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Abstract. We introduce partial generalized convex contractions of order 4 and rank 4
using some auxiliary functions. We present some results on approximate fixed points and
fixed points for such class of mappings having no continuity condition in α-complete metric
spaces and µ-complete metric spaces. Also, as an application, some fixed point results in a
metric space endowed with a binary relation and some approximate fixed point results in a
metric space endowed with a graph have been obtained. Some examples are also provided
to illustrate the main results and to show the usability of the given hypotheses.
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1. introduction

The fixed point theory is an important tool for solving various nonlinear problems.

In several practical situations, the conditions in the fixed point theorems are too

strong and so the existence of a fixed point is not guaranteed. In this situation, we can

consider nearly fixed points or approximate fixed points. The study of approximate

fixed point theorems is equally interesting to that of fixed point theorems.

In 2006, inspired and motivated by the work of Tijs et al. [15], Berinde [2] obtained

some fundamental approximate fixed point theorems in metric spaces. In 2013, Dey

and Saha in [6] established the existence of approximate fixed points for the Reich

operator (see [13]) which in turn generalizes approximate fixed point theorems of

Berinde (see [2]). Many results on approximate fixed points (see, for example, [5],
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[10], [13] and the references therein) have appeared. On the other hand, in 1982,

Istrăţescu in [8] introduced the concept of convex contractions and proved that each

convex contraction mapping has a unique fixed point on a complete metric space.

In 2013, Miandaragh et al. [12] extended the concept of convex contractions to gener-

alized convex contractions and generalized convex contractions of order 2. They have

also proved some approximate fixed point theorems for continuous mappings satisfy-

ing such contractive conditions in complete metric spaces. The results of Miandaragh

et al. (see [12]) were extended by Latif et al. in [11].

In this paper, the main results are given in three sections: In the first section, we

introduce the concept of partial generalized convex contraction mappings of order 4

and rank 4 using auxiliary functions and provide sufficient conditions for the existence

of approximate fixed points for such class of mappings in α-complete metric spaces

and µ-complete metric spaces. In the second section, as an application, we obtain

some fixed point results in metric spaces endowed with a binary relation. In the last

section, we obtain some approximate fixed point results in metric spaces endowed

with a graph. Some examples are also provided to illustrate the main results and to

show the usability of the given hypotheses. These results extend, unify and generalize

the main results of Latif et al. [11] and of Miandaragh et al. [12].

2. Preliminaries

Definition 2.1 ([13]). Let (X, d) be a metric space, T : X → X be a mapping

and ε > 0 be a given real number. A point x0 ∈ X is said to be an ε-fixed point

(approximate fixed point) of T if

d(x0, T x0) < ε.

R em a r k 2.2. We observe that a fixed point is an ε-fixed point for all ε > 0.

However, the converse is not true.

The set of all ε-fixed points of T : X → X is denoted by Fε(T ), that is,

Fε(T ) := {x ∈ X : d(x, Tx) < ε}.

Definition 2.3. Amapping T has the approximate fixed point property (see [10])

if for all ε > 0 there exists an ε-fixed point of T, that is, for all ε > 0,

Fε(T ) 6= ∅

or equivalently,

inf
x∈X

d(x, Tx) = 0.
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Definition 2.4 ([3]). A self mapping T on a metric space (X, d) is said to be

asymptotically regular at a point x ∈ X if

d(T nx, T n+1x) → 0 as n→ ∞,

where T nx denotes the nth iterate of T at x.

Definition 2.5. Let X be a nonempty set, T : X → X and α, µ : X×X → R
+.

We say that T is an α-admissible mapping (see [14]) or µ-subadmissible mapping

if α(x, y) > 1 or µ(x, y) 6 1 implies α(Tx, T y) > 1, x, y ∈ X or µ(Tx, T y) 6 1,

x, y ∈ X , respectively.

Definition 2.6. Let (X, d) be a metric space and α, µ : X ×X → R
+ be map-

pings. The space X is said to be α-complete (see [7]) or µ-complete if every Cauchy

sequence {xn} in X with α(xn, xn+1) > 1 or µ(xn, xn+1) 6 1, for all n ∈ N, repec-

tively, converges in X .

The following results will be used in the sequel.

Lemma 2.7 ([11]). Let (X, d) be a metric space and T : X → X be asymptotically

regular at a point z ∈ X . Then T has the approximate fixed point property.

We recollect the following auxiliary results which will be used in the proof of our

main results.

⊲ If (X, d) is a complete metric space, then X is an α-complete metric space.

⊲ If (X, d) is a complete metric space, then X is a µ-complete metric space.

But the converse parts of the above statements are not true.

E x am p l e 2.8. Let X = (0,∞) and the metric d : X ×X → R be defined by

d(x, y) = |x− y| for all x, y ∈ X. Define α : X ×X → R
+ by

α(x, y) =















x+ y + 6

x+ y
, x, y ∈ [2, 3],

1

2
, otherwise.

It is easy to see that (X, d) is not a complete metric space, but (X, d) is an

α-complete metric space. Indeed, if {xn} is a Cauchy sequence in X such that

α(xn, xn+1) > 1 for all n ∈ N, then xn ∈ [2, 3] for all n ∈ N. Since [2, 3] is a closed

subset of R, we get that ([2, 3], d) is a complete metric space and then there exists

x∗ ∈ [2, 3] such that xn → x∗ as n→ ∞.
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Definition 2.9 ([11]). Let (X, d) be a metric space, α, µ : X × X → [0,∞)

and T : X → X be two mappings. We say that T is an α-continuous mapping or

µ-continuous mapping on (X, d) if for each sequence {xn} in X with xn → x ∈ X

as n → ∞ and α(xn, xn+1) > 1 or µ(xn, xn+1) 6 1 for all n ∈ N ⇒ Txn → Tx as

n→ ∞.

Every continuous mapping T is an α-continuous mapping (µ-continuous mapping),

where α, µ : X ×X → [0,∞) is an arbitrary mapping.

Definition 2.10 ([11]). Let X be a nonempty set and α : X × X → R
+ be a

mapping. We say that X has the property

(H) if ∀x, y ∈ X there exists z ∈ X such that α(x, z) > 1 and α(y, z) > 1.

Definition 2.11. Let X be a nonempty set and µ : X×X → R
+ be a mapping.

We say that X has the property

(HH) if ∀x, y ∈ X there exists z ∈ X such that µ(x, z) 6 1 and µ(y, z) 6 1.

Definition 2.12 (see [1], [4], [9]). A function h : R
+ × R

+ → R is a function of

subclass of type I if x > 1 ⇒ h(1, y) 6 h(x, y) for all y ∈ R
+.

E x am p l e 2.13 (see [1], [4], [9]). Define h : R
+ × R

+ → R as:

(a) h(x, y) = (y + l)x, l > 1;

(b) h(x, y) = (x+ l)y, l > 1;

(c) h(x, y) = xny, n ∈ N;

(d) h(x, y) = y;

(e) h(x, y) = (n+ 1)−1y
n
∑

i=0

xi, n ∈ N;

(f) h(x, y) =
(

(n+ 1)−1
n
∑

i=0

xi + l
)y

, l > 1, n ∈ N

for all x, y ∈ R
+. Then each h is a function of subclass of type I.

Definition 2.14 (see [1], [4], [9]). Let h,F : R
+ × R

+ → R. Then we say that

the pair (F , h) is an upper class of type I if h is a function of subclass of type I and:

(i) 0 6 s 6 1 ⇒ F(s, t) 6 F(1, t),

(ii) h(1, y) 6 F(s, t) ⇒ y 6 st for all s, t, y ∈ R
+.

E x am p l e 2.15. Define h,F : R
+ × R

+ → R as:

(a) h(x, y) = (y + l)x, l > 1 and F(s, t) = st+ l;

(b) h(x, y) = (x+ l)y, l > 1 and F(s, t) = (1 + l)st;

(c) h(x, y) = xmy, m ∈ N and F(s, t) = st;
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(d) h(x, y) = y and F(s, t) = t;

(d) h(x, y) = (n+ 1)−1y
n
∑

i=0

xi, n ∈ N and F(s, t) = st;

(e) h(x, y) =
(

(n+ 1)−1
n
∑

i=0

xi + l
)y

, l > 1, n ∈ N and F(s, t) = (1 + l)st

for all x, y, s, t ∈ R
+. Then each pair (F , h) is an upper class of type I.

Definition 2.16 (see [1], [4], [9]). We say that a function h : R
+×R

+×R
+ → R

is a function of subclass of type II if x, y > 1 ⇒ h(1, 1, z) 6 h(x, y, z) for all z ∈ R
+.

E x am p l e 2.17. Define h : R
+ × R

+ × R
+ → R as:

(a) h(x, y, z) = (z + l)xy, l > 1;

(b) h(x, y, z) = (xy + l)z, l > 1;

(c) h(x, y, z) = z;

(d) h(x, y, z) = xmynzp, m,n, p ∈ N;

(e) h(x, y, z) = 1

3
(xm + xnyp + yq)zk, m,n, p, q, k ∈ N

for all x, y, z ∈ R
+. Then each h is a function of subclass of type II.

Definition 2.18 (see [1], [4], [9]). Let h : R
+ × R

+ × R
+ → R and F :

R
+ × R

+ → R. Then we say that the pair (F , h) is an upper class of type II

if h is a subclass of type II and:

(i) 0 6 s 6 1 ⇒ F(s, t) 6 F(1, t),

(ii) h(1, 1, z) 6 F(s, t) ⇒ z 6 st for all s, t, z ∈ R
+.

E x am p l e 2.19. Define h : R
+ × R

+ × R
+ → R and F : R

+ × R
+ → R as:

(a) h(x, y, z) = (z + l)xy, l > 1, F(s, t) = st+ l;

(b) h(x, y, z) = (xy + l)z, l > 1, F(s, t) = (1 + l)st;

(c) h(x, y, z) = z, F (s, t) = st;

(d) h(x, y, z) = xmynzp, m,n, p ∈ N, F(s, t) = sptp;

(e) h(x, y, z) = 1

3
(xm + xnyp + yq)zk, m,n, p, q, k ∈ N, F(s, t) = sktk

for all x, y, z, s, t ∈ R
+. Then each pair (F , h) is an upper class of type II.

Definition 2.20. Let F : R
+×R

+ → R. We say that the pair (F , h) is a special

upper class of type I if the following conditions are satisfied:

(i) h is a subclass of type I;

(ii) 0 6 s 6 1 ⇒ F(s, t) 6 F(1, t) for all t ∈ R
+;

(iii) h(1, y) 6 F(1, t) ⇒ y 6 t for all y, t ∈ R
+.

The following are examples of the function of special upper class of type I for all

x, y, s, t ∈ R
+:

(1) h(x, y) = (yk + l)x, l > 1, F(s, t) = smtk + l;

(2) h(x, y) = (xn + l)y
k

, l > 1, F(s, t) = (1 + l)s
mtk ;
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(3) h(x, y) = xnyk, F(s, t) = smtk;

(4) h(x, y) = 1

2
(x+ 1)y, F (s, t) = st;

(5) h(x, y) = 1

3
(x+ x+ 1)y, F(s, t) = st;

(6) h(x, y) = ((xn + xn−1 + . . .+ x1 + 1)/(n+ 1))yk, F(s, t) = stk;

(7) h(x, y) = ((xn + xn−1 + . . .+ x1 + 1)/(n+ 1) + l)y, l > 1, F(s, t) = (1 + l)st.

We denote by Ψ the family of continuous and nondecreasing functions ψ, ψ :

[0,∞) → [0,∞).

3. Main results

To start with, we first introduce the concept of partial generalized convex contrac-

tion mappings of order 4 and rank 4 using auxiliary functions:

Definition 3.1. Let (X, d) be a metric space. A mapping T : X → X is called

a partial h-F -ψ-generalized convex contraction of rank 4 if there exist a mapping

α : X ×X → R
+ and a, b, c, e ∈ [0, 1) with a+ b+ c+ e < 1 satisfying the following

condition:

x, y ∈ X, h(α(x, y), ψ(d(T 4x, T 4y)))

6 F(1, ψ(ad(T 3x, T 3y) + bd(T 2x, T 2y) + cd(Tx, T y) + ed(x, y))),

where the pair (F , h) is an upper class of type I and ψ ∈ Ψ.

Definition 3.2. Let (X, d) be a metric space. A mapping T : X → X is called

a partial generalized convex contraction of rank 4 if there exist a mapping α : X ×

X → R
+ and a, b, c, e ∈ [0, 1) with a+b+c+e < 1 satisfying the following condition:

x, y ∈ X, α(x, y) > 1

⇒ ψ(d(T 4x, T 4y)) 6 ψ(ad(T 3x, T 3y) + bd(T 2x, T 2y) + cd(Tx, T y) + ed(x, y)),

where ψ ∈ Ψ.

If α(x, y) > 1 for all x, y ∈ X , then the mapping T is called a partial ψ-generalized

convex contraction of rank 4 with the based mapping α : X ×X → R
+.

Definition 3.3. Let (X, d) be a metric space. A mapping T : X → X is called a

partial sub-h-F -ψ-generalized convex contraction of rank 4 if there exist a mapping

µ : X ×X → R
+ and a, b, c, e ∈ [0, 1) with a+ b+ c+ e < 1 satisfying the following

condition:

x, y ∈ X, h(1, ψ(d(T 4x, T 4y)))

6 F(µ(x, y), ψ(ad(T 3x, T 3y) + bd(T 2x, T 2y) + cd(Tx, T y) + ed(x, y))),

where the pair (F, h) is a special upper class of type I and ψ ∈ Ψ .
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Now, we establish some approximate fixed point theorems for partial generalized

convex contraction mappings in α-complete metric spaces and µ-complete metric

spaces.

Theorem 3.4. Let (X, d) be a metric space and T : X → X be a partial h-F -ψ-

generalized convex contraction of rank 4 with the based mapping α : X ×X → R
+.

Assume that T is α-admissible and there exists x0 ∈ X such that α(x0, T x0) > 1.

Then T has the approximate fixed point property.

In addition, if T is α-continuous and (X, d) is an α-complete metric space, then T

has a fixed point.

P r o o f. Assume that x0 ∈ X is such that α(x0, T x0) > 1. Define a sequence

{xn} ⊂ X by xn+1 = T n+1(x0) = Txn for n ∈ N ∪ {0}. Suppose that xn0
= xn0+1

for some n0 ∈ N ∪ {0}. Then it is clear that xn0
is a fixed point of T and hence the

proof is complete. From now on, we suppose that xn 6= xn+1 for all n ∈ N ∪ {0}.

Since T is an α-admissible mapping and α(x0, T x0) > 1, we deduce that

α(x1, T x1) = α(Tx0, T
2x0) > 1. By continuing this process, we get that

α(xn, T xn) = α(xn, xn+1) > 1 for all n ∈ N ∪ {0}.

Suppose that λ = d(T 3x0, T
4x0) + d(T 2x0, T

3x0) + d(Tx0, T
2x0) + d(x0, T x0) =

d(x3, x4) + d(x2, x3) + d(x1, x2) + d(x0, x1), and ω = a+ b+ c+ e. Consider

h(1, ψ(d(xn+4, xn+5)))

6 h(α(xn, xn+1), ψ(d(xn+4, xn+5)))

6 F(1, ψ(ad(xn+3, xn+4) + bd(xn+2, xn+3) + cd(xn+1, xn+2) + ed(xn, xn+1))).

This implies that

d(xn+4, xn+5) 6 ad(xn+3, xn+4) + bd(xn+2, xn+3) + cd(xn+1, xn+2) + ed(xn, xn+1).

So

(3.1) d(x4, x5) 6 ad(x3, x4) + bd(x2, x3) + cd(x1, x2) + ed(x0, x1) 6 ωλ.

Using the above inequality and the fact that a, b, c, e, a+ b, a+ c, a+ b+ e 6 a+ b+

c+ e = ω, we have

(3.2) d(x5, x6) 6 ad(x4, x5) + bd(x3, x4) + cd(x2, x3) + ed(x1, x2)

6 ad(x3, x4) + ad(x2, x3) + ad(x1, x2) + ad(x0, x1)

+ bd(x3, x4) + cd(x2, x3) + ed(x1, x2)

= (a+ b)d(x3, x4) + (a+ c)d(x2, x3) + (a+ e)d(x1, x2) + ad(x0, x1)

6 ωλ.
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Using the above arguments and the fact that a, b, c, e, a+ b+ c, a+ b + e, a+ b 6

a+ b+ c+ e = ω, we have

(3.3) d(x6, x7) 6 ad(x5, x6) + bd(x4, x5) + cd(x3, x4) + ed(x2, x3)

6 ad(x3, x4) + ad(x2, x3) + ad(x1, x2) + ad(x0, x1) + bd(x3, x4)

+ bd(x2, x3) + bd(x1, x2) + bd(x0, x1) + cd(x3, x4) + ed(x2, x3)

= (a+ b+ c)d(x3, x4) + (a+ b+ e)d(x2, x3)

+ (a+ b)d(x1, x2) + (a+ b)d(x0, x1)

6 ωλ.

Similarly, by using inequalities (3.1), (3.2), (3.3) and the fact that a, b, c, e, a+ b+

c+ e, a+ b+ c 6 a+ b+ c+ e = ω, we have

(3.4) d(x7, x8) 6 ad(x6, x7) + bd(x5, x6) + cd(x4, x5) + ed(x3, x4)

6 ad(x3, x4) + ad(x2, x3) + ad(x1, x2) + ad(x0, x1) + bd(x3, x4)

+ bd(x2, x3) + bd(x1, x2) + bd(x0, x1) + cd(x3, x4) + cd(x2, x3)

+ cd(x1, x2) + cd(x0, x1) + ed(x3, x4)

= (a+ b+ c+ e)d(x3, x4) + (a+ b+ c)d(x2, x3)

+ (a+ b+ c)d(x1, x2) + (a+ b+ c)d(x0, x1)

6 ωλ.

In the similar manner, using (3.2), (3.3), (3.4) and a+ b+ c+ e = ω, we have

(3.5) d(x8, x9) 6 ad(x7, x8) + bd(x6, x7) + cd(x5, x6) + ed(x4, x5)

6 aωλ+ bωλ+ cωλ+ eωλ 6 ω2λ.

By continuing this process, it is easy to see that

(3.6) d(xn, xn+1) 6 ωlλ, n ∈ N,

where n = 4l or n = 4l + 1, n = 4l + 2 or n = 4l + 3 for all l ∈ N. This implies

that d(xn, xn+1) → 0 as n → ∞. Therefore, T is asymptotically regular at a point

x0 ∈ X .

By using Lemma 2.7, we conclude that T has the approximate fixed point property.

Next, we show that T has a fixed point provided that T is α-continuous and (X, d)

is an α-complete metric space.
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Firstly, we claim that {xn} is a Cauchy sequence in X . Let m,n ∈ N ∪ {0} such

that n > m. So by (3.6), we have

d(xm, xn) 6 d(xm, xm+1) + d(xm+1, xm+2) + . . .+ d(xn−1, xn)

6 ωlλ+ ωlλ+ ωlλ+ ωl+1λ+ . . . 6
4ωlλ

1− ω
,

where m = 4l or m = 4l+ 1 or m = 4l + 2 or m = 4l + 3 for all l ∈ N.

Therefore

d(xm, xn) → 0 as m→ ∞,

that is, {xn} is a Cauchy sequence in X .

Since α(xn, xn+1) > 1 for all n ∈ N∪{0} and {xn} is a Cauchy sequence in X , by

using α-completeness ofX , there exists x∗ ∈ X such that xn → x∗ as n→ ∞. Since T

is α-continuous, Txn → Tx∗ as n→ ∞. Therefore x∗ = lim
n→∞

xn+1 = lim
n→∞

Txn = x∗

and thus T has a fixed point. This completes the proof. �

Corollary 3.5. Let (X, d) be a metric space and T : X → X be a partial ψ-

generalized convex contraction of rank 4 with the based mapping α : X ×X → R
+.

Assume that T is α-admissible and there exists x0 ∈ X such that α(x0, T x0) > 1.

Then T has the approximate fixed point property. In addition, if T is α-continuous

and (X, d) is an α-complete metric space, then T has a fixed point.

E x am p l e 3.6. Let X = (0,∞) and d : X ×X → R be defined by d(x − y) =

|x− y| for all x, y ∈ X . Define T : X → X and α : X ×X → [0,∞) by

Tx =























x+ 6

7
, x ∈ [1, 5],

5x− 6

4
, x ∈ (5, 7),

7x− 42, otherwise

and α(x, y) =

{

1, x, y ∈ [1, 5],

0, otherwise.

For α(x, y) > 1 we have x, y ∈ [1, 5] and thus

d(T 4x, T 4y)) 6 d
(

T 3x+ 6

7
, T 3 y + 6

7

)

= d
(T 2

7

(x+ 6

7
+ 6

)

,
T 2

7

(y + 6

7
+ 6

))

= d
(T

7

(1

7

(x+ 6

7
+ 6

)

+ 6
)

,
T

7

(1

7

(y + 6

7
+ 6

)

+ 6
))

= d
(

T
x+ 342

343
, T
y + 342

343

)

= d
(1

7

(x+ 342

343
+ 6

)

,
1

7

(y + 342

343
+ 6

))

= d
(x+ 2400

2401
,
y + 2400

2401

)

=
1

2401
|x− y|

6
5 · 63 + 4 · 36 · 7 + 12 · 49 + 343

64 · 343
|x− y|
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=
5

6

∣

∣

∣

x+ 342

343
−
y + 342

343

∣

∣

∣
+

4

62

∣

∣

∣

x+ 48

49
−
y + 48

49

∣

∣

∣

+
2

63

∣

∣

∣

x+ 6

7
−
y + 6

7

∣

∣

∣
+

1

64
|x− y|

= ad(T 3x, T 3y) + bd(T 2x, T 2y) + cd(Tx, T y) + ed(x, y).

Therefore T is a partial generalized convex contraction with a = 5

6
, b = 4

62
, c = 2

63

and e = 1

64
.

Moreover, it is easy to see that T is α-admissible and there exists x0 = 1.5 ∈ X

such that

α(x0, T x0) = α(1.5, T (1.5)) = α(1.5, 1.07) = 1.

One can see that all the conditions of the above theorem are true. Therefore T

has a fixed point in X : x = 6, x = 7.

Theorem 3.7. Adding property (H) to the hypotheses of Theorem 3.4, we obtain

uniqueness of the fixed point of T .

P r o o f. Let x∗ and y∗ be fixed points of T . By property (H), we can choose

z ∈ X such that α(x∗, z) > 1 and α(y∗, z) > 1. Since T is α-admissible, we get

α(x∗, Tmz) > 1 and α(y∗, Tmz) > 1 for allm ∈ N . Put ν = d(x∗, T 4z)+d(x∗, T 3z)+

d(x∗, T 2z) + d(x∗, T z), and ω = a+ b+ c+ e. Consider

h(1, ψ(d(x∗, Tm+4z)))

6 h(α(x∗, Tmz), ψ(d(x∗, Tm+4z)))

6 F(1, ψ(ad(x∗, Tm+3z) + bd(x∗, Tm+2z) + cd(x∗, Tm+1z) + ed(x∗, Tmz))).

This implies that

d(x∗, Tm+4z) 6 ad(x∗, Tm+3z) + bd(x∗, Tm+2z) + cd(x∗, Tm+1z) + ed(x∗, Tmz).

So

(3.7) d(x∗, T 5z) 6 ad(x∗, T 4z) + bd(x∗, T 3z) + cd(x∗, T 2z) + d(x∗, T z) 6 ων.

Using (3.7), we have

(3.8) d(x∗, T 6z) 6 ad(x∗, T 5z) + bd(x∗, T 4z) + cd(x∗, T 3z) + ed(x∗, T 2z) 6 ων.

Similarly, using (3.7), (3.8), we have

(3.9) d(x∗, T 7z) 6 ad(x∗, T 6z) + bd(x∗, T 5z) + cd(x∗, T 4z) + ed(x∗, T 3z) 6 ων,
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and using (3.7), (3.8), (3.9), we have

(3.10) d(x∗, T 8z) 6 ad(x∗, T 7z) + bd(x∗, T 6z) + cd(x∗, T 5z) + ed(x∗, T 4z) 6 ω2ν.

By continuing this process, it is easy to see that

d(x∗, T nz) 6 ωlν,

where n = 4l or n = 4l+1 or n = 4l+2 or n = 4l+3 for all l ∈ N. This implies that

d(x∗, T nz) → 0 as n → ∞. Similarly, we can prove that d(y∗, T nz) → 0 as n → ∞.

By the uniqueness of limit, we have x∗ = y∗ and thus T has a unique fixed point.

This completes the proof. �

Theorem 3.8. Let (X, d) be a metric space and T : X → X be a partial sub-h-F -

ψ-generalized convex contraction of rank 4 with the based mapping µ : X×X → R
+.

Assume that T is µ-subadmissible and there exists x0 ∈ X such that µ(x0, T x0) 6 1.

Then T has the approximate fixed point property.

In addition, if T is µ-continuous and (X, d) is µ-complete metric space, then T

has a fixed point.

P r o o f. Assume that x0 ∈ X such that µ(x0, T x0) 6 1. Define a sequence

{xn} ⊂ X by xn+1 = T n+1(x0) = Txn for n ∈ N ∪ {0}. Suppose that xn0
= xn0+1

for some n0 ∈ N ∪ {0}. Then it is clear that xn0
is a fixed point of T and hence the

proof is complete. From now on, we suppose that xn 6= xn+1 for all n ∈ N ∪ {0}.

Since T is an µ-subadmissible mapping and µ(x0, T x0) 6 1, we deduce that µ(x1,

T x1) = µ(Tx0, T
2x0) 6 1. By continuing this process, we get that µ(xn, T xn) =

µ(xn, xn+1) 6 1 for all n ∈ N ∪ {0}.

Let λ = d(T 3x0, T
4x0)+ d(T 2x0, T

3x0)+ d(Tx0, T
2x0)+ d(x0, T x0) = d(x3, x4) +

d(x2, x3) + d(x1, x2) + d(x0, x1), and ω = a+ b+ c+ e. Consider

h(1, ψ(d(xn+4, xn+5))) 6 F(µ(xn, xn+1), ψ(ad(xn+3, xn+4) + bd(xn+2, xn+3)

+ cd(xn+1, xn+2) + ed(xn, xn+1)))

6 F(1, ψ(ad(xn+3, xn+4) + bd(xn+2, xn+3)

+ cd(xn+1, xn+2) + ed(xn, xn+1))).

This implies that

d(xn+4, xn+5) 6 ad(xn+3, xn+4) + bd(xn+2, xn+3) + cd(xn+1, xn+2) + ed(xn, xn+1).

So

(3.11) d(x4, x5) 6 ad(x3, x4) + bd(x2, x3) + cd(x1, x2) + ed(x0, x1) 6 ωλ.
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Using the above inequality and a, b, c, e, a+ b, a+ c, a+ b+ e 6 a+ b+ c+ e = ω,

we have

d(x5, x6) 6 ad(x4, x5) + bd(x3, x4) + cd(x2, x3) + ed(x1, x2)(3.12)

6 ad(x3, x4) + ad(x2, x3) + ad(x1, x2) + ad(x0, x1)

+ bd(x3, x4) + cd(x2, x3) + ed(x1, x2)

= (a+ b)d(x3, x4) + (a+ c)d(x2, x3)

+ (a+ e)d(x1, x2) + ad(x0, x1)

6 ωλ.

Using the similar arguments as in the proof of Theorem 3.4, it is easy to see that

(3.13) d(xn, xn+1) 6 ωlλ, n ∈ N,

where n = 4l or n = 4l + 1, n = 4l+ 2 or n = 4l+ 3 for all l ∈ N.

This implies that d(xn, xn+1) → 0 as n → ∞. Therefore T is asymptotically

regular at a point x0 ∈ X .

By using Lemma 2.7, we conclude that T has the approximate fixed point property.

Next, we show that T has a fixed point provided that T is µ-continuous and (X, d)

is an µ-complete metric space.

Firstly, we claim that {xn} is a Cauchy sequence in X . Let m,n ∈ N ∪ {0} such

that n > m. Therefore, by using (3.13), we have

d(xm, xn) 6 d(xm, xm+1) + d(xm+1, xm+2) + . . .+ d(xn−12, xn)

6 ωlλ+ ωlλ+ ωlλ+ ωl+1λ+ . . . 6
4ωlλ

1− ω
,

where m = 4l or m = 4l+ 1,m = 4l+ 2 or m = 4l+ 3 for all l ∈ N. Therefore

d(xm, xn) → 0 as m→ ∞,

that is, {xn} is a Cauchy sequence in X .

Now, as µ(xn, xn+1) 6 1 for all n ∈ N ∪ {0} and {xn} is a Cauchy sequence

in X , by using µ-completeness of X , there exists x∗ ∈ X such that xn → x∗ as

n→ ∞. It follows from T being µ-continuous that Txn → Tx∗ as n→ ∞. Therefore

x∗ = lim
n→∞

xn+1 = lim
n→∞

Txn = x∗ and thus T has a fixed point. This completes the

proof. �

262



Definition 3.9. Let (X, d) be a metric space. A mapping T : X → X is called

a partial h-F -ψ-generalized convex contraction of rank 4 and order 4 if there exist a

mapping α : X ×X → R
+and a1, b1, a2, b2, a3, b3, a4, b4 ∈ [0, 1) with a1 + b1 + a2 +

b2 + a3 + b3 + a4 + b4 < 1, satisfying the following condition for all x, y ∈ X :

h(α(x, y), ψ(d(T 4x, T 4y))) 6 F(1, ψ(a4d(T
3x, T 4x) + a3d(T

2x, T 3x) + a2d(Tx, T
2x)

+ a1d(x, Tx)) + b4d(T
3y, T 4y) + b3d(T

2y, T 3y)

+ b2d(Ty, T
2y) + b1d(y, T y))),

where the pair (F , h) is an upper class of type I and ψ ∈ Ψ.

Definition 3.10. Let (X, d) be a metric space. A mapping T : X → X is

called a partial ψ-generalized convex contraction of rank 4 and order 4 with the

based mapping α : X ×X → R
+ if there exist a1, b1, a2, b2, a3, b3, a4, b4 ∈ [0, 1) with

a1 + b1 + a2 + b2 + a3 + b3 + a4 + b4 < 1, satisfying the following condition for all

x, y ∈ X and ψ ∈ Ψ:

α(x, y) > 1 ⇒ ψ(d(T 4x, T 4y)) 6 ψ(a4d(T
3x, T 4x) + a3d(T

2x, T 3x) + a2d(Tx, T
2x)

+ a1d(x, Tx) + b4d(T
3y, T 4y) + b3d(T

2y, T 3y)

+ b2d(Ty, T
2y) + b1d(y, T y)).

Definition 3.11. Let (X, d) be a metric space. A mapping T : X → X is

called a partial sub-h-F -ψ-generalized convex contraction of rank 4 and order 4 if

there exists a mapping µ : X ×X → R
+ and a1, b1, a2, b2, a3, b3, a4, b4 ∈ [0, 1) with

a1 + b1 + a2 + b2 + a3 + b3 + a4 + b4 < 1, satisfying the following condition for all

x, y ∈ X :

h(1, ψ(d(T 4x, T 4y))) 6 F(µ(x, y), ψ(a4d(T
3x, T 4x) + a3d(T

2x, T 3x)

+ a2d(Tx, T
2x) + a1d(x, Tx) + b4d(T

3y, T 4y)

+ b3d(T
2y, T 3y) + b2d(Ty, T

2y) + b1d(y, T y))),

where the pair (F , h) is a special upper class of type I and ψ ∈ Ψ.

Theorem 3.12. Let (X, d) be a metric space and T : X → X be a partial h-

F -ψ-generalized convex contraction of rank 4 and order 4 with the based mapping

α : X ×X → R
+. Assume that T is α-admissible and there exists x0 ∈ X such that

α(x0, T x0) > 1. Then T has the approximate fixed point property.

In addition, if T is α-continuous and (X, d) is an α-complete metric space, then T

has a fixed point.
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P r o o f. Assume x0 ∈ X such that α(x0, T x0) > 1. Define a sequence {xn} ⊂ X

by xn+1 = T n+1(x0) = Txn for n ∈ N ∪ {0}. Suppose that xn0
= xn0+1 for some

n0 ∈ N ∪ {0}. Then it is clear that xn0
is a fixed point of T and hence the proof is

completed. From now on, we suppose that xn 6= xn+1 for all n ∈ N ∪ {0}.

Since T is an α-admissible mapping and α(x0, T x0) > 1, we deduce that α(x1,

T x1) = α(Tx0, T
2x0) > 1. By continuing this process, we get that α(xn, T xn) =

α(xn, xn+1) > 1 for all n ∈ N ∪ {0}.

Assume that s = d(T 3x0, T
4x0) + d(T 2x0, T

3x0) + d(Tx0, T
2x0) + d(x0, T x0) =

d(x3, x4) + d(x2, x3) + d(x1, x2) + d(x0, x1), and η = 1− b4 and ̺ = a1 + a2 + a3 +

a4 + b1 + b2 + b3. Consider

h(1, ψ(d(xn+4, xn+5))) 6 h(α(xn, xn+1), ψ(d(xn+4, xn+5)))

= h(α(xn, xn+1), ψ(d(T
4(T nx0), T

4(T nx1))))

6 F(1, ψ(a4d(T
n+3x0, T

n+4x0) + a3d(T
n+2x0, T

n+3x0)

+ a2d(T
n+1x0, T

n+2x0) + a1d(T
nx0, T

n+1x0)

+ b4d(T
n+4x0, T

n+5x0) + b3d(T
n+3x0, T

n+4x0)

+ b2d(T
n+2x0, T

n+3x0) + b1d(T
n+1x0, T

n+2x0))).

This implies that

d(xn+4, xn+5) 6 a4d(xn+3, xn+4) + a3d(xn+2, xn+3) + a2d(xn+1, xn+2)

+ a1d(xn, xn+1) + b4d(xn+4, xn+5) + b3d(xn+3, xn+4)

+ b2d(xn+2, xn+3) + b1d(xn+1, xn+2).

Therefore, we have

d(x4, x5) 6 a4d(x3, x4) + a3d(x2, x3) + a2d(x1, x2) + a1d(x0, x1)(3.14)

+ b4d(x4, x5) + b3d(x3, x4) + b2d(x2, x3) + b1d(x1, x2)

6 a1s+ (b3 + a4)s+ (b2 + a3)s+ (b1 + a2)s+ b4d(x4, x5).

This implies that

d(x4, x5) 6
̺

η
s.

Using similar arguments as in the proof of Theorem 3.4, it is easy to see that

(3.15) d(xn, xn+1) 6
(̺

η

)l

s, n ∈ N,

where n = 4l or n = 4l + 1 or n = 4l + 2 or n = 4l+ 3 for all l ∈ N.
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This implies that d(xn, xn+1) → 0 as n → ∞. Therefore T is asymptotically

regular at a point x0 ∈ X .

By using Lemma 2.7, we conclude that T has the approximate fixed point property.

Next, we show that T has a fixed point provided that T is α-continuous and (X, d)

is α-complete metric space.

Firstly, we claim that {xn} is a Cauchy sequence in X . Let m,n ∈ N ∪ {0} such

that n > m, so from (3.15),

d(xm, xn) 6 d(xm, xm+1) + d(xm+1, xm+2) + . . .+ d(xn−12, xn)

6

(̺

η

)l

λ+
(̺

η

)l

λ+
(̺

η

)l

λ+
(̺

η

)l+1

λ+ . . . 6
4(̺/η)lλ

1− (̺/η)
,

where m = 4l or m = 4l+ 1 or m = 4l + 2 or m = 4l + 3 for all l ∈ N.

Therefore

d(xm, xn) → 0 as m→ ∞,

that is, {xn} is a Cauchy sequence in X .

As α(xn, xn+1) > 1 for all n ∈ N ∪ {0} and {xn} is a Cauchy sequence in X , by

using α-completeness of X , there exists x∗ ∈ X such that xn → x∗ as n → ∞. It

follows from T being α-continuous that Txn → Tx∗ as n → ∞. Therefore x∗ =

lim
n→∞

xn+1 = lim
n→∞

Txn = x∗ and thus T has a fixed point. This completes the proof.

�

Corollary 3.13. Let (X, d) be a metric space and T : X → X be a partial ψ-

generalized convex contraction of rank 4 and order 4 with the based mapping α :

X × X → R
+. Assume that T is α-admissible and there exists x0 ∈ X such that

α(x0, T x0) > 1. Then T has the approximate fixed point property. In addition, if T

is α-continuous and (X, d) is an α-complete metric space, then T has a fixed point.

Proceeding in the similar way as in the results above, we obtain the following:

Theorem 3.14. Let (X, d) be a metric space and T : X → X be a partial sub-

h-F -generalized convex contraction of rank 4 and order 4 with the based mapping

µ : X ×X → R
+. Assume that T is µ-subadmissible and there exists x0 ∈ X such

that µ(x0, T x0) 6 1. Then T has the approximate fixed point property.

In addition, if T is µ-continuous and (X, d) is µ-complete metric space, then T

has a fixed point.
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4. Arbitrary binary relations

In this section, we present approximate fixed point theorems on metric spaces

endowed with an arbitrary binary relation. The following notions and definitions are

needed.

Let (X, d) be a metric space and R be a binary relation over X . Denote S :=

R∪R−1. Clearly, x, y ∈ X , x S y ⇔ x R y or y R x.

It is easy to see that S is a symmetric relation attached to R.

Definition 4.1. Let T be a self mapping on a nonempty set X and R be a

binary relation over X . We say that T is a comparative mapping if x, y ∈ X ,

x S y ⇒ (Tx) S (Ty).

Definition 4.2. Let X be a nonempty set and R be a binary relation on X . A

mapping T : X → X is an R-preserving mapping if x, y ∈ X : x R y ⇒ Tx R Ty.

Definition 4.3 ([11]). Let (X, d) be a metric space and R be a binary relation

over X. The metric space X is said to be S-complete if every Cauchy sequence {xn}

in X with xn S xn+1 for all n ∈ N converges in X .

Definition 4.4 ([11]). Let (X, d) be a metric space and R be a binary relation

over X. We say that T : X → X is an S-continuous mapping on (X, d) if for each

sequence {xn} in X we have xn → x as n → ∞ for some x ∈ X and xn S xn+1 for

all n ∈ N ⇒ Txn → Tx as n→ ∞.

Definition 4.5. Let (X, d) be a metric space and R be a binary relation on X .

A mapping T : X → X is called a partial ψ-generalized convex contraction of rank 4

with respect to S if there exist a, b, c, e ∈ [0, 1) with a+ b + c+ e < 1 satisfying the

following condition for all x, y ∈ X :

xSy ⇒ ψ(d(T 4x, T 4y)) 6 ψ(ad(T 3x, T 3y) + bd(T 2x, T 2y) + cd(Tx, T y) + ed(x, y)).

Definition 4.6. Let (X, d) be a metric space and R be a binary relation on X .

A mapping T : X → X is called a partial ψ-generalized convex contraction of rank 4

and order 4 with respect to S if there exist a1, b1, a2, b2, a3, b3, a4, b4 ∈ [0, 1) with

a1 + b1 + a2 + b2 + a3 + b3 + a4 + b4 < 1 satisfying the following condition for all

x, y ∈ X :

xSy ⇒ ψ(d(T 4x, T 4y)) 6 ψ(a1d(T
3x, T 4x) + a2d(T

2x, T 3x) + a3d(Tx, T
2x)

+ a4d(x, Tx) + b1d(T
3y, T 4y) + b2d(T

2y, T 3y)

+ b3d(Ty, T
2y) + b4d(y, T y)).
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Definition 4.7. Let X be a nonempty set and R be a binary relation over X .

We say that X has the property

(HS) if for each x, y ∈ X there exists z ∈ X such that xSz and ySz.

Theorem 4.8. Let (X, d) be a metric space, R be a binary relation over X and

T : X → X be a partial ψ-generalized convex contraction of rank 4 with respect

to S. Assume that T is a comparative mapping and there exists x0 ∈ X such that

(x0) S (Tx0). Then T has the approximate fixed point property. In addition, if T

is S-continuous and (X, d) is an S-complete metric space, then T has a fixed point,

and T has a unique fixed point whenever X has the property (HS).

P r o o f. Consider a mapping α : X ×X → [0,∞) defined by

α(x, y) =

{

1, x, y ∈ xSy,

0, otherwise.

From the fact that there exists x0 ∈ X such that (x0) S (Tx0), we get α(x0, T x0) = 1.

It follows from T being a comparative mapping that T is an α-admissible mapping.

Since T is a partial ψ-generalized convex contraction mapping of rank 4 with respect

to S, we have for all x, y ∈ X,

xSy ⇒ ψ(d(T 4x, T 4y)) 6 ψ(ad(T 3x, T 3y) + bd(T 2x, T 2y) + cd(Tx, T y) + ed(x, y)),

and then

α(x, y) > 1

⇒ ψ(d(T 4x, T 4y)) 6 ψ(ad(T 3x, T 3y) + bd(T 2x, T 2y) + cd(Tx, T y) + ed(x, y)).

This implies that T is a partial generalized convex contraction with based map-

ping α. Now, all the hypotheses of Corollary 3.5 are satisfied. So, T has an approx-

imate fixed point. Furthermore, the S-continuity of T and the S-completeness of X

yield the existence of the fixed point of T . Finally, the uniqueness of the fixed point

of T follows from Theorem 3.7. This completes the proof. �

Theorem 4.9. Let (X, d) be a metric space, R be a binary relation over X and

T : X → X be a partial ψ-generalized convex contraction of rank 4 and order 4 with

respect to S. Assume that T is a comparative mapping and there exists x0 ∈ X such

that (x0)S(Tx0). Then T has the approximate fixed point property. In addition,

if T is S-continuous and (X, d) is an S-complete metric space, then T has a fixed

point, and T has a unique fixed point whenever X has the property (HS).

P r o o f. The proof is similar to that of Theorem 4.8. �
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5. Approximate fixed point analysis with graph

In this section, we give the existence of approximate fixed point theorems on

a metric space endowed with a graph. Before presenting our results, we give the

following notions and definitions.

Throughout this section, (X, d) is a metric space. A set {(x, x) : x ∈ X} is called

a diagonal of the cartesian product X×X and is denoted by △. Consider a graph G

such that the set V (G) of its vertices coincides with X and the set E(G) of its edges

contains all loops, i.e. △ ⊆ E(G). We assume G has no parallel edges, so we can

identify G by the pair (V (G), E(G)). Moreover, we may treat G as a weighted graph

by assigning to each edge the distance between its vertices.

Definition 5.1 ([11]). Let X be a nonempty set endowed with a graph G. We

say that T : X → X preserve an edge if for x, y ∈ X ,

(x, y) ∈ E(G) ⇒ (Tx, T y) ∈ E(G).

Definition 5.2 ([11]). Let (X, d) be a metric space endowed with a graph G.

The metric space X is said to be E(G)-complete if every Cauchy sequence {xn} in X

with (xn, xn+1) ∈ E(G) for all n ∈ N, converges in X .

Definition 5.3 ([11]). Let (X, d) be a metric space endowed with a graph G

and T : X → X be a mapping. We say that T is an E(G)-continuous mapping on

(X, d) if for each sequence {xn} in X with xn → x as n → ∞ for some x ∈ X and

(xn, xn+1) ∈ E(G) for all n ∈ N we have Txn → Tx as n→ ∞.

Definition 5.4. Let (X, d) be a metric space endowed with a graph G. The

mapping T : X → X is called a partial ψ-generalized convex contraction mapping of

rank 4 with respect to E(G) if there exist a, b, c, e ∈ [0,∞) with a + b + c + e < 1

satisfying the following condition for x, y ∈ X :

(x, y) ∈ E(G)

⇒ ψ(d(T 4x, T 4y)) 6 ψ(ad(T 3x, T 3y) + bd(T 2x, T 2y) + cd(Tx, T y) + ed(x, y)).

Definition 5.5. Let (X, d) be a metric space endowed with a graph G. A map-

ping T : X → X is called a partial ψ-generalized convex contraction of rank 4 and

order 4 with respect to E(G) if there exist a1, b1, a2, b2, a3, b3, a4, b4 ∈ [0, 1) with

a1 + b1 + a2 + b2 + a3 + b3 + a4 + b4 < 1 satisfying the following condition for all

x, y ∈ X :

(x, y) ∈ E(G) ⇒ ψ(d(T 4x, T 4y)) 6 ψ(a1d(T
3x, T 4x) + a2d(T

2x, T 3x) + a3d(Tx, T
2x)

+ a4d(x, Tx) + b1d(T
2y, T 3y) + b2d(T

2y, T 3y)

+ b3d(Ty, T
2y) + b4d(y, T y)).
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Definition 5.6 ([11]). Let X be a nonempty set endowed with a graph G. We

say that X has the property

(HE) if ∀x, y ∈ X there exists z ∈ X such that (x, z) ∈ E(G) and (y, z) ∈ E(G).

Theorem 5.7. Let (X, d) be a metric space endowed with a graph G and T :

X → X be a partial ψ-generalized convex contraction mapping of rank 4 with respect

to E(G). Assume that T preserves an edge and there exists x0 ∈ X such that

(x0, T x0) ∈ E(G). Then T has the approximate fixed point property. In addition,

if T is E(G)-continuous and (X, d) is an E(G)-complete metric space, then T has a

fixed point, and T has a unique fixed point whenever X has the property (HE).

P r o o f. Consider a mapping α : X ×X → [0,∞) defined by

α(x, y) =

{

1, (x, y) ∈ E(G),

0, otherwise.

From the fact that there exists x0 ∈ X such that (x0, T x0) ∈ E(G), we get

α(x0, T x0) = 1. It follows from T preserving an edge that T is an α-admissible

mapping. Since T is a partial ψ-generalized convex contraction mapping of rank 4

with respect to E(G), we have for all x, y ∈ X,

(x, y) ∈ E(G)

⇒ ψ(d(T 4x, T 4y)) 6 ψ(ad(T 3x, T 3y) + bd(T 2x, T 2y) + cd(Tx, T y) + ed(x, y))

and then

α(x, y) > 1

⇒ ψ(d(T 4x, T 4y)) 6 ψ(ad(T 3x, T 3y) + bd(T 2x, T 2y) + cd(Tx, T y) + ed(x, y)).

This implies that T is a partial generalized convex contraction with based map-

ping α. Now, all the hypotheses of Corollary 3.5 are satisfied. So, T has an approxi-

mate fixed point. Furthermore, the E(G)-continuity of T and the E(G)-completeness

of X yield the existence of the fixed point of T . Finally, the uniqueness of the fixed

point of T follows from Theorem 3.7. This completes the proof. �

Theorem 5.8. Let (X, d) be a metric space endowed with a graph G and T :

X → X be a partial ψ-generalized convex contraction of rank 4 and order 4 with

respect to E(G). Assume that T preserves an edge and there exists x0 ∈ X such that

(x0, T x0) ∈ E(G). Then T has the approximate fixed point property. In addition,

if T is E(G)-continuous and (X, d) is an E(G)-complete metric space, then T has a

fixed point, and T has a unique fixed point whenever X has the property (HE).

P r o o f. The proof is similar to that of Theorem 5.7. �
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