman</i> : Join algebras, Commun. Algebra & (1080), 1653, 1685	doi abl MR dei
[10]	1. Incontante Join algebras. Commun. Algebra 8 (1300), 1055-1063.	201 101 001

Author's address: Ismael Calomino, Comisión de Investigaciones Científicas—Departamento de Matemáticas, Facultad de Ciencias Exactas, Universidad Nacional del Centro, Pinto 399, 7000 Tandil, Argentina, e-mail: calomino@exa.unicen.edu.ar.