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Abstract. In this short paper we introduce the notion of a-filter in the class of distributive
nearlattices and we prove that the a-filters of a normal distributive nearlattice are strongly
connected with the filters of the distributive nearlattice of the annihilators.
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1. INTRODUCTION AND PRELIMINARIES

A nearlattice is a join-semilattice with greatest element in which every principal
filter is a bounded lattice. These structures are a natural generalization of the
implication algebras studied by Abbott in [1] and the bounded distributive lattices.
The nearlattices form a variety and has been studied by Cornish and Hickman in
[14] and [16], and by Chajda, Halas, Kiihr and Kolafik in [8], [9], [10] and [11]. A
particular class of nearlattices are the distributive nearlattices. In [6] and [7], a full
duality is developed for distributive nearlattices and some applications are given,
and recently in [15], the author proposes a sentential logic associated with the class
of distributive nearlattices.

On the other hand, Cornish in [13] introduced the notion of a-ideal in the class
of distributive lattices and characterizes Stone lattices in terms of a-ideals. These
results were extended to the Hilbert algebras in [4] and [5]. We can study a dual
notion of a-ideal in the class of distributive nearlattices, i.e. the concept of a-filter.
The main objective of this paper is to introduce the notion of a-filter in the variety
of distributive nearlattices. We see that the a-filters of a normal distributive near-
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lattice A are strongly connected with the filters of the distributive nearlattice R(A)
of the annihilators. This result extends those obtained by Cornish.

Let A = (A, V, 1) be a join-semilattice with greatest element. A filter is a subset F’
of Asuch that 1 € F,ifa<banda € F,thenb &€ F and if a,b € F, thenaANb e F
whenever aAb exists. If X is a nonempty subset of A, the smallest filter containing X
is called the filter generated by X and will be denoted by F(X). A filter G is said
to be finitely generated if G = F(X) for some finite nonempty subset X of A. If
X = {a}, then F({a}) = [a) = {r € A: a < z}, called the principal filter of a. We
denote by Fi(A) the set of all filters of A. A subset I of A is called an ideal if for
every a,b € A, ifa < band b € I, then a € I and for all a,b € I, aVbe I. We say
that a nonempty proper ideal P is prime if for every a,b € A, aAb € I implies a € T
or b € I whenever a A b exists. We denote by Id(A) and X(A) the set of all ideals
and prime ideals of A, respectively. Finally, we say that a nonempty ideal I of A is
maximal if it is proper and for every J € Id(A), if I C J, then J =1 or J = A. We
denote by Idm(A) the set of all maximal ideals of A. Note that every maximal ideal
is prime.

Definition 1. Let A be a join-semilattice with greatest element. Then A is a
nearlattice if each principal filter is a bounded lattice with respect to the induced
order.

Note that the operation meet is defined only in a corresponding principal filter.
We indicate this fact by indices, i.e. A, denotes the meet in [a). Then the operation
meet is not defined everywhere. However, the nearlattices can be regarded as total
algebras through a ternary operation. This fact was first proved by Hickman in [16]
and independently by Chajda and Kolafik in [11]. Aratjo and Kinyon in [2] found a
smaller equational base.

Theorem 2 ([2]). Let A be a nearlattice. Let m: A3 — A be a ternary operation

given by m(z,y,z) = (x V z) A, (y V z). The following identities are satisfied:

(1) m(x, yvx) =,

(2) m(m(z,y,z),m(y, m(u, z,z), z), w) = m(w,w,m(y, m(z,u, 2), z)),

(3) m(z,z,1) = 1.

Conversely, let A = (A, m,1) be an algebra of type (3,0) satisfying the identities
(1)=(3). If we define x Vy = m(x,x,y), then A is a join-semilattice with greatest
element. Moreover, for each a € A, [a) is a bounded lattice, where for every x,y € |a)
their infimum is x Aq y = m(x,y,a). Hence, A is a nearlattice.

Definition 3. Let A be a nearlattice. Then A is distributive if each principal
filter is a bounded distributive lattice with respect to the induced order.
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Example 4 ([1]). An implication algebra can be defined as a join-semilattice
with greatest element such that each principal filter is a Boolean lattice. If A =
(A, —,1) is an implication algebra, then the join of two elements z and y is given
by zVy = (x — y) - y and for each a € A, [a) = {x € A: a < z} is a Boolean
lattice, where for x,y € [a) the meet is given by 2 A, y = (x — (y — a)) — a and
x — a is the complement of z in [a). Thus, every implication algebra is a distributive
nearlattice.

From the results given in [14], we have the following characterization of the filter
generated by a nonempty subset X in a distributive nearlattice A:

FX)={a€A: Fz1,...;2p, €[X), Iz1 A ... ATy, a=21 A... AT}

In [3] it was shown that if A is a distributive nearlattice, then the set of all filters
Fi(A) = (Fi(A), Y, A, —, {1}, A) is a Heyting algebra, where the least element is {1},
the greatest element is A, GYH = F(GUH), GAH =GN H and

(%) G—->H={a€cA: [a)NGC H}
for all G, H € Fi(A). So, the pseudocomplement of F' € Fi(A) is F* = F — {1}.

Theorem 5 ([9]). Let A be a distributive nearlattice. Let I € Id(A) and let
F € Fi(A) such that I N F = (). Then there exists P € X(A) such that I C P and
PNF=0.

The following definition given in [3] is an alternative definition of relative annihi-
lator in distributive nearlattices different from that given in [10].

Definition 6. Let A be a join-semilattice with greatest element and a,b € A.
The annihilators of a relative to b is the set

aob={zxe€A: b<zVa}.

In particular, the relative annihilator a” =aol = {x € A: xVa =1} is called the
annihilator of a.

It follows that a nearlattice A is distributive if and only if a 0 b € Fi(A) for
all a,b € A. Also note that by (x), we have that [a)* = {& € A: zVa = 1},
i.e. [a)* = a', which is the dual notion of annulet given by Cornish in [13]. The
following result will be useful.

Lemma 7 ([3]). Let A be a distributive nearlattice. Let a,b € A and I € Id(A).

(1) INa® = 0 if only if there exists U € Idm(A) such that I CU anda € U.
(2) U € Idm(A) if only if for every a € A, a ¢ U if only if UNa'" # 0.
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We are interested in a particular class of distributive nearlattices which generalize

the normal lattices given in [12].

Definition 8. Let A be a distributive nearlattice. Then A is normal if each

prime ideal is contained in a unique maximal ideal.

Theorem 9 ([3]). Let A be a distributive nearlattice. The following conditions
are equivalent:

(1) A is normal,
(2) (avb)T =a” VbT foralla,bec A.

2. «-FILTERS

In this section we study the notion of a-filter in the class of distributive near-
lattices. First, we see some characteristics of annihilators. Let A be a distributive
nearlattice, a € A and we consider the set

T={yeA:Vzeca',yve=1)}.

Lemma 10. Let A be a distributive nearlattice. The following properties are
satisfied for every a,b € A:
(1) [a) Sa .
(2) TTT T
(3) a < bimpliesa” Cb'.
(4) a” CbT if on]y ifb'T Call.
()
(6)

aAD)T =a’ Nb'" whenever a A b exists.
(
(a v b)TT TT N bTT.

Proof. We prove only the assertions (2), (4) and (6).

(2) Let y € @' TT. Thus, for every z € a' "
a€a'’ and yVa=1. Therefore y € a'. The reciprocal is similar.

(4) Suppose that a” Cb". Lety € b'T. Ifx €a', thenx € b" and y vV = 1.
So,yc€a'T andb' T Ca'T. Conversely, suppose that b’ T C o' and let z € a'.
Sincebeb'T,bea’ " and bV =1. Therefore z €b” anda’ Cb'.

(6) Since a,b < aVb, wehave (aVb)'T Ca’ "6 T and (aVb)TT Ca’TNbTT.
Let y € a' " Nb'" and suppose that y ¢ (a Vb)"". Then there is x € (a Vb)"

such that y V2 < 1 and by Theorem 5, there exists P € X(A) such that y Va € P.
TTApTT

we have y Vx = 1. In particular,

So, z,y € P. Since y € a , we have that for every z € o', yV 2z = 1 and
for every w € b', y Vw = 1. On the other hand, as = € (a V)", it follows that
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aVbVz=1andaVzecb'. Consequently, y VaVz = 1. We have two cases: if
Pna' # 0, then there is t € a' such that t € P. Thus, y Vt = 1 € P, which is a
contradiction. If P Na’ = (), then by Lemma 7 there exists U € Idm(A) such that
PCUanda€U. So,xz,y,a € U and yVaVz=1¢c U, which is a contradiction.
Therefore, we conclude that (aVb)'T =a’ " NbTT. O

If A is a distributive nearlattice, then an element a € A is dense if a” = {1}. We
denote by D(A) the set of all dense elements of A. By Lemma 10, it is easy to prove
that D(A) € Id(A) and a'" € Fi(A) for all a € A. The following result gives an
equivalence of the implication algebras in terms of annihilators.

Theorem 11. Let A be a distributive nearlattice. The following conditions are
equivalent:
(1) A is an implication algebra,
(2) [a)Ya' = A foralla € A.

Proof. (1) = (2): Suppose that A is an implication algebra. By the results
developed in [1], we know that X(A) = Idm(A). Let a € A. Obviously [a) Va™ C A.
We prove the other inclusion. Let ¢ € A and suppose that ¢ ¢ [a) Y a'. So, by
Theorem 5 there exists P € X(A) such that ¢ € P and PN ([a) Ya') = (. Then
a ¢ Pand PNa' = (. Thus, P is maximal and by Lemma 7 it follows that
PnNa' # (), which is a contradiction. Therefore [a) Va' = A.

(1) = (2): Let a € A and b € [a) such that b # a and b # 1. Let us prove that b
has a complement in [a). We know that a € [b) Vo' = F([b) Ub"). If only there is
x € [b) such that a = x, then b < = a and b = a, which is a contradiction. On the
other hand, if only there is € b" such that a = x, then z Vb = a Vb = 1. Since
a < b, it follows that a Vb = b and b = 1, which is a contradiction. Thus, there exists
x € [b) and there exists y € b such that x A y exists and a = z A y. Then

a=aNb=(xAyY)Ab=(xAD)Ay=>bAy,

i.e.a=0bAy. Moreover,y € b' and bVy = 1. As y € [a), then y is the complement
of bin [a) and A is an implication algebra. O

Let A be a normal distributive nearlattice and we consider the family
R(A)={a": a € A}.

Let m: R(A)® — R(A) be a map given by m(a',b",c¢") = (a" Ye")A (BT V).
By Theorems 9 and 2 and Lemma 10, it follows that the structure

R(A) = (R(4),m, 4)
is a distributive nearlattice.
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Corollary 12. Let A be a normal distributive nearlattice. Then the relation 87
on A defined by

(%) (a,) € 0" ifonlyif a' =b"
is a congruence on A.
Corollary 13. Let A be a normal distributive nearlattice and §" be the congru-

ence given by (). Then R(A) is isomorphic to A/fT.

Proof. Let o: A — R(A) be the map defined by o(a) = a'. By Theorem 9
and Lemma 10 we have that o(m(a,b,c)) = m(o(a), 0(b), 0(c)), where the ternary
operation m(a, b, c) is given by Theorem 2. So, g is an homomorphism onto such
that 7 = Ker(p). It follows by Isomorphism Theorem. O

Example 14. Let A be the normal distributive nearlattice from Figure 1. Then
R(A) = {17,a",b",¢"}. On the other hand, the congruence ' is given by the
partition {1}, {b}, {a,d} and {c,e}. Hence, R(A) and A/f" are isomorphic.

1T

Figure 1.

Definition 15. Let A be a distributive nearlattice and F' € Fi(A). We say
that F' is an a-filter if a'TCFforalackF.

We denote by Fi, (A) the set of all a-filters of A.

Example 16. If A is a normal distributive nearlattice, then Ker(#T) is an
a-filter.

Example 17. If A is a distributive nearlattice, then a' is an a-filter for all

a€ A Let x € a'. We prove that ' T C a'. If Yy € z'T, then 27 C yT and

T

since ' is a filter, we have x Vy € o' and xVyVa =1,ie. yVa € 2". So,

yVacy' andyVa=1. It follows that y € a’ and a' is an a-filter.
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Remark 18. Not every filter is an a-filter. In Example 14, we consider the
filter ' = {1,a,b}. Thus,a' " ={l,a,d} anda' " ¢ F.

Theorem 19. Let A be a distributive nearlattice and F' € Fi(A). The following
conditions are equivalent:

(1) F is an o-filter.
(2) If a" =b" anda € F, then b € F for all a,b € A.
3) F=U{a"": a€ F}.

Proof. (1)= (2): Leta,b€ Asuchthata' =b" anda € F. Thena' " =b"7
and since F is an a-filter, ' ' C F. Then be b’ T and b’ T C F,ie. b e F.

(2) = (3): Since a € a' " for all a € A, we have F C (J{a'": a € F}. We see
the other inclusion. If x € (J{a" ": a € F}, then there is b € F such that z € ' ".
So,b" CzT andz'" Cb'". Then by Lemma 10, 2" T = 2T Nd' T = (zvb)TT
and " = (zVb)". As Vb € F, by hypothesis we have z € F.

(3)= (1): Letbe F. Ifx€b' ", thenz € U{a"": a € F} and = € F. Therefore
bTT C F and F is an a-filter. O

Theorem 20. Let A be a normal distributive nearlattice and F' € Fi(A). Then
afF)={zcA: JacF a" Ca'}

is the smallest a-filter containing F'.

Proof. It is clear that F C a(F). Let z,y € A such that x < y and = € o(F).
Then by Lemma 10, ' C y' and there exists a € F such that a' C 2'. So,
a" Cy'" and y € a(F). Let 7,y € a(F) and suppose that o A y exists. Then there
exist a,b € F suchthat a” C 2" and b" C y'. Since F is a filter, m(a, b,z Ay) € F,
where the ternary operation m(a, b, z Ay) is given by Theorem 2. On the other hand,
a'V(xAy)T Cz" and b’ Y(zAy)T Cy'. As A is normal,

)i =ma" b (any) ) Ca Ay =@y’

Thus, m(a,b,z Ay)" C (x Ay)" and 2 Ay € a(F). Then «(F) is a filter. Let
r € a(F). Weseethat ' T C o(F). If y€z' ", then 2" C y'. Since z € a(F),
there exists a € F'suchthata’ C2". So,a’ Cy" andy € a(F). Thenz'" C a(F)
and «(F) is an o-filter. Let H € Fi, (A) such that F C H. If x € a(F), then there
exists a € F such that a” Cz7,ie. 2T Ca''. Asa € H and H is an a-filter, we
have a' " C H. Consequently, + € H and o(F) C H. O
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Remark 21. Let A be a normal distributive nearlattice.

(1) Note that the map «a: Fi(A) — Fi(A) of Theorem 20 is a closure operator and
the a-filters are closed elements with respect to a.

(2) A proper a-filter contains non-dense elements. Indeed, if F' is a proper a-filter
and x € F N D(A), then F = o(F) and " = {1}. Thus, there exists a € F'
such that a” C 2. So,a” = {1} and a' T = A. On the other hand, since F is
an o-filter, a' T C F, i.e. A= F which is a contradiction.

Now, we define the operations of infimum T, supremum LI, and implication = in
Fi,(A) as:

FAG=FNG, FUG=a(FYG), F=G=aF =G)

for each pair F, G € Fi,(A). By Theorem 20, we have that FING, FUG, F = G €
Fiy(A) for all F,G € Fi,(A). Consider the structure

Fia(A) = (Fia(A), 1,7, =, {1}, A).

Theorem 22. Let A be a normal distributive nearlattice. Then Fi,(A) is a
Heyting algebra.

Proof. It is easy to verify that (Fi,(A),U,M, {1}, A) is a bounded lattice. Let
F,H,K € Fi,(A). Suppose that FTTH C K. If x € F, then [x)NH C FNMH C K.
Thus, [t) NH C K and z € H — K. Hence,z € H = K and F C H = K.

Reciprocally, we assume that F C H = K. Let x € FT1H. So,x € FCH = K
and there exists a € H — K such that ¢ C 2". It follows that x Va € [a) N H C K
andz” =2"VYa' =(zVa)',ie 2’ =(xVa) and xVa € K. By Theorem 19,
we have © € K. Therefore, FTTH C K and Fi,(A) is a Heyting algebra. d

Let A be a nearlattice. Following the results developed in [15], we introduce
the next notation. For each natural number n we define inductively for every

ai,...,an,b € A, the element m" 1(ay,...,a,,b) as follows:
(1) m®(a1,b) = m(a,a1,b),
(2) for n > 1, m" Y ay,...,an,b) = m(m" 2(a1,...,an_1,b),an,b).

Then m" (ay,...,an,b) = (a1 Vb) Ay ... Ap (a, V b) and in particular, m®(ay,b) =
ai V b and m!(a1,as,b) = m(ai,as,b), where the operation m(as,as,b) is given by
Theorem 2. We are able to formulate our main result.

Theorem 23. Let A be a normal distributive nearlattice. Then Fi,(A) is iso-
morphic to the Heyting algebra Fi(R(A)).
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Proof. We consider the map ¢: Fia(A) — Fi(R(A)) defined by
Y(F)={a": a € F}.

We prove that ¢ is well-defined. Let F € Fi,(A). It is clear that 17 € ¢(F). Let
a’,b" € R(A) such that a” C b" and a” € ¢(F). Then b'" Ca'" and a € F.
Thus, b € a' T and as F is an a-filter, a’ " C F. So, b € F and b" € ¥(F). Let
a',b" € (F) and suppose that a' Ab' exists in R(A), i.e. there is ¢ € A such that
a" AbT =c'. Then a,b € F and as F is a filter, m(a, b, c) € F. It follows that

m(a,b,c)" =m(a",b",¢c")=(a" AbT) Ve =¢T

and ¢" € ¢(F). Thus, a' Ab" € ¢(F) and ¢(F) € Fi(R(A)).

Let F, H € Fiy(A). It is immediate that ¢(F T H) = ¢ (F) A¢p(H). We see that
YFUH) =y(F)Y(H). Let 27 € »(FUH). Then z € o(F Y H) and there
exists @ € F'Y H such that ' C z'. So, there exist z1,...,z, € F'U H such that
Ty A... AT, exists and a = 21 A...Az,. Then z],...., 2] € (F)Uy(H). On the
other hand, a” = (z1 A...Ax,)T = 2] A...Ax) and a’ € ¥(F) Y ¢(H). Since
Y(F) YV (H) is a filter, we have x7 € (F) Y ¢(H) and ¢(F U H) C (F) Y ¢ (H).
Conversely, if 27 € ¥(F) Y ¢ (H), then there exist { ,...,z, € ¥(F)U(H) such

that o7 A... Az, existsand " = 2] A... Az, . It follows that z1,...,2, € FUH
and m"~(z1,...,2,,7) € FY H. So,
-1 T _—n—1,.T T T~ .7 T T
m" (X1, T, x) =T (2, T, )= (2] ALAZ, )Y =2

and m" 1(z1,...,2p,2)" Ca'. Thus,z € a(FVYH)=FUH, ie ' € p(FUH)
and Y(F) Y y(H) C¢(FUH). Therefore, (FUH) = y(F) Y y(H).

Now, we prove that ¥(F = H) = ¢(F) — ¢(H). Let x7 € ¢(F = H). Then
r € F = H = «aF — H) and there exists « € F — H such that ' C z'.
So, [a) N F C H. We see that 7 € ¥(F) — ¢(H), ie. [27)Ny(F) C ¢(H). If
y' €la")Ny(F), thenz" Cy" andy € F. Thus,aVy €la)NFandaVy € H.
On the other hand, since a” C y', we have y" = (aVy)'. AsaVy € H and H is
an a-filter, by Theorem 19, y € H. Then y' € ¢(H) and " € (F) — ¥(H). So,
Y(F = H) Cy(F) — ¢(H). We prove the other inclusion. Let 7 € ¢(F) — ¢(H),
ie. [z7)NY(F) C ¢(H). Then x' € ¢(F = H) if and only if x € o(F — H) if
and only if there exists a € F — H such that a’ Cal. We see that x € F — H.
If y € [z) N F, then by Lemma 10, " C y" and y € F, ie. y' € [z") N(F).
Since [z 7)) NY(F) C(H), we have y" € ¥(H) and y € H. Then [x) N F C H and
r€F — H. Thus, 2" € (F = H) and ¥(F = H) = ¢(F) — ¢ (H).

Let 7: Fi(R(A)) — Fis(A) be the map given by 7(G) = {a: a' € G}. By
Lemma 10, it follows that m(G) € Fiy(A). So, ¥ and 7 are the inverses of each other
and v is 1-1 and onto. Therefore v is an isomorphism. ([
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