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Abstract. We consider solutions of quasilinear equations ut = ∆u
m + up in R

N with the
initial data u0 satisfying 0 < u0 < M and lim

|x|→∞
u0(x) = M for some constant M > 0. It

is known that if 0 < m < p with p > 1, the blow-up set is empty. We find solutions u that
blow up throughout RN when m > p > 1.
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1. Introduction

We consider the nonlinear diffusion equation:

(1.1)

{

ut = ∆um + up, x ∈ R
N , t > 0,

u(x, 0) = u0(x) > 0, x ∈ R
N

with m > p > 1 and u0 ∈ C(RN ) for N > 1. This problem is known to admit a local

time solution (see [6], [8]), but it may cease to exist in a finite time. We say that the

solution of (1.1) blows up in finite time if there is some T = T (u0) < ∞ such that

(1.2) lim sup
tրT

‖u(·, t)‖L∞(RN ) = ∞

and T (u0) is called the blow-up time of the solution u with the initial value u0. We

define the blow-up set by

B(u0) =
{

a ∈ R
N : lim sup

x→a, tրT
|u(x, t)| = ∞

}

.
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Each element of B(u0) is called a blow-up point of u. We say that the solution u

of (1.1) blows up only at space infinity if, in addition to (1.2), B(u0) = ∅. In this

case, the global blow-up profile u(x, T ) := lim
t→T

u(x, t) is defined for every x ∈ R
N .

Let us recall known results on the blow-up at space infinity. Lacey in [5] considered

a one-dimensional problem ut = ∆u+f(u) on the half-line and constructed examples

of solutions that blow up only at space infinity. He also obtained results of the global

blow-up profile. Giga and Umeda in [4] considered the equation ut = ∆u+up on RN

and showed that the blow-up at space infinity occurs if the initial data u0 satisfies

0 < u0 < M and lim
|x|→∞

u0(x) = M

for some constant M > 0. Shimojō in [12] considered semilinear heat equations

on RN and calculated the shape of global blow-up profile of solutions at the blow-up

time. It is also proved that such blow-up is always complete, that means that the

solution cannot extend as a weak solution after blow-up time.

For the case 0 < m < 1, the heat conductivity mum−1 becomes small as u in-

creases. Hence, we can see that diffusion is very slow when u is large. Thus, the

blow-up at space infinity must occur as the result for semilinear heat equation of [3].

This is proved by Seki for 0 < m 6 1 < p (see [10]). He also discusses the gen-

eralization of the nonlinearity of the form ut = ∆k(u) + f(u) including the case

0 < m 6 1 < p. On the other hand, if m > 1, diffusion is very fast when u is just

as large. Hence, the speed of heat propagation, from the space infinity to the origin

near the blow-up time, becomes much larger compared to the semilinear problem.

Thus, a natural question is: “If m ∈ (1,∞) is sufficiently large, does the blow-up

only at space infinity fail or not?”. Partial answer of this problem was obtained by

Seki-Suzuki-Umeda (see [11]). Their result implies that if 1 6 m < p, the blow-up

only at space infinity occurs. Motivated by these results, we consider the following

problem: Can the blow-up be confined to space infinity even if diffusion is so large

that m > p > 1?

In this paper, we give a partial answer to this problem and show that the total

blow-up, which means that B(u0) = R
N , occurs.

Theorem 1.1. Let p > 1 and m − p > 2(p − 1)/N . Then problem (1.1) has a

total blow-up solution with the initial value u0 ∈ C(RN ) satisfying

(1.3) 0 < u0 < M and lim
|x|→∞

u0(x) = M

for a certain positive constant M ∈ R.
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This paper is organized as follows. In Section 2, we discuss the condition m− p >

2(p − 1)/N of Theorem 1.1 from the point of asymptotic expansion. The rigorous

proof of Theorem 1.1 is given in Section 3 by constructing backward self-similar

solution.

R em a r k 1.1. For problem (1.1) with nonnegative initial data satisfying the

condition lim
|x|→∞

u0(x) = 0, it is known that if p > m > 1, the blow-up set reduces to

finite number of points (see [1], [13]). For 1 < p < m, total blow-up occurs (see [2]).

There is also a third possibility, B(u0) is a bounded domain for p = m. See also

Mochizuki and Suzuki [7] for higher dimensional problem. They consider the case

when the support of the initial data is compact, and that the support of the solution

remains bounded if p > m and it spreads out the whole space if p < m at the blow-up

time. The precise behavior of such solutions in one dimensional case is considered in

the book [9].

2. Formal asymptotics

We shall explain why the condition m − p > 2(p − 1)/N yields total blow-up.

We will achieve that by a formal asymptotic calculation. Let f(u) = up, then the

solution of the ODE

(2.1) U ′ = f(U), U(0) = M, M > 0

is written as U(t) = ϕ
(

T (M)−t
)

, where ϕ(s) := κs−1/(p−1) and κ := (p−1)−1/(p−1).

Here T = T (M) is the blow-up time for the initial data U(0) = M . Substituting

t = 0 gives M = ϕ(T (M)). Furthermore, by a simple calculation, we have

(2.2) ϕ′(s) = −f(ϕ(s)), lim
s→+0

ϕ(s) = ∞.

Let us consider (1.1) with initial data u0(x) = M − εq0(x), where q is a positive

function satisfying lim
|x|→∞

q0(x) = 0 and ε > 0 is a small constant. The first approxi-

mation at space infinity must be the flat solution ϕ(T − t). In order to calculate the

second term, we shall consider a formal outer expansion

u(x, t) =

∞
∑

i=0

u(i)(x, t)εi

and substitute this into ut = ∆k(u) + f(u), where k(u) = um. Then

u
(0)
t = ∆k(u0) + f(u(0)),

u
(1)
t = k′(u(0))∆u(1) + f ′(u(0))u(1).
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Observing the initial condition at space infinity, we assume u(0)(x, t) = ϕ(T − t) as

the first approximation of the solution, hence

(2.3) u
(1)
t = k′(ϕ(T − t))∆u(1) + f ′(ϕ(T − t))u(1).

Let q(x, t) = eΦ(t)∆q0 be a solution of qt = k′(ϕ(T − t))∆q with the initial condition

q(x, 0) = q0(x) ∈ L1(RN ). In other words,

q(x, t) = eΦ(t)∆q0, Φ(t) =

∫ t

0

k′(ϕ(T − τ)) dτ.

Here we employ the notation

(es∆ q0)(x) :=

∫

RN

G(x − y, s)q0(y) dy

where G is the fundamental solution of the heat equation in R
N :

G(x, s) :=
1

(4πs)N/2
exp

(

−
|x|2

4s

)

.

Then the solution of (2.3) is represented as u(1)(x, t) = −f(ϕ(T − t))q(x, t). This

can be easily checked from the following calculation.

u
(1)
t = −f(ϕ(T − t))qt −

df(ϕ(T − t))

dt
q

= −f(ϕ(T − t))qt + f ′(ϕ(T − t))ϕ′(T − t)q

= −f(ϕ(T − t))k′(ϕ(T − t))∆q − f ′(ϕ(T − t))f(ϕ(T − t))q

= k′(ϕ(T − t))∆u(1) + f ′(ϕ(T − t))u(1),

where we applied (2.2) and substitute s = T − t. By a formal asymptotic expansion,

together with ϕ′(T − t) = −f(ϕ(T − t)) again, we get

u(x, t) = ϕ(T − t)− εf(ϕ(T − t))q(x, t) +O(ε2) = ϕ(T − t+ εq(x, t))

provided that |x| is sufficiently large so that T − t ≫ q(x, t). We shall dis-

cuss a sufficient condition for this approach. Note that Φ(t) is proportional to

(T − t)(p−m)/(p−1) − T (p−m)/(p−1), which implies Φ(T ) = ∞ if m > p. Assume, for

simplicity, that the support of q0 is compact. Then by applying the inequality

sup
x∈RN

|q(x, t)| 6
1

(4πΦ(t))N/2

∫

RN

q0(x) dx,
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we get the following sufficient condition for T − t ≫ q(x, t):

T − t ≫ O((T − t)N(m−p)/(2(p−1))) = O(Φ(t)−N/2) > q(x, t).

Since we are interested in what happens as t → T−, we need the restriction below,

which appeared in Theorem 1.1.

1 <
N(m− p)

2(p− 1)
⇔ m− p >

2

N
(p− 1).

Under this condition, we obtain the following approximation:

u(x, t) ≈ ϕ(T − t+ εeΦ(t)∆q0) if t ≈ T

provided that |x| is sufficiently large so that T − t ≫ q(x, t). Here a ≈ b means that

there exist two constants c1, c2 > 0 such that c1a 6 b 6 c2a, where a and b are two

positive functions. Taking a limit t → T and regarding eΦ(T )∆q0 ≡ 0, we expect that

the total blow-up occurs when m − p > 2(p − 1)/N . On the other hand, the above

formal calculation suggests that m−p < 2(p−1)/N yields the blow-up only at space

infinity, and the global profile must be

(2.4) u(x, T ) ≈ ϕ(εeΦ(T )∆q0) if t ≈ T.

Note that Φ(T ) < ∞ if m − p < 2(p − 1)/N . This conjecture (2.4) is proved

rigorously in [12] for the semi-linear problem (m = 1), by constructing suitable

sub-super solutions.

3. Total blow-up for quasilinear equation

Our aim of this section is to construct a backward self-similar total blow-up solu-

tion of problem (1.1) with the initial value u0 ∈ C(RN ) satisfying (1.3).

Assume the solution u of (1.1) blows up in finite time and let T > 0 be its blow-up

time. We introduce a simple change of variable as described in Section 2:

(3.1) u(x, t) = ϕ(T − t+ h(x, t)).

From this and lim
s→0

ϕ(s) = ∞, we can see that the blow-up of the solution u(x, t)

for (1.1) as t → T corresponds to the extinction of the solution h(x, t) as t → T . By

a simple calculation together with (3.1) and (2.2),

∂tϕ(T − t+ h) = ϕ′(T − t+ h)(ht − 1), f(ϕ(T − t+ h)) = −ϕ′(T − t+ h).
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By substituting (3.1) into ∆um = m(m− 1)um−2|∇u|2 +mum−1∆u, we have

∆ϕm(T − t+ h)

= m(m− 1)ϕm−2(T − t+ h)|ϕ′(T − t+ h)∇h|2

+mϕm−1(T − t+ h)(ϕ′(T − t+ h)∆h+ ϕ′′(T − t+ h)|∇h|2)

= m(m− 1)ϕm−2(T − t+ h)|ϕ′(T − t+ h)∇h|2

+mϕm−1(T − t+ h)(∆h− f ′(ϕ(T − t+ h))|∇h|2)ϕ′(T − t+ h).

Here we apply the relation ϕ′′(s) = −f ′(ϕ(s))ϕ′(s), which can be shown by differ-

entiating (2.2). Substituting (3.1) into (1.1) and dividing it by ϕ′(T − t + h), we

obtain

ht = mϕm−1(T − t+ h)
(

∆h+
(

(m− 1)
ϕ′(T − t+ h)

ϕ(T − t+ h)
− f ′(ϕ(T − t+ h))

)

|∇h|2
)

.

Applying ϕ′(s)/ϕ(s) = −s−1/(p−1) and f ′(ϕ(s)) = ps−1/(p−1), we get the equation

(3.2) ht =
mκm−1

(T − t+ h)(m−1)/(p−1)

(

∆h−
(m+ p− 1)|∇h|2

(p− 1)(T − t+ h)

)

with the initial data h(·, 0) = ϕ−1(u0)− T .

Next we introduce new space and time variables and a function

w(y, σ) :=
h(x, t)

T − t
, y := (T − t)βx, σ = log

1

T − t
,

where β := (m− p)/(2(p− 1)) and h is the solution of (3.2). By the chain rule,

together with

yt(x, t) = −eσβy(x, t), yx(x, t) = e−βσ, σt(t) = eσ,

we obtain

ht(x, t) = ∂t((T − t)w(y, σ)) = −βy · ∇w(y, σ) + wσ(y, σ)− w(y, σ)

and

∇h(x, t) = e−(β+1)σ∇w(y, σ), ∆h(x, t) = e−(2β+1)σ∆w(y, σ).

Substituting these into (3.2), we have

−βy · ∇w(y, σ) + wσ(y, σ)− w(y, σ)

=
mκm−1

(1 + w(y, σ))(m−1)/(p−1)
e((m−1)/(p−1)−(2β+1))σ

×
(

∆w(y, σ) −
m+ p− 1

p− 1

|∇w(y, σ)|2

1 + w(y, σ)

)

.
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Therefore, the function w satisfies the rescaled equation

(3.3) wσ =
mκm−1

(1 + w)2β+1

(

∆w −
m+ p− 1

p− 1

|∇w|2

1 + w

)

+ (βy · ∇w + w)

for y ∈ R
N and s > 0. We can easily see that

(3.4) lim
σ→∞

‖e−σw(·, σ)‖L∞(RN ) = 0 if and only if B(u0) = R
N .

The simplest example of a solution of (3.3) is a constant w ≡ 0, which corresponds to

a flat solution u(x, t) = U(t) of the original problem (1.1). Here U(t) is the solution

of (2.1). Another typical example is the self-similar solution. In our case, it has the

form h(x, t) = (T − t)g((T − t)βx), where g = g(y) satisfies

(3.5) ∆g −
m+ p− 1

p− 1

|∇g|2

1 + g
+

(1 + g)2β+1

mκm−1
(βy·∇g + g) = 0

with y = (T − t)βx. In other words, a solution h is self-similar if its rescaled function

w(y, σ) is independent of σ. If we assume that g(y) is a radial function, g = g(r) is

the solution of the following ordinary differential equation:

grr +
N − 1

r
gr −

m+ p− 1

p− 1

g2r
1 + g

+
(1 + g)2β+1

mκm−1
(βrgr + g) = 0,(3.6)

g(0) = µ, gr(0) = 0,(3.7)

where r = |y| and µ > 0 is a constant.

Let us note that equation (3.6) has a trivial solution g ≡ 0, as well as the spatially

homogeneous solution g ≡ −1. Let us also note that problem (3.6)–(3.7) admits a

solution g(r) with asymptotic behavior:

(3.8) g(r) = µ−
µ(1 + µ)2β+1

2mκm−1N
r2 + o(r2) as r → 0.

This asymptotics is obtained by solving an approximated ordinary differential equa-

tion:

grr +
(1 + µ)2β+1

mκm−1
g ≈ 0 for r ≈ 0,

which comes from the even symmetric assumption gr(0) = 0 and g(0) = µ.

We must find a value µ with the corresponding solution of the above problem

(3.6)–(3.7) that is nonnegative and decreasing at space infinity.

Proposition 3.1. Let p > 1 and m− p > 2(p− 1)/N . Then problem (3.6)–(3.7)

has a strictly positive monotone solution satisfying g(∞) = 0 if µ > 0 is sufficiently

small.

293



If we assume this Proposition, by (3.1), the corresponding solution u of prob-

lem (1.1) is written in the form:

us(x, t) = ϕ((T − t)(1 + g((T − t)βx))), β > 0.

Combining this with ϕ(0) = ∞, we obtain us(x, T ) = ∞ for any x ∈ R
N . Thus

B(us(·, 0)) = R
N . Furthermore, condition (1.3) of the initial value can be easily

checked and our result is obtained. Now we shall prove the existence of strictly

positive solution g = g(r) for problem (3.6)–(3.7).

Lemma 3.1. Let g = g(r) be the solution of problem (3.6)–(3.7). If g > 0 on an

interval [0, R0), then g is strictly decreasing on [0, R0).

P r o o f. Define

r0 = sup{r > 0: g is strictly decreasing on [0, r]}

and assume r0 < R0. Then the definition of r0 implies gr(r0) = 0 (both gr(r0) > 0

and gr(r0) < 0 easily lead to a contradiction) and (3.6) implies grr(r0) < 0. This in

turn means that g is strictly decreasing on a right neighborhood of r0, a contradiction

with the definition of r0. Hence r0 > R0. �

By Lemma 3.1, one can distinguish the following two cases:

(a) g > 0 on [0,∞) and g is strictly decreasing on [0,∞).

(b) There exists R ∈ (0,∞) such that g > 0 on [0, R) and g(R) = 0. This implies

that g is strictly decreasing on [0, R); thus, by continuity, it is strictly decreasing

on [0, R]. In particular, gr(R) < 0.

Now we exclude the second case (b) using the following lemma.

Lemma 3.2. Assume that βN > (1 + µ)2β+1. Let g = g(r) be the solution of

problem (3.6)–(3.7). Then g > 0 on [0,∞).

P r o o f. The decay rate of the solution is given by the solution of βrgr + g = 0,

which is the dominant term of the ODE (3.6). Thus, we introduce a function

(3.9) v := −
βrgr
g

: [0, R) → [0,∞).

By the definition of R, the function v is a nonnegative function and is well-defined.

Assume that R < ∞. Then case (b) of Lemma 3.1 implies that lim
r→R

v(r) = ∞.
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Differentiating (3.9) and using (3.6), we get

vr = −
βr

g

(

grr +
1

r
gr

)

+ βr
(gr
g

)2

= β(N − 2)
gr
g

+ βr
(gr
g

)2

−
m+ p− 1

p− 1

βrg2r
g(1 + g)

+
βr(1 + g)2β+1

mκm−1
(1− v)

= −(N − 2)
v

r
+

v2

βr
−

m+ p− 1

p− 1

g

1 + g

v2

βr
+

βr(1 + g)2β+1

mκm−1
(1 − v)

= −(N − 2)
v

r
+
(

1−
m+ p− 1

p− 1

g

1 + g

) v2

βr
+

βr(1 + g)2β+1

mκm−1
(1− v).

From (3.8) and (3.9), we see that

v(r) =
β(1 + µ)2β+1

mκm−1N
r2 + o(r2) as r → 0.

We will use this asymptotics in order to estimate the function v from above. Next we

shall check that the function v(r) := β(1 + µ)2β+1/mκm−1Nr2 is a super-solution of

the above ODE provided that

(3.10) 1 6 βN
(1 + g)2β+1

(1 + µ)2β+1
+

m+ p− 1

p− 1

g

1 + g

for all r ∈ [0, R). In fact, under condition (3.10), we get

vr + (N − 2)
v

r
−

(

1−
m+ p− 1

p− 1

g

1 + g

) v2

βr
−

βr(1 + g)2β+1

mκm−1
(1− v)

=
Nv

r

(

1−
(1 + g)2β+1

(1 + µ)2β+1

)

−
(

1−
m+ p− 1

p− 1

g

1 + g
− βN

(1 + g)2β+1

(1 + µ)2β+1

) v2

βr

> −
(

1−
m+ p− 1

p− 1

g

1 + g
− βN

(1 + g)2β+1

(1 + µ)2β+1

) v2

βr
> 0.

Here we used the relations vr = 2v/r together with

βr(1 + g)2β+1

mκm−1
=

Nv

r

(1 + g)2β+1

(1 + µ)2β+1

and the inequality g(r) 6 µ for r ∈ [0, R]. Condition (3.10) is satisfied because

the function g is nonnegative on [0, R) and βN > (1 + µ)2β+1. Therefore, by the

comparison argument, v 6 v for all r ∈ [0, R) and lim
r→r1

v(r) 6 v(R) < ∞. This

yields a contradiction. �
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P r o o f of Proposition 3.1. Let p > 1 and m− p > 2(p− 1)/N , then βN > 1. By

Lemma 3.2, problem (3.6)–(3.7) has a positive solution if we choose µ > 0 sufficiently

small such that βN > (1 + µ)2β+1. Lemma 3.1 implies that this solution is strictly

decreasing. Furthermore, since there exists no positive spatially homogeneous solu-

tion of equation (3.6), we obtain g(∞) = 0. Hence we obtain the result. �
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