INVERSE TOPOLOGY IN MV-ALGEBRAS

Fereshteh Forouzesh, Farhad Sajadian, Mahta Bedrood, Bam

Received October 15, 2017. Published online September 25, 2018.
Communicated by Sándor Radeleczki

Abstract. We introduce the inverse topology on the set of all minimal prime ideals of an MV-algebra A and show that the set of all minimal prime ideals of A, namely $\operatorname{Min}(A)$, with the inverse topology is a compact space, Hausdorff, T_{0}-space and T_{1}-space.

Furthermore, we prove that the spectral topology on $\operatorname{Min}(A)$ is a zero-dimensional Hausdorff topology and show that the spectral topology on $\operatorname{Min}(A)$ is finer than the inverse topology on $\operatorname{Min}(A)$. Finally, by open sets of the inverse topology, we define and study a congruence relation of an MV-algebra.

Keywords: minimal prime; spectral topology; inverse topology; congruence
MSC 2010: 06D35, 06F30

1. Introduction and preliminaries

MV-algebras were introduced by Chang to provide algebraic semantics for Łukasiewicz infinite-valued propositional logics (see [3]). Eslami introduced the prime spectrum of a BL-algebra (see [5]).

Belluce et al. introduced the prime spectrum of an MV-algebra and studied in [1] a topological space on $\operatorname{Spec}(A)$. They defined the topological space for MV-algebras as follows:

Let A be an MV-algebra. The set of all prime ideals of A is denoted by $\operatorname{Spec}(A)$. $\operatorname{Spec}(A)$ can be endowed with a spectral topology. Thus, if I is an ideal of A, then $u_{A}(I)=\{P \in \operatorname{Spec}(A): I \nsubseteq P\}$ is an open set in $\operatorname{Spec}(A)$, while $v_{A}(I)=$ $\{P \in \operatorname{Spec}(A): I \subseteq P\}$ is closed. Also, let $a \in A$. The open sets $u_{A}(a)=\{P \in$ $\operatorname{Spec}(A): a \notin P\}$ constitute a basis for the open sets of $\operatorname{Spec}(A)$. Topological space $\operatorname{Spec}(A)$ is called the prime spectrum of A.

Also, Forouzesh et al. introduced the spectral topology and quasi-spectral topology of proper prime A-ideals in MV-modules and proved some properties of them (see [6]).

In addition, Bhattacharjee et al. studied the minimal prime spectra of commutative rings with identity. They had been able to identify several interesting types of extensions of rings. Also, they introduced inverse topology on the minimal prime spectra in reduced rings (see [2]). We take this idea from this paper.

In the present paper, we define the inverse topology on the set of all minimal prime ideals of an MV-algebra A and prove some important results. In fact, let $\operatorname{Min}(A)$ be the set of all minimal prime ideals of A. Since $\operatorname{Min}(A) \subseteq \operatorname{Spec}(A)$, we consider the topology induced by spectral topology on $\operatorname{Min}(A)$ and show that the spectral topology on $\operatorname{Min}(A)$ is zero-dimensional Hausdorff topology. Next, we prove that the spectral topology on $\operatorname{Min}(A)$ is finer than the inverse topology on $\operatorname{Min}(A)$. Also, we show that the inverse topology on $\operatorname{Min}(A)$ is a Hausdorff space, compact space, T_{0}-space and T_{1}-space on $\operatorname{Min}(A)$.

We recollect some definitions and results which will be used in the following.
Definition 1.1 ([3]). An MV-algebra is a structure $(A, \oplus, *, 0)$, where \oplus is a binary operation, $*$ is a unary operation, and 0 is a constant such that the following axioms are satisfied for any $a, b \in A$:
(MV1) $(A, \oplus, 0)$ is an Abelian monoid,
(MV2) $\left(a^{*}\right)^{*}=a$,
(MV3) $0^{*} \oplus a=0^{*}$,
(MV4) $\left(a^{*} \oplus b\right)^{*} \oplus b=\left(b^{*} \oplus a\right)^{*} \oplus a$.
Take $1=0^{*}$ and define the auxiliary operation \odot as:

$$
x \odot y=\left(x^{*} \oplus y^{*}\right)^{*} .
$$

We recall that the natural order determines a bounded distributive lattice structure such that

$$
x \vee y=x \oplus\left(x^{*} \odot y\right)=y \oplus\left(x \odot y^{*}\right) \quad \text { and } \quad x \wedge y=x \odot\left(x^{*} \oplus y\right)=y \odot\left(y^{*} \oplus x\right)
$$

Definition 1.2 ([4]). An ideal of an MV-algebra A is a nonempty subset I of A satisfying the following conditions:
(I1) If $x \in I, y \in A$ and $y \leqslant x$, then $y \in I$.
(I2) If $x, y \in I$, then $x \oplus y \in I$.
We denote by $\operatorname{Id}(A)$ the set of all ideals of an MV-algebra A.
Definition 1.3 ([4]). Let I be an ideal of an MV-algebra A. Then I is proper if $I \neq A$.
\triangleright A proper ideal I of an MV-algebra A is called a prime ideal if whenever $x \wedge y \in I$ for all $x, y \in A$, then $x \in I$ or $y \in I$.

We denote the set of all prime ideals of an MV-algebra A by $\operatorname{Spec}(A)$.
\triangleright An ideal I of an MV-algebra A is called a minimal prime ideal of A if:
(1) $I \in \operatorname{Spec}(A)$;
(2) If there exists $Q \in \operatorname{Spec}(A)$ such that $Q \subseteq I$, then $I=Q$.

We denote the set of all prime minimal ideals of an MV-algebra A by $\operatorname{Min}(A)$.
Definition 1.4 ([8]). Let X be a nonempty subset of an MV-algebra A and $\operatorname{Ann}_{A}(X)$ be the annihilator of X defined as

$$
\operatorname{Ann}_{A}(X)=\{a \in A: a \wedge x=0 \forall x \in X\} .
$$

2. Inverse topology in MV-algebras

In the sequel section, $(A, \oplus, *, 0)$ or simply A is an MV-algebra.
Theorem 2.1. Let A be an MV-algebra and $P \in \operatorname{Spec}(A)$. Then $P \in \operatorname{Min}(A)$ if and only if for each $x \in P$ there exists $r \in A-P$ such that $x \wedge r=0$.

Proof. Let $P \in \operatorname{Min}(A)$. Suppose that there exists $x \in P$ such that for each $r \in A-P, x \wedge r \neq 0$. Obviously, $T=\{r \wedge x: r \in A-P\} \cup\{1\}$ is a \wedge-closed system of A. Then there exists $Q \in \operatorname{Spec}(A)$ such that $Q \cap T=\emptyset$. Consider two cases:

Case 1. Let $Q \subseteq P$. Since $P \in \operatorname{Min}(A), Q=P$, hence $x \in Q$. Since $1 \wedge x=x$, $Q \cap T \neq \emptyset$, which is a contradiction.

Case 2. Let $Q \nsubseteq P$. Hence, there exists $u \in Q-P$. Since $u \wedge x \leqslant u$ and $u \in Q$, we get $u \wedge x \in Q$. Also, we have $u \wedge x \in T$, hence $Q \cap T \neq \emptyset$, which is a contradiction.

Conversely, let for all $x \in P$, there exist $r \in A-P$ such that $r \wedge x=0$. We show that $P \in \operatorname{Min}(A)$. Let $K \in \operatorname{Spec}(A)$ such that $K \varsubsetneqq P$. Hence, there exist $x \in P-K$ and $r \in A-P$ such that $r \wedge x=0$. Thus $0=r \wedge x \in K$, since $x \notin K$, hence $r \in K$, which is a contradiction. Thus $P \in \operatorname{Min}(A)$.

Theorem 2.2. Let A be an MV-algebra, $P \in \operatorname{Min}(A)$ and I be a finitely generated ideal. Then $I \subseteq P$ if and only if $\operatorname{Ann}_{A}(I) \nsubseteq P$.

Proof. Let $I=\left(a_{1}, a_{2}, \ldots, a_{n}\right]$ and $I \subseteq P$. By Theorem 2.1, for all $a_{i} \in P$, $1 \leqslant i \leqslant n$, there exists $u_{i} \in A-P$ such that $u_{i} \wedge a_{i}=0$. Take $u=u_{1} \wedge u_{2} \wedge \ldots \wedge u_{n}$. Obviously, $u \in A-P$. Since for all $x \in I$ we have $x \leqslant a_{1} \oplus \ldots \oplus a_{n}$, we get $u \wedge x \leqslant u \wedge\left(a_{1} \oplus a_{2} \oplus \ldots \oplus a_{n}\right) \leqslant u \wedge a_{1} \oplus u \wedge a_{2} \oplus \ldots \oplus u \wedge a_{n}=0$. Hence $u \wedge x=0$ for all $x \in I$. Therefore $u \in \operatorname{Ann}_{A}(I)$. This implies $\operatorname{Ann}_{A}(I) \nsubseteq P$.

Conversely, let $\operatorname{Ann}_{A}(I) \nsubseteq P$. Then there exists $x \in \operatorname{Ann}_{A}(I)-P$, so $x \wedge a_{i}=0$ for all $a_{i} \in I$. Since $x \wedge a_{i}=0 \in P$ and $x \notin P$, we get $a_{i} \in P$ for all $1 \leqslant i \leqslant n$. Therefore $I \subseteq P$.

Lemma 2.3. Let A be an MV-algebra. If $0 \neq x \in A$, then there exists $P \in \operatorname{Min}(A)$ such that $x \notin P$.

Proof. Let $0 \neq x \in A$. Assume that for all $P \in \operatorname{Min}(A), 1 \neq x \in P$. So $x \in \bigcap_{P \in \operatorname{Min}(A)} P$. Also, we have $\bigcap_{P \in \operatorname{Min}(A)} P=\bigcap_{P \in \operatorname{Spec}(A)} P=0$. Hence $x=0$, which is a contradiction.

Note: Let A be an MV-algebra. Since $\operatorname{Min}(A) \subseteq \operatorname{Spec}(A)$, we consider $\operatorname{Min}(A)$ as the topology induced by the spectral topology. Thus, for any ideal $I \subseteq A$ and $a \in A$ let us define

$$
V_{A}(I)=\operatorname{Min}(A) \cap v_{A}(I), \quad U_{A}(I)=\operatorname{Min}(A) \cap u_{A}(I)
$$

where $v_{A}(I)=\{P \in \operatorname{Spec}(A): I \subseteq P\}$ and $u_{A}(I)=\{P \in \operatorname{Spec}(A): I \nsubseteq P\}$. It follows that the family $\left\{V_{A}(I)\right\}_{I \subseteq A}$ is the family of closed sets of the spectral topology on $\operatorname{Min}(A)$, the family $\left\{U_{A}(I)\right\}_{I \subseteq A}$ is the family of open sets of the spectral topology on $\operatorname{Min}(A)$ and the family $\left\{U_{A}(a)\right\}_{a \in A}$ is a basis for the topology of $\operatorname{Min}(A)$.

Lemma 2.4. Let A be an MV-algebra. Suppose that $a, b \in A$ and $I, J \in \operatorname{Id}(A)$. Then the following holds:
(1) $U_{A}(a) \cap U_{A}(b)=U_{A}(a \wedge b)$,
(2) $U_{A}(I) \cup U_{A}(J)=U_{A}(I \vee J)$,
(3) $U_{A}(a)=\emptyset$ if and only if $a=0$,
(4) $U_{A}(I) \cap U_{A}(J)=U_{A}(I \wedge J)$,
(5) $U_{A}(a) \cup U_{A}(b)=U_{A}(a \vee b)=U_{A}(a \oplus b)$,
(6) $V_{A}(I) \cap V_{A}(J)=V_{A}(I \vee J)$,
(7) $V_{A}(a) \cup V_{A}(b)=V_{A}(a \wedge b)$,
(8) $V_{A}(a) \cap V_{A}(b)=V_{A}(a \vee b)=V_{A}(a \oplus b)$,
(9) $V_{A}(I) \cup V_{A}(J)=V_{A}(I \wedge J)$.

Proof. (1) We have

$$
\begin{aligned}
P \in U_{A}(a \wedge b) & \Leftrightarrow P \in \operatorname{Min}(A), a \wedge b \notin P \\
& \Leftrightarrow P \in \operatorname{Min}(A), a \notin P \text { and } b \notin P \\
& \Leftrightarrow P \in U_{A}(a) \cap U_{A}(b) .
\end{aligned}
$$

(2) Let $P \in U_{A}(I) \cup U_{A}(J)$. Consider two cases, $P \in U_{A}(I)$ or $P \in U_{A}(J)$.

Case 1. Let $P \in U_{A}(I)$.

$$
\begin{aligned}
P \in U_{A}(I) & \Rightarrow P \in \operatorname{Min}(A), I \nsubseteq P \\
& \Rightarrow \exists t \in I \text { such that } t \notin P
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \exists t \in I \subseteq I \vee J \text { such that } t \notin P \\
& \Rightarrow I \vee J \nsubseteq P \\
& \Rightarrow P \in U_{A}(I \vee J) .
\end{aligned}
$$

Case 2. Let $P \in U_{A}(J)$. It is similar to Case 1. Then $U_{A}(I) \cup U_{A}(J) \subseteq U_{A}(I \vee J)$. Let $P \in U_{A}(I \vee J)$ but $P \notin U_{A}(I) \cup U_{A}(J)$. We have

$$
\begin{aligned}
P \notin U_{A}(I) \cup U_{A}(J) & \Rightarrow P \in \operatorname{Min}(A), I \subseteq P \text { and } J \subseteq P \\
& \Rightarrow P \in \operatorname{Min}(A), I \vee J \subseteq P \vee P=P \\
& \Rightarrow P \notin U_{A}(I \vee J),
\end{aligned}
$$

which is a contradiction. So $U_{A}(I \vee J) \subseteq U_{A}(I) \cup U_{A}(J)$. Therefore $U_{A}(I \vee J)=$ $U_{A}(I) \cup U_{A}(J)$.
(3) Since for all $P \in \operatorname{Min}(A)$ we have $0 \in P$.
(4) We have

$$
\begin{aligned}
P \in U_{A}(I \cap J) & \Rightarrow P \in \operatorname{Min}(A), I \cap J \nsubseteq P \\
& \Rightarrow P \in \operatorname{Min}(A), I \nsubseteq P \text { and } J \nsubseteq P \\
& \Rightarrow P \in U_{A}(I) \text { and } P \in U_{A}(J) \\
& \Rightarrow P \in U_{A}(I) \cap U_{A}(J) .
\end{aligned}
$$

Thus $U_{A}(I \cap J) \subseteq U_{A}(I) \cap U_{A}(J)$. Now, suppose that

$$
\begin{aligned}
P \in U_{A}(I) \cap U_{A}(J) & \Rightarrow P \in U_{A}(I) \text { and } P \in U_{A}(J) \\
& \Rightarrow P \in \operatorname{Min}(A), I \nsubseteq P \text { and } J \nsubseteq P \\
& \Rightarrow \exists t \in I \text { such that } t \notin P \text { and } \exists x \in J \text { such that } x \notin P \\
& \Rightarrow t \wedge x \leqslant t \in I, x \wedge t \leqslant x \in J \text { and } x \wedge t \notin P \\
& \Rightarrow t \wedge x \in I \cap J \text { and } x \wedge t \notin P \\
& \Rightarrow I \cap J \nsubseteq P \\
& \Rightarrow P \in U_{A}(I \cap J) .
\end{aligned}
$$

Thus $U_{A}(I) \cap U_{A}(J) \subseteq U_{A}(I \cap J)$. Therefore $U_{A}(I) \cap U_{A}(J)=U_{A}(I \cap J)$.
(5) We have for any ideal I of $A, a \notin I$ or $b \notin I$ if and only if $a \oplus b \notin I$ if and only if $a \vee b \notin I$. For any prime ideal P we have $P \in U_{A}(a) \cup U_{A}(b)$ if and only if $P \in U_{A}(a \vee b)$ if and only if $P \in U_{A}(a \oplus b)$. Hence $U_{A}(a) \cup U_{A}(b)=U_{A}(a \vee b)=U_{A}(a \oplus b)$.
(6) We have by (2)

$$
\begin{aligned}
V_{A}(I \vee J) & =\operatorname{Min}(A)-U_{A}(I \vee J)=\operatorname{Min}(A)-\left(U_{A}(I) \cup U_{A}(J)\right) \\
& =U_{A}^{\mathrm{c}}(I) \cap U_{A}^{\mathrm{c}}(J)=V_{A}(I) \cap V_{A}(J) .
\end{aligned}
$$

(7) We have

$$
\begin{aligned}
P \in V_{A}(a) \cup V_{A}(b) & \Leftrightarrow P \in V_{A}(a) \text { or } P \in V_{A}(b) \\
& \Leftrightarrow a \in P \text { or } b \in P(\text { since } a \wedge b \leqslant a \in P \text { or } a \wedge b \leqslant b \in P) \\
& \Leftrightarrow a \wedge b \in P(\text { since } P \in \operatorname{Spec}(A)) \\
& \Leftrightarrow P \in V_{A}(a \wedge b) .
\end{aligned}
$$

(8) By (5) we have

$$
\begin{aligned}
V_{A}(a) \cap V_{A}(b) & =U_{A}^{\mathrm{c}}(a) \cap U_{A}^{\mathrm{c}}(b)=\left(U_{A}(a) \cup U_{A}(b)\right)^{\mathrm{c}} \\
& \left.=\left(U_{A}(a \vee b)\right)^{\mathrm{c}}=U_{A}^{\mathrm{c}}(a \oplus b)\right)=V(a \oplus b) .
\end{aligned}
$$

(9) By (4) we have

$$
\begin{aligned}
V_{A}(I) \cup V_{A}(J) & =U_{A}^{\mathrm{c}}(I) \cup U_{A}^{\mathrm{c}}(J)=\left(U_{A}(I) \cap U_{A}(J)\right)^{\mathrm{c}} \\
& =U_{A}^{\mathrm{c}}(I \wedge J)=V_{A}(I \wedge J) .
\end{aligned}
$$

Theorem 2.5. Let A be an MV-algebra. The spectral topology on $\operatorname{Min}(A)$ is a zero-dimensional Hausdorff topology.

Proof. We know that the family $\left\{U_{A}(a)\right\}_{a \in A}$ is a basis for spectral topology on $\operatorname{Min}(A)$. We claim that $U_{A}(a)=V_{A}\left(\operatorname{Ann}_{A}(a)\right)$. By Theorem 2.2, we obtain

$$
\begin{aligned}
P \in U_{A}(a) & \Rightarrow P \in \operatorname{Min}(A), a \notin P \\
& \Rightarrow \operatorname{Ann}_{A}(a) \subseteq P \\
& \Rightarrow P \in V_{A}\left(\operatorname{Ann}_{A}(a)\right) \\
& \Rightarrow U_{A}(a) \subseteq V_{A}\left(\operatorname{Ann}_{A}(a)\right) .
\end{aligned}
$$

It follows from Theorem 2.2 that

$$
\begin{aligned}
P \in V_{A}\left(\operatorname{Ann}_{A}(a)\right) & \Rightarrow P \in \operatorname{Min}(A), \operatorname{Ann}_{A}(a) \subseteq P \\
& \Rightarrow a \notin P \\
& \Rightarrow P \in U_{A}(a) \\
& \Rightarrow V_{A}\left(\operatorname{Ann}_{A}(a)\right) \subseteq U_{A}(a) .
\end{aligned}
$$

Therefore $V_{A}\left(\operatorname{Ann}_{A}(a)\right)=U_{A}(a)$.

Now, we show that the spectral topology on $\operatorname{Min}(A)$ is a Hausdorff topology. Let P_{1} and P_{2} be two distinct minimal prime ideals of A. Since $P_{1} \neq P_{2}$, we get $P_{1} \nsubseteq P_{2}$ or $P_{2} \nsubseteq P_{1}$. Without loss of generality, we suppose that $P_{1} \nsubseteq P_{2}$. Then there exists $a \in P_{1}$ such that $a \notin P_{2}$. Take $U=U_{A}(a)$ and $V=U_{A}^{\mathrm{c}}(a)=V_{A}(a)=$ $U_{A}\left(\operatorname{Ann}_{A}(a)\right)$. Hence $P_{2} \in U$ and $P_{1} \in V$. We have $U \cap V=U_{A}(a) \cap U_{A}\left(\operatorname{Ann}_{A}(a)\right)=$ $U_{A}(a) \cap U_{A}^{\mathrm{c}}(a)=\emptyset$. We conclude that the spectral topology on $\operatorname{Min}(A)$ is a Hausdorff topology.

Lemma 2.6. Let A be a nonempety MV-algebra. The collection $\beta=\left\{V_{A}(I)\right.$: $I \in \operatorname{Id}(A)\}$ is a base for a topology on $\operatorname{Min}(A)$.

Proof. For all $P \in \operatorname{Min}(A), I_{0}=\{0\}$ is an ideal of an MV-algebra A such that $I_{0} \subseteq P$. So $P \in V_{A}\left(I_{0}\right)$. Let $V_{A}(I), V_{A}(J) \in \beta$. It follows from Lemma 2.4 (6) that $V_{A}(I) \cap V_{A}(J)=V_{A}(I \vee J)$. Therefore, this collection is a base for the topology on $\operatorname{Min}(A)$.

Remark 2.7. The induced topology of base

$$
\beta=\left\{V_{A}(I): I \text { is finitely generated ideal of } A\right\}
$$

is called the inverse topology. When equipped with the inverse topology on $\operatorname{Min}(A)$, we shall write $\operatorname{Min}^{-1}(A)$.

Remark 2.8. Collection $\left\{V_{A}(a): a \in A\right\}$ forms a subbase for a topology on $\operatorname{Min}^{-1}(A)$.

Proof. Obviously, $\operatorname{Min}(A)=\bigcup_{a \in A} V_{A}(a)$. By Theorem 2.4 (6), we have

$$
V(I)=V\left(\left(a_{1}, \ldots, a_{n}\right]\right)=V\left(\left(a_{1}\right] \vee \ldots \vee\left(a_{n}\right]\right)=V\left(\left(a_{1}\right]\right) \cap \ldots \cap V\left(\left(a_{n}\right]\right)=\bigcap_{i=1}^{n} V\left(a_{i}\right) .
$$

Lemma 2.9. The spectral topology on $\operatorname{Min}(A)$ is finer than the inverse topology on $\operatorname{Min}(A)$.

Proof. It follows from Theorem 2.5, Lemma 2.4 (6) and (4) that

$$
\begin{aligned}
V(I) & \left.=V\left(\left(a_{1}, a_{2}, \ldots, a_{n}\right]\right)=V\left(\bigvee_{i=1}^{n}\left(a_{i}\right]\right)\right)=\bigcap_{i=1}^{n} V\left(a_{i}\right) \\
& =\bigcap_{i=1}^{n} U\left(\operatorname{Ann}_{A}\left(a_{i}\right)\right)=U\left(\bigwedge_{i=1}^{n} \operatorname{Ann}_{A}\left(a_{i}\right)\right)
\end{aligned}
$$

For any finitely generated ideal I of A we have $V_{A}(I)$ an open set in the spectral topology on $\operatorname{Min}(A)$. We conclude that the spectral topology is finer than the inverse topology on $\operatorname{Min}(A)$.

Remark 2.10. Let I and J be finitely generated ideals of an MV-algebra A. Then the following holds:
(1) $I \wedge J$ is a finitely generated ideal.
(2) $I \vee J$ is a finitely generated ideal.

Proof. Let $I=\left(a_{1}, a_{2}, \ldots, a_{n}\right]$ and $J=\left(b_{1}, b_{2}, \ldots, b_{m}\right]$. We have

$$
\begin{aligned}
\left(a_{1}, a_{2}, \ldots, a_{n}\right] \cap\left(b_{1}, b_{2}, \ldots, b_{m}\right] & =\left(\left(a_{1}\right] \vee\left(a_{2}\right] \vee \ldots\left(a_{n}\right]\right) \cap\left(\left(b_{1}\right] \vee\left(b_{2}\right] \vee \ldots \vee\left(b_{m}\right]\right) \\
& =\left(a_{1} \oplus a_{2} \oplus \ldots \oplus a_{n}\right] \cap\left(b_{1} \oplus b_{2} \oplus \ldots \oplus b_{m}\right] \\
& =\left(\left(a_{1} \oplus \ldots \oplus a_{n}\right) \wedge\left(b_{1} \oplus \ldots \oplus b_{m}\right)\right] .
\end{aligned}
$$

Thus, $I \wedge J$ is a finitely generated ideal of A.
(2) Suppose that $I=\left(a_{1}, a_{2}, \ldots, a_{n}\right]$ and $J=\left(b_{1}, b_{2}, \ldots, b_{m}\right]$. We have

$$
\begin{aligned}
I \vee J & =\left(a_{1}, a_{2}, \ldots, a_{n}\right] \vee\left(b_{1}, b_{2}, \ldots, b_{m}\right]=\bigvee_{i=1}^{n}\left(a_{i}\right] \vee \bigvee_{i=1}^{m}\left(b_{i}\right] \\
& =\left(a_{1} \oplus a_{2} \oplus \ldots \oplus a_{n}\right] \vee\left(b_{1} \oplus b_{2} \oplus \ldots \oplus b_{m}\right] \\
& =\left(a_{1} \oplus \ldots \oplus a_{n} \oplus b_{1} \oplus \ldots \oplus b_{m}\right] .
\end{aligned}
$$

Hence, $I \vee J$ is a finitely generated ideal of A.
Theorem 2.11. Let A be an MV-algebra. If for any $a \in A$ there exists a finitely generated ideal I of A such that $I \subseteq \operatorname{Ann}_{A}(a)$ and $\operatorname{Ann}_{A}((a] \vee I)=\{0\}$, then the spectral topology and the inverse topology on $\operatorname{Min}(A)$ are equal.

Proof. By Lemma 2.9, we have that the spectral topology on $\operatorname{Min}(A)$ is finer than the inverse topology on $\operatorname{Min}(A)$. It is enough to show that for any $a \in A$ there exists a finitely generated ideal I of A such that $U_{A}(a)=V_{A}(I)$. We have for any $a \in A$ that there exists a finitely generated ideal I of A such that $I \subseteq \operatorname{Ann}_{A}(a)$ and $\operatorname{Ann}_{A}((a] \vee I)=0$. Let $P \in U_{A}(a)$. Then $a \notin P$. If $x \in I$, then $x \wedge a=0$ and we get $x \in P$. Thus $I \subseteq P$, so $U_{A}(a) \subseteq V_{A}(I)$. Let $V_{A}(I) \nsubseteq U_{A}(a)$. Then there exists $P \in \operatorname{Min}(A)$ such that $I \subseteq P$ and $a \in P$. We show that $(a] \vee I \subseteq P$.

$$
\begin{aligned}
t \in(a] \vee I & \Rightarrow t \leqslant n a \oplus b \text { such that } b \in I \subseteq P \\
& \Rightarrow t \in P \\
& \Rightarrow(a] \vee I \subseteq P .
\end{aligned}
$$

But we have $\operatorname{Ann}_{A}((a] \vee I)=0$, then $\operatorname{Ann}_{A}((a] \vee I) \subseteq P$, which contradicts Theorem 2.2.

We recall that for any $a \in A, U_{A}(a)$ is compact in $\operatorname{Spec}(A)$ (see [1]). It follows form Theorem 2.4 (2) that $U_{A}(I)=U_{A}\left(\bigvee_{i=1}^{n}\left(a_{i}\right]\right)=\bigcup_{i=1}^{n} U_{A}\left(\left(a_{i}\right]\right)=\bigcup_{i=1}^{n} U_{A}\left(a_{i}\right)$. We conclude that $U(I)$ is compact.

Theorem 2.12. Let A be an MV-algebra. Then for any $a \in A, V_{A}(a)$ is compact in $\operatorname{Min}(A)^{-1}$.

Proof. It is sufficient to show that any cover of $V_{A}(a)$ with open basis sets contains a finite cover of $V_{A}(a)$. By Theorem 2.5 we have

$$
U_{A}\left(\operatorname{Ann}_{A}(a)\right)=V_{A}(a) \subseteq \bigcup_{i \in I} V_{A}\left(a_{i}\right)=\bigcup_{i \in I} U_{A}\left(\operatorname{Ann}_{A}\left(a_{i}\right)\right)
$$

Since $U_{A}\left(\operatorname{Ann}_{A}(a)\right)$ is compact in spectral topology on $\operatorname{Min}(A)$, there exists a finite subset J of I such that $V(a) \subseteq \bigcup_{i \in J} U_{A}\left(\operatorname{Ann}_{A}\left(a_{i}\right)\right)=\bigcup_{i=1}^{n} V_{A}\left(a_{i}\right)$. This implies that $V_{A}(a)$ is a compact set in $\operatorname{Min}^{-1}(A)$.

Remark 2.13. Let A be an MV-algebra. For any ideal I of $A, \bar{U}_{A}(I)=$ $V_{A}\left(\operatorname{Ann}_{A}(I)\right)$ in the spectral topology on $\operatorname{Min}^{-1}(A)$.

Proof. Let $P \in V_{A}\left(\operatorname{Ann}_{A}(I)\right)$. Then $P \in \operatorname{Min}(A)$ and $\operatorname{Ann}_{A}(I) \subseteq P$. Let $t \in A$ and $U_{A}(t)$ be an open set such that $P \in U_{A}(t)$. We show that $U_{A}((t]) \cap U_{A}(I) \neq \emptyset$. Let $U_{A}((t]) \cap U_{A}(I)=\emptyset$. By Lemma $2.4(4)$, we have $U_{A}((t]) \cap U_{A}(I)=U_{A}((t] \wedge I)=\emptyset$. It follows from Lemma 2.4 (3) that $(t] \wedge I=0$. As $t \in \operatorname{Ann}_{A}(I)$, we get $t \in P$, which is a contradiction. Thus $V_{A}\left(\operatorname{Ann}_{A}(I)\right) \subseteq \bar{U}_{A}(I)$.

Let $P \in U_{A}(I)$. Then $P \in \operatorname{Min}(A), I \nsubseteq P$. Now, we have

$$
\begin{aligned}
x \in \operatorname{Ann}_{A}(I) & \Rightarrow x \wedge a=0 \quad \forall a \in I \\
& \Rightarrow x \in P(\text { since } P \text { is a prime ideal }) \\
& \Rightarrow \operatorname{Ann}_{A}(I) \subseteq P \\
& \Rightarrow P \in V_{A}\left(\operatorname{Ann}_{A}(I)\right) \\
& \Rightarrow U_{A}(I) \subseteq V_{A}\left(\operatorname{Ann}_{A}(I)\right) \\
& \Rightarrow \bar{U}_{A}(I) \subseteq \bar{V}_{A}\left(\operatorname{Ann}_{A}(I)\right) \\
& \Rightarrow \bar{U}_{A}(I) \subseteq V_{A}\left(\operatorname{Ann}_{A}(I)\right) .
\end{aligned}
$$

Therefore $\bar{U}_{A}(I)=V_{A}\left(\operatorname{Ann}_{A}(I)\right)$.

Theorem 2.14. $\operatorname{Min}^{-1}(A)$ is compact, T_{0}-space and T_{1}-space.

Proof. We have $\operatorname{Min}(A)=V_{A}(0)=\{P \in \operatorname{Min}(A): 0 \in P\}$. It follows from Theorem 2.12 that $\operatorname{Min}^{-1}(A)$ is compact. For $P_{1}, P_{2} \in \operatorname{Min}(A)$ such that $P_{1} \neq P_{2}$, where $P_{1} \nsubseteq P_{2}$ or $P_{2} \nsubseteq P_{1}$. Without loss of generality, we suppose that $P_{1} \nsubseteq P_{2}$. Then there exists $a \in P_{1}$ such that $a \notin P_{2}$. Taking $U=V_{A}(a)$, then $P_{1} \in U$ and $P_{2} \notin U$. Hence $\operatorname{Min}^{-1}(A)$ is a T_{0}-space. Let $P, Q \in \operatorname{Min}(A)$ be distinct minimal prime ideals and let $a \in P-Q$. By Lemma 2.1, there is an $x \notin P$ such that $a \wedge x=0$. It follows that $a \wedge x \in Q$ and so $x \in Q-P$. Notice that $P \in V_{A}(a)-V_{A}(x)$ and $Q \in V_{A}(x)$, so $V_{A}(x) \nsubseteq V_{A}(a)$. Hence, the inverse topology is a T_{1}-space.

We note that a topological space X is connected if and only if it has only A and \emptyset as clopen subsets (see [7]).

Corollary 2.15. If A is an MV-algebra and $A \neq\{0,1\}$, then $\operatorname{Min}^{-1}(A)$ is disconnected.

Proof. Since $A \neq\{0,1\}$, there exists $a \in A$ such that $a \neq 0,1$. By Theorem 2.5, $V_{A}(a)=U_{A}\left(\operatorname{Ann}_{A}(a)\right)$ is a nonempty clopen set. Therefore $\operatorname{Min}^{-1}(A)$ is disconnected.

Theorem 2.16. $\operatorname{Min}^{-1}(A)$ is a Hausdorff topological space.
Proof. Let P and Q be two distinct minimal prime ideals of A. Since $P \neq Q$, there are $a \in P-Q$ and $b \in Q-P$. By Theorem 2.2, since $(a] \subseteq P$ and $(b] \subseteq Q$ and $P, Q \in \operatorname{Min}(A)$, we get $\operatorname{Ann}_{A}((a]) \nsubseteq P$ and $\operatorname{Ann}_{A}((b]) \nsubseteq Q$. Hence, $P \in U_{A}\left(\operatorname{Ann}_{A}(a)\right), Q \in U_{A}\left(\operatorname{Ann}_{A}(b)\right), P \in V_{A}(a)$ and $Q \in V_{A}(b)$. By Theorem 2.5, since the spectral topology on $\operatorname{Min}(A)$ is Hausdorff, we have $V_{A}(a) \cap V_{A}(b)=U_{A}\left(\operatorname{Ann}_{A}(a)\right) \cap U_{A}\left(\operatorname{Ann}_{A}(b)\right)=\emptyset$.

Lemma 2.17. $H \subseteq \operatorname{Min}^{-1}(A)$ is clopen if and only if there exist finitely generated ideals I and J of A such that $V(I)=H, I \wedge J=\{0\}$ and $\operatorname{Ann}(I \vee J)=\{0\}$.

Proof. Suppose H is a clopen subset of $\operatorname{Min}^{-1}(A)$. By Theorem 2.14, the inverse topology on $\operatorname{Min}(A)$ is compact. It follows that H is compact. So H is a union of base open sets. Now, by Lemma 2.4 (9), we have $H=\bigcup_{i=1}^{n} V_{A}\left(I_{i}\right)=$ $V_{A}\left(I_{1} \wedge I_{2} \wedge \ldots \wedge I_{n}\right)$ and by Remark 2.10 (1), there exists a finitely generated ideal I of A such that $V_{A}\left(I_{1} \wedge I_{2} \wedge \ldots \wedge I_{n}\right)=V_{A}(I)$. Since the complement of H is also clopen, we conclude that for some finitely generated ideal, $\operatorname{Min}(A)-H=V_{A}(J)$. Thus, by Lemma 2.4 (6), we have $\emptyset=V_{A}(I) \cap V_{A}(J)=V_{A}(I \vee J)$. So for every $P \in \operatorname{Min}(A)$ we get $I \vee J \nsubseteq P$. By Remark $2.10(2), I \vee J$ is a finitely generated ideal. Now, by Theorem 2.2, for every $P \in \operatorname{Min}(A), \operatorname{Ann}_{A}(I \vee J) \subseteq P$. We have
$\operatorname{Ann}_{A}(I \vee J) \subseteq \bigcap_{P \in \operatorname{Min}(A)} P=0$. Hence $\operatorname{Ann}_{A}(I \vee J)=0$. Finally, by Lemma 2.4 (9), we get $V_{A}(I) \cup V_{A}(J)=V_{A}(I \wedge J)=\operatorname{Min}(A)$. Since $I \wedge J \subseteq P$ for all $P \in \operatorname{Min}(A)$, $I \wedge J=\{0\}$. Conversely, since $\operatorname{Ann}(I \vee J)=\{0\}$ for every $P \in \operatorname{Min}(A)$ we have $\operatorname{Ann}_{A}(I \vee J) \subseteq P$. By Remark 2.16 and Theorem 2.2, we get $I \vee J \nsubseteq P$. Now, by Lemma 2.4 (2), for every $P \in \operatorname{Min}(A)$ we have

$$
P \in U_{A}(I \vee J) \Rightarrow P \in U_{A}(I) \cap U_{A}(J) \Rightarrow P \in V_{A}^{\mathrm{c}}(I) \cup V_{A}^{\mathrm{c}}(J) .
$$

We obtain $V_{A}^{\mathrm{c}}(I) \cup V_{A}^{\mathrm{c}}(J)=\operatorname{Min}(A)$. Hence $V_{A}(I) \cap V_{A}(J)=\emptyset$. Now by Lemma 2.4 (9), we have

$$
V_{A}(I) \cup V_{A}(J)=V_{A}(I \wedge J)=V_{A}(0)=\operatorname{Min}(A)
$$

Then $V_{A}(I)$ is a complement of $V_{A}(J)$. Thus $V_{A}(I)=H$ is clopen.
Notation. We recall that let A and B be disjoint compact subspaces of the Hausdorff space X. Then there exist disjoint open sets U and V containing A and B, respectively (see [7]).

Theorem 2.18. $\operatorname{Min}(A)^{-1}$ is a compact zero-dimensional Hausdorff space if and only if for every $a, b \in A$ such that $a \wedge b=0$ there exist finitely generated ideals I, J of A such that $a \in I, b \in J, I \wedge J=\{0\}$ and $\operatorname{Ann}_{A}(I \vee J)=\{0\}$.

Proof. Suppose that $\operatorname{Min}^{-1}(A)$ is a compact zero-dimensional Hausdorff space and $a, b \in A$ such that $a \wedge b=0$. By Lemma 2.4 (1), we have $U_{A}(a) \cap U_{A}(b)=$ $U_{A}(a \wedge b)=U_{A}(0)=\emptyset$ and since $U_{A}(a)$ and $U_{A}(b)$ are closed, they are compact subsets of $\operatorname{Min}(A)$. By the above notation and since $\operatorname{Min}^{-1}(A)$ is zero-dimensional, there exists a clopen set $H \subseteq \operatorname{Min}(A)$ such that $U_{A}(a) \subseteq H$, and $H \cap U_{A}(b)=\emptyset$. By Lemma 2.17, there exist finitely generated ideals I, J containing a and b, respectively, such that $H=V_{A}(I)$ and $V_{A}(J)=\operatorname{Min}(A)-H$ such that $(a \in I, b \in J), I \wedge J=\{0\}$, and $\operatorname{Ann}_{A}(I \vee J)=\{0\}$.

Conversely, we show that $\operatorname{Min}^{-1}(A)$ has a base of clopen sets. It is sufficient to show that given $P \in V_{A}(a)$, there is a clopen subset $H \subseteq \operatorname{Min}(A)$ for which $P \in H \subseteq V_{A}(a)$ Let $P \in V_{A}(a)$. Then $P \in \operatorname{Min}(A)$ and $a \in P$. By Theorem 2.1, there exists $b \in A-P$ such that $a \wedge b=0$. Now, by hypothesis, there exist finitely generated ideals I, J of A such that $a \in I, b \in J, I \wedge J=\{0\}$ and $\operatorname{Ann}_{A}(I \vee J)=\{0\}$. By Theorem 2.17, we define $H=V_{A}(I)$. It is a clopen subset of $\operatorname{Min}^{-1}(A)$. Since $a \in I$, it follows that $V_{A}(I) \subseteq V_{A}(a)$. Now, we show that $P \in V_{A}(I)$. Let $P \notin V_{A}(I)$. Then $I \nsubseteq P$. Since $I \wedge J=\{0\} \subseteq P$, we get $J \subseteq P$. It follows that $b \in P$, which is a contradiction. Therefore $\operatorname{Min}^{-1}(A)$ is zero-dimensional. By Theorems 2.16 and 2.14, we obtain that $\operatorname{Min}^{-1}(A)$ is a Hausdorff space and it is compact.

Theorem 2.19. Let A be a nontrivial MV-algebra. For $a, b \in A$ define $a \sim b$ if and only if $V_{A}(a)=V_{A}(b)$. Hence, $a \sim b$ if and only if for any $P \in \operatorname{Min}(A), a \in P$ if and only if $b \in P$.

Proof. Obviously, \sim is an equivalence relation on A. Let $a, b, c, d \in A$ such that $a \sim b$ and $c \sim d$. We will prove that $a \oplus c \sim b \oplus d, a^{*} \sim b^{*}$. Suppose that $P \in \operatorname{Min}(A)$. Then $a, c \leqslant a \oplus c \in P$ if and only if $a \in P$ and $c \in P$ if and only if $b \in P$ and $d \in P$ if and only if $b \oplus d \in P$. That is, $a \oplus c \in P$ if and only if $b \oplus d \in P$. Hence $a \oplus c \sim b \oplus d$. Similarly, $a \vee c \sim b \vee d$. Since P is a prime ideal, we get $a \wedge c \in P$ if and only if $a \in P$ or $c \in P$ if and only if $b \in P$ or $d \in P$ if and only if $b \wedge d \in P$. Thus $a \wedge c \sim b \wedge d$. Let $a \sim b$. Then $a \in P$ if and only if $b \in P$. We show that $a^{*} \in P$ if and only if $b^{*} \in P$. We have

$$
\begin{aligned}
a^{*} \in P & \Rightarrow a \odot a^{*} \leqslant a^{*} \in P \Rightarrow a \odot a^{*} \in P \\
& \Rightarrow a^{*} \oplus\left(a \odot a^{*}\right) \in P \Rightarrow a \leqslant a \vee a^{*} \in P \\
& \Rightarrow a \in P \Rightarrow b \in P \\
& \Rightarrow b \odot b^{*} \leqslant b \in P \Rightarrow b \odot b^{*} \in P \\
& \Rightarrow b \oplus\left(b \odot b^{*}\right) \in P \Rightarrow b^{*} \leqslant b \vee b^{*} \in P \\
& \Rightarrow b^{*} \in P .
\end{aligned}
$$

Similarly, we obtain that if $b^{*} \in P$, then $a^{*} \in P$. Hence $a^{*} \in P$ if and only if $b^{*} \in P$. Thus $a^{*} \sim b^{*}$. The congruence class of x with respect to \sim will be denoted by $[x]$, i.e. $[x]=\{y \in A: x \sim y\}$. Let A / \sim be the quotient set. Since \sim is a congruence on A, the algebra $(A / \sim, \oplus, *,[0])$ is an MV-algebra, where $[a] \oplus[b]=[a \oplus b]$ and $[a]^{*}=\left[a^{*}\right]$.

Theorem 2.20. Let $a, b \in A$. Then we have:
(1) $[a] \leqslant[b]$ if and only if $V_{A}(b) \subseteq V_{A}(a)$.
(2) $[a]=[b]$ if and only if $(a]=(b]$.
(3) $[a]=[1]$ if and only if $\operatorname{ord}(a) \leqslant \infty$.
(4) $[a]=[0]$ if and only if $a=0$.
(5) $[a \vee b]=[a \oplus b]$.
(6) $[n a]=[a]$ for some $n \in \mathbb{N}$.

Proof. (1) By Lemma 2.4 (7), we have

$$
\begin{aligned}
{[a] \leqslant[b] } & \Leftrightarrow[a] \wedge[b]=[a] \Leftrightarrow[a \wedge b]=[a] \Leftrightarrow V_{A}(a \wedge b)=V_{A}(a) \\
& \Leftrightarrow V_{A}(a) \cup V_{A}(b)=V_{A}(a) \Leftrightarrow V_{A}(b) \subseteq V_{A}(a) .
\end{aligned}
$$

(2) We have $[a]=[b]$ if and only if $V_{A}(a)=V_{A}(b)$. It follows that

$$
\begin{aligned}
(a] & =\bigcap\{P \in \operatorname{Min}(A): a \in P\}=\bigcap\left\{P \in \operatorname{Min}(A): P \in V_{A}(a)\right\} \\
& =\bigcap\left\{P \in \operatorname{Min}(A): P \in V_{A}(b)\right\}=\bigcap\{P \in \operatorname{Min}(A): b \in P\}=(b] .
\end{aligned}
$$

(3) By (2), we have $[a]=[1]$ if and only if $(a]=(1]=A$. Hence, $1 \in(a]$ if and only if $1 \leqslant n a$ for some $n \in \mathbb{N}$. We get $n a=1$ for some $n \in \mathbb{N}$, that is, $\operatorname{ord}(a) \leqslant \infty$.
(4) By (2), we obtain $[a]=[0]$ if and only if $(a]=(0]=\{0\}$ if and only if $a=0$.
(5) It follows from Lemma 2.4 (8) that $V_{A}(a \vee b)=V_{A}(a \oplus b)$. Hence $[a \vee b]=[a \oplus b]$.
(6) By (5), we get $[n a]=[a \oplus a \oplus \ldots \oplus a]=[a \vee a \vee \ldots \vee a]=[a]$.

Acknowledgement. The authors are very indebted to the referees for valuable suggestions that improved the readability of the paper.

References

[1] L. P. Belluce, A. Di Nola, S.Sessa: The prime spectrum of an MV-algebra. Math. Log. Q. 40 (1994), 331-346.
zbl MR doi
[2] P. Bhattacharjee, K. M. Drees, W. W. McGovern: Extensions of commutative rings. Topology Appl. 158 (2011), 1802-1814.
zbl MR doi
[3] C. C. Chang: Algebraic analysis of many valued logics. Trans. Am. Math. Soc. 88 (1958), 467-490.
[4] R. L. O. Cignoli, I. M. L. D'Ottaviano, D. Mundici: Algebraic Foundations of ManyValued Reasoning. Trends in Logic-Studia Logica Library 7. Kluwer Academic Publishers, Dordrecht, 2000.
zbl MR doi
zbl MR doi
[5] E. Eslami: The prime spectrum on BL-algebras and MV-algebras. Siminar Algebra. Tarbiat Moallem University, 2009, pp. 58-61. (In Persian.)
[6] F. Forouzesh, E. Eslami, A. Borumand Saeid: Spectral topology on MV-modules. New Math. Nat. Comput. 11 (2015), 13-33.
[7] J. R. Munkres: Topology. Prentice Hall, Upper Saddle River, 2000.
[8] D. Piciu: Algebras of Fuzzy Logic. Editura Universitaria din Craiova, Craiova, 2007. (In Romanian.)

Authors' address: Fereshteh Forouzesh, Farhad Sajadian, Mahta Bedrood, Faculty of Mathematics and Computing, Higher Education Complex of Bam, Khalij Fars street, 76613-14477 Bam, Kerman, Iran, e-mail: frouzesh@bam.ac.ir, fsajadian@bam.ac.ir, bedrood.m@gmail.com.

