SOME REMARKS ON DESCRIPTIVE CHARACTERIZATIONS OF THE STRONG MCSHANE INTEGRAL

Sokol Bush Kaliaj, Elbasan
Received September 5, 2017. Published online August 9, 2018. Communicated by Jiří Spurný

Dedicated to the memory of Štefan Schwabik

Abstract. We present the full descriptive characterizations of the strong McShane integral (or the variational McShane integral) of a Banach space valued function $f: W \rightarrow X$ defined on a non-degenerate closed subinterval W of \mathbb{R}^{m} in terms of strong absolute continuity or, equivalently, in terms of McShane variational measure $V_{\mathcal{M}} F$ generated by the primitive $F: \mathcal{I}_{W} \rightarrow X$ of f, where \mathcal{I}_{W} is the family of all closed non-degenerate subintervals of W.

Keywords: strong McShane integral; McShane variational measure; Banach space, mdimensional Euclidean space; compact non-degenerate m-dimensional interval

MSC 2010: 28B05, 26A46, 46B25, 46G10, 28A35

1. Introduction and preliminaries

In the monograph [21] of Štefan Schwabik and Ye Guoju, a full characterization of the strong McShane integral of Banach-space valued functions defined on a compact non-degenerate subinterval of \mathbb{R} is given, see Theorem 7.4.14. There is also a full descriptive characterization of the variational McShane integral in [12], Theorem 2.5.

In [13], Yeong gives some full characterizations of the strong McShane integral of Banach-space valued functions defined on a compact non-degenerate subinterval of \mathbb{R}^{m}.

In this paper, we present the full descriptive characterizations of the strong McShane integral of a Banach space valued function $f: W \rightarrow X$ defined on a nondegenerate closed subinterval W of \mathbb{R}^{m} in terms of strong absolute continuity or, equivalently, in terms of McSh ane variational measure $V_{\mathcal{M}} F$ generated by the primitive $F: \mathcal{I}_{W} \rightarrow X$ of f, see Theorem 2.8.

Throughout this paper, X denotes a real Banach space with the dual X^{*} and W denotes a compact non-degenerate subinterval of the m-dimensional Euclidean space \mathbb{R}^{m}. The Euclidean space \mathbb{R}^{m} is equipped with the maximum norm. $B_{m}(t, r)$ is the open ball in \mathbb{R}^{m} with center t and radius $r>0$. We denote by $\mathscr{B}\left(\mathbb{R}^{m}\right)$ the Borel σ-algebra on \mathbb{R}^{m} and by $\mathcal{L}\left(\mathbb{R}^{m}\right)$ the σ-algebra of Lebesgue measurable subsets of \mathbb{R}^{m}. We put

$$
\mathcal{L}(W)=\left\{W \cap E: E \in \mathcal{L}\left(\mathbb{R}^{m}\right)\right\} \quad \text { and } \quad \mathscr{B}(W)=\left\{W \cap B: B \in \mathscr{B}\left(\mathbb{R}^{m}\right)\right\} .
$$

The Lebesgue measure on $\mathcal{L}(W)$ is denoted by λ and the Lebesgue measure of a Lebesgue measurable set $E \in \mathcal{L}(W)$ is denoted by $|E|$. The phrase "at almost all" always referes to λ.

If μ is a measure on $\mathcal{L}(W)$, then by $\mu \ll \lambda$ we mean that $|E|=0$ implies $\mu(E)=0$. A vector measure $\nu: \mathcal{L}(W) \rightarrow X$ is said to be a countable additive vector measure if ν is countable additive in the norm topology of X. A countable additive vector measure ν is said to be λ-continuous if $|E|=0$ implies $\nu(E)=0$. The variation of a countable additive vector measure ν is denoted by $|\nu| ; \nu$ is said to be of bounded variation on W if $|\nu|(W)<\infty$.

Let $\alpha=\left(a_{1}, \ldots, a_{m}\right)$ and $\beta=\left(b_{1}, \ldots, b_{m}\right)$ with $-\infty<a_{j}<b_{j}<\infty$ for $j=1, \ldots, m$. The set $[\alpha, \beta]=\prod_{j=1}^{m}\left[a_{j}, b_{j}\right]$ is called a closed non-degenerate interval in \mathbb{R}^{m}, while $[\alpha, \beta)=\prod_{j=1}^{m}\left[\begin{array}{c}j=1 \\ j\end{array}, b_{j}\right.$) is said to be a half-closed interval (or brick) in \mathbb{R}^{m}. By $\mathscr{B}_{r}\left(\mathbb{R}^{m}\right)$, the family of all bricks in \mathbb{R}^{m} is denoted. In particular, if $b_{1}-a_{1}=\ldots=b_{m}-a_{m}$, then $I=[\alpha, \beta]$ is called a cube and we set $l_{I}=b_{1}-a_{1}$. In this case, $|I|=\left(l_{I}\right)^{m}$. We denote by \mathcal{I}_{W} the family of all closed non-degenerate subintervals of W.

Two intervals $I, J \in \mathcal{I}_{W}$ are said to be non-overlapping if $I^{\circ} \cap J^{\circ}=\emptyset$, where I° denotes the interior of I. A function $F: \mathcal{I}_{W} \rightarrow X$ is said to be an additive interval function if for each pair of non-overlapping intervals $I, J \in \mathcal{I}_{W}$ with $I \cup J \in \mathcal{I}_{W}$, we have

$$
F(I \cup J)=F(I)+F(J) .
$$

Definition 1.1. An additive interval function $F: \mathcal{I}_{W} \rightarrow X$ is said to be strongly absolutely continuous (sAC) on W if for each $\varepsilon>0$ there exists $\eta>0$ such that for each finite collection $\left\{I_{1}, \ldots, I_{p}\right\}$ of pairwise non-overlapping subintervals in \mathcal{I}_{W} we have

$$
\sum_{i=1}^{p}\left|I_{i}\right|<\eta \Rightarrow \sum_{i=1}^{p}\left\|F\left(I_{i}\right)\right\|<\varepsilon
$$

Replacing the last inequality with $\left\|\sum_{i=1}^{p} F\left(I_{i}\right)\right\|<\varepsilon$, we obtain the notion of absolute continuity (AC) on W.

Definition 1.2. A finite collection $\left\{I_{1}, \ldots, I_{p}\right\}$ of pairwise non-overlapping intervals in \mathcal{I}_{W} is said to be a division of W if $\bigcup_{i=1}^{p} I_{i}=W . \mathscr{D}_{W}$ denotes the family of all divisions of interval W. The total variation $V_{F}(W)$ of an additive interval function $F: \mathcal{I}_{W} \rightarrow X$ on W is defined as

$$
V_{F}(W)=\sup \left\{\sum_{J \in \mathscr{D}}\|F(J)\|: \mathscr{D} \in \mathscr{D}_{W}\right\} .
$$

If $V_{F}(W)<\infty$, then F is said to be of bounded variation on W.
The following lemma has been proven in [14], Lemma 10.3.7 for the real valued functions, but the proof works also for Banach-space valued functions after trivial changes.

Lemma 1.3. Let $F: \mathcal{I}_{W} \rightarrow X$ be an additive interval function. If F is $s A C$ on W, then F is of bounded variation on W.

Definition 1.4. Assume that a point $t \in W$ and a function $F: \mathcal{I}_{W} \rightarrow X$ are given. We set

$$
\mathcal{I}_{W}(t)=\left\{I \in \mathcal{I}_{W}: t \in I, I \text { is a cube }\right\} .
$$

We say that F is cubic derivable at t if there exists a vector $F_{\mathrm{c}}^{\prime}(t) \in X$ such that

$$
\lim _{\substack{I \in \mathcal{I}_{W}(t) \\|I| \rightarrow 0}} \frac{F(I)}{|I|}=F_{\mathrm{c}}^{\prime}(t)
$$

$F_{\mathrm{c}}^{\prime}(t)$ is said to be the cubic derivative of F at t. The cubic derivative of F at t is a generalization of the derivative $F^{\prime}(t)$ defined in [13], Definition 3.2.

A function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is called locally integrable if f is Borel measurable function and

$$
\int_{K}|f(s)| \mathrm{d} \lambda<\infty \text { for every bounded measurable set } K \in \mathscr{B}\left(\mathbb{R}^{m}\right)
$$

The following theorem is the Lebesgue Differentiation Theorem, c.f. Theorem 3.21 in [7].

Theorem 1.5. If a function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is locally integrable, then there exists $Z \in \mathscr{B}\left(\mathbb{R}^{m}\right)$ with $|Z|=0$ such that

$$
\lim _{r \rightarrow 0} \frac{1}{\left|E_{r}\right|} \int_{E_{r}}|f(s)-f(t)| \mathrm{d} \lambda(s)=0 \quad \text { for all } t \in \mathbb{R}^{m} \backslash Z
$$

whenever $\left(E_{r}\right)_{r>0}$ is a family that shrinks nicely to t.

A family $\left(E_{r}\right)_{r>0}$ of Borel subsets of \mathbb{R}^{m} is said to shrink nicely to $t \in \mathbb{R}^{m}$ if
$\triangleright E_{r} \subset B_{m}(t, r)$ for each r,
\triangleright there is a constant $\alpha>0$, independent of r, such that $\left|E_{r}\right|>\alpha\left|B_{m}(t, r)\right|$, c.f. [7], page 98.

A pair (t, I) of a point $t \in W$ and an interval $I \in \mathcal{I}_{W}$ is called an \mathcal{M}-tagged interval in W, t is the tag of I. A finite collection $\left\{\left(t_{i}, I_{i}\right): i=1, \ldots, p\right\}$ of \mathcal{M}-tagged intervals in W is called an \mathcal{M}-partition in W if $\left\{I_{i}: i=1, \ldots, p\right\}$ is a collection of pairwise non-overlapping intervals in \mathcal{I}_{W}. Given $Z \subset W$, a positive function $\delta: Z \rightarrow(0, \infty)$ is called a gauge on Z. We say that an \mathcal{M}-partition $\pi=\left\{\left(t_{i}, I_{i}\right): i=1, \ldots, p\right\}$ in W is \triangleright a partition of W if $\bigcup_{i=1}^{p} I_{i}=W$; $\triangleright Z$-tagged if $\left\{t_{1}, \ldots, t_{p}\right\} \subset Z$;
$\triangleright \delta$-fine if for each $(t, I) \in \pi$ we have $I \subset B_{m}(t, \delta(t))$.
Definition 1.6. A function $f: W \rightarrow X$ is said to be McShane integrable on W if there is a vector $x_{f} \in X$ such that for every $\varepsilon>0$ there exists a gauge δ on W such that for every δ-fine \mathcal{M}-partition π of W we have

$$
\left\|\sum_{(t, I) \in \pi} f(t)|I|-x_{f}\right\|<\varepsilon
$$

In this case, the vector x_{f} is said to be the McShane integral of f on W and we set $x_{f}=(M) \int_{W} f \mathrm{~d} \lambda$. The function f is said to be McShane integrable over a subset $A \subset W$ if the function $f \cdot 0_{A}: W \rightarrow X$ is McShane integrable on W, where 1_{A} is the characteristic function of the set A. The McShane integral of f over A will be denoted by $(M) \int_{A} f \mathrm{~d} \lambda$. If $f: W \rightarrow X$ is McShane integrable on W, then by Theorem 4.1.6 in [21] the function f is McShane integrable on each $E \in \mathcal{L}(W)$.

Definition 1.7. The function $f: W \rightarrow X$ is said to be variationally McShane integrable (or strongly McShane integrable) on W if there exists an additive interval function $F: \mathcal{I}_{W} \rightarrow X$ such that for every $\varepsilon>0$ there exists a gauge δ on W such that for every δ-fine \mathcal{M}-partition π of W we have

$$
\sum_{(t, I) \in \pi}\|f(t)|I|-F(I)\|<\varepsilon .
$$

The function F is said to be the primitive of f. Clearly, if f is variationally McShane integrable with the primitive F, then f is McShane integrable, and by Proposition 3.6.16 in [21] we also have

$$
F(I)=(M) \int_{I} f \mathrm{~d} \lambda \quad \text { for every } I \in \mathcal{I}_{W}
$$

For more information about the McShane integral we refer to [21], [25], [5], [8], [9]-[11], [16], [15], [26] and [1].

Definition 1.8. Given an additive interval function $F: \mathcal{I}_{W} \rightarrow X$, a subset $Z \subset W$ and a gauge δ on Z, we define

$$
V_{\mathcal{M}} F(Z, \delta)=\sup \left\{\sum_{(t, I) \in \pi}\|F(I)\|: \pi \text { is a } Z \text {-tagged } \delta \text {-fine } \mathcal{M} \text {-partition in } W\right\} .
$$

Then we set

$$
V_{\mathcal{M}} F(Z)=\inf \left\{V_{\mathcal{M}} F(Z, \delta): \delta \text { is a gauge on } Z\right\}
$$

The set function $V_{\mathcal{M}} F$ is said to be the McShane variational measure generated by F.
The set function $V_{\mathcal{M}} F$ is a Borel metric outer measure on W, see [4] or [23]. The McShane variational measure have been used extensively for studying the primitives (indefinite integrals) of real functions. See e.g. the paper [4] of Di Piazza, the book [14] of Lee Tuo-Yeong, [20] of Pfeffer for relations to integration and the fundamental general work [24] of Thomson. The following lemma has been proven by Di Piazza in [4], Proposition 1 (there she considers real valued functions, but the proof works also for vector valued functions, after trivial changes).

Lemma 1.9. Let $F: \mathcal{I}_{W} \rightarrow X$ be an additive interval function. Then the following statements are equivalent:
(i) F is $s A C$ on W;
(ii) $V_{\mathcal{M}} F \ll \lambda$.

A function $f: W \rightarrow X$ is said to be weakly measurable if for each $x^{*} \in X^{*}$ the real function $x^{*} \circ f$ is Lebesgue measurable; f is said to be measurable if there is a sequence $f_{n}: W \rightarrow X$ of simple measurable functions such that

$$
\lim _{n \rightarrow \infty}\left\|f_{n}(t)-f(t)\right\|=0 \quad \text { at almost all } t \in W .
$$

The function $f: W \rightarrow X$ is said to be Bochner integrable on W if f is measurable and there exists a sequence $\left(f_{n}\right)$ of simple measurable functions such that

$$
\lim _{n \rightarrow \infty} \int_{W}\left\|f(t)-f_{n}(t)\right\| \mathrm{d} \lambda=0
$$

In this case, $(B) \int_{E} f \mathrm{~d} \lambda$ is defined for each Lebesgue measurable set $E \in \mathcal{L}(W)$ as

$$
\text { (B) } \int_{E} f \mathrm{~d} \lambda=\lim _{n \rightarrow \infty}(B) \int_{E} f_{n} \mathrm{~d} \lambda
$$

where $(B) \int_{E} f_{n} \mathrm{~d} \lambda$ is defined in the usual way.

The function $f: W \rightarrow X$ is said to be Pettis integrable on W if $x^{*} \circ f$ is Lebesgue integrable on W for each $x^{*} \in X^{*}$ and for every Lebesgue measurable set $E \in \mathcal{L}(W)$ there is a vector $\nu(E) \in X$ such that

$$
x^{*}(\nu(E))=\int_{E}\left(x^{*} \circ f\right) \mathrm{d} \lambda \quad \text { for all } x^{*} \in X^{*}
$$

The vector $\nu(E)$ is then called the Pettis integral of f over E and we set $\nu(E)=$ $(P) \int_{E} f \mathrm{~d} \lambda$. We refer to [3], [17]-[19], [22] and [2] for Pettis integral.

2. The main result

The main result is Theorem 2.8. Let us start with some auxiliary lemmas.
Lemma 2.1. If a function $f: W \rightarrow \mathbb{R}$ is Lebesgue integrable on W, then

$$
\lim _{\substack{I \in \mathcal{I}_{W}(t) \\|I| \rightarrow 0}} \frac{1}{|I|} \int_{I}|f(s)-f(t)| \mathrm{d} \lambda(s)=0 \quad \text { for almost all } t \in W
$$

Consequently,

$$
\begin{equation*}
\lim _{\substack{I \in \mathcal{I}_{W}(t) \\|I| \rightarrow 0}} \frac{1}{|I|} \int_{I} f(s) \mathrm{d} \lambda(s)=f(t) \quad \text { for almost all } t \in W \tag{2.1}
\end{equation*}
$$

Proof. Since f is Lebesgue integrable on W, there exists a Borel measurable function $h: W \rightarrow \mathbb{R}$ such that it is Lebesgue integrable on W and $h(t)=f(t)$ for almost all $t \in W$. Consider a function $g: \mathbb{R}^{m} \rightarrow \mathbb{R}$ defined as

$$
g(t)= \begin{cases}h(t) & \text { if } t \in W \\ 0 & \text { if } t \in \mathbb{R}^{m} \backslash W\end{cases}
$$

Since g is locally integrable, by Theorem 1.5 there exists $Z \in \mathscr{B}\left(\mathbb{R}^{m}\right)$ with $|Z|=0$ such that

$$
\lim _{r \rightarrow 0} \frac{1}{\left|E_{r}\right|} \int_{E_{r}}|g(s)-g(t)| \mathrm{d} \lambda(s)=0 \quad \text { for all } t \in \mathbb{R}^{m} \backslash Z
$$

whenever $\left(E_{r}\right)_{r>0}$ is a family that shrinks nicely to t.
Fix an arbitrary $t \in W \backslash Z$. For each real positive number $r>0$ we can choose an arbitrary cube $I_{r} \in \mathcal{I}_{W}(t)$ such that $r=l\left(I_{r}\right)$. Note that

$$
I_{r} \subset B(t, r) \quad \text { and } \quad\left|I_{r}\right|=r^{m}>\frac{1}{2^{m+1}}\left|B_{m}(t, r)\right|
$$

whenever $r>0$. Thus, the family $\left(I_{r}\right)_{r>0}$ shrinks nicely to t. Therefore

$$
\lim _{r \rightarrow 0} \frac{1}{\left|I_{r}\right|} \int_{I_{r}}|g(s)-g(t)| \mathrm{d} \lambda(s)=0
$$

and since t and $\left(I_{r}\right)_{r>0}$ are arbitrary, it follows that

$$
\lim _{\substack{I \in \mathcal{I}_{W}(t) \\|I| \rightarrow 0}} \frac{1}{|I|} \int_{I}|g(s)-g(t)| \mathrm{d} \lambda(s)=0 \quad \text { for all } t \in W \backslash Z
$$

Hence,

$$
\lim _{\substack{I \in \mathcal{I}_{W}(t) \\|I| \rightarrow 0}} \frac{1}{|I|} \int_{I}|h(s)-h(t)| \mathrm{d} \lambda(s)=0 \quad \text { for all } t \in W \backslash Z .
$$

Further, since $h(t)=f(t)$ for almost all $t \in W$, it follows that

$$
\lim _{\substack{I \in \mathcal{I}_{W}(t) \\|I| \rightarrow 0}} \frac{1}{|I|} \int_{I}|f(s)-f(t)| \mathrm{d} \lambda(s)=0 \quad \text { for almost all } t \in W
$$

The last result together with

$$
\left|\frac{1}{|I|} \int_{I} f(s) \mathrm{d} \lambda(s)-f(t)\right| \leqslant \frac{1}{|I|} \int_{I}|f(s)-f(t)| \mathrm{d} \lambda(s)
$$

yields (2.1), and this ends the proof.
As in [6], page 156 , define a function $\varrho: \mathcal{L}(W) \times \mathcal{L}(W) \rightarrow[0, \infty)$ by

$$
\varrho(U, V)=|U \Delta V| \quad \text { for each }(U, V) \in \mathcal{L}(W) \times \mathcal{L}(W)
$$

It is not difficult to check that ϱ is a semimetric in $\mathcal{L}(W)$, i.e. ϱ satisfies the following conditions:
$\triangleright \varrho(U, U)=0$,
$\triangleright \varrho(U, V)=\varrho(V, U)$,
$\triangleright \varrho(U, V) \leqslant \varrho(U, H)+\varrho(H, V)$,
whenever $U, V, H \in \mathcal{L}(W)$.
Lemma 2.2. If $\nu: \mathcal{L}(W) \rightarrow X$ is a countably additive λ-continuous vector measure, then

$$
\nu\left(\mathcal{I}_{W}\right)=\left\{\nu(I): I \in \mathcal{I}_{W}\right\}
$$

is a separable set in X.

Proof. We denote by \mathcal{Q}_{W} the family of all intervals in \mathcal{I}_{W} with vertices having rational coordinates. It is easy to see that

$$
\begin{equation*}
\mathcal{I}_{W} \subset \overline{\mathcal{Q}}_{W}^{\varrho} \tag{2.2}
\end{equation*}
$$

where $\overline{\mathcal{Q}}_{W}^{\varrho}$ is the closure of \mathcal{Q}_{W} in the semimetric space $(\mathcal{L}(W), \varrho)$. We are going to show that

$$
\begin{equation*}
\nu\left(\mathcal{I}_{W}\right) \subset \overline{\nu\left(\mathcal{Q}_{W}\right)}\|\cdot\| \tag{2.3}
\end{equation*}
$$

where

$$
\nu\left(\mathcal{Q}_{W}\right)=\left\{\nu(I): I \in \mathcal{Q}_{W}\right\}
$$

and $\overline{\nu\left(\mathcal{Q}_{W}\right)}{ }^{\|} \cdot \|$ is the closure of $\nu\left(\mathcal{Q}_{W}\right)$ in the Banach space X. To see this, let $\nu(I) \in \nu\left(\mathcal{I}_{W}\right)$. Then by (2.2), there exists a sequence $\left(I_{k}\right) \subset \mathcal{Q}_{W}$ such that

$$
\lim _{k \rightarrow \infty}\left(\left|I \backslash I_{k}\right|+\left|I_{k} \backslash I\right|\right)=\lim _{k \rightarrow \infty} \varrho\left(I_{k}, I\right)=0
$$

and therefore by Theorem I.2.1 in [3], we obtain

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \nu\left(I \backslash I_{k}\right)=0 \quad \text { and } \quad \lim _{k \rightarrow \infty} \nu\left(I_{k} \backslash I\right)=0 \tag{2.4}
\end{equation*}
$$

Since

$$
I=\left(I \backslash I_{k}\right) \cup\left(I \cap I_{k}\right) \quad \text { and } \quad I_{k}=\left(I_{k} \backslash I\right) \cup\left(I \cap I_{k}\right),
$$

it follows that

$$
\left\|\nu(I)-\nu\left(I_{k}\right)\right\|=\left\|\nu\left(I \backslash I_{k}\right)-\nu\left(I_{k} \backslash I\right)\right\| \leqslant\left\|\nu\left(I \backslash I_{k}\right)\right\|+\left\|\nu\left(I_{k} \backslash I\right)\right\|
$$

The last result together with (2.4) yields that

$$
\lim _{k \rightarrow \infty}\left\|\nu(I)-\nu\left(I_{k}\right)\right\|=0
$$

This means that (2.3) holds, and this ends the proof.
The next lemma is proved by using Caratheodory-Hahn-Kluvanek Extension theorem, see Theorem I.5.2 in [3]. We recall that a collection \mathcal{E} of subsets of W is said to be an elementary family if
$\triangleright \emptyset \in \mathcal{E}$,
\triangleright if $E, F \in \mathcal{E}$, then $E \cap F \in \mathcal{E}$,
\triangleright if $E \in \mathcal{E}$, then $E^{c}=W \backslash E$ is a finite disjoint union of members of \mathcal{E},
c.f. [7], page 23 .

Lemma 2.3. Let $F: \mathcal{I}_{W} \rightarrow X$ be an additive interval function. If F is $A C$ on W, then there exists a unique countably additive λ-continuous vector measure $F_{\mathcal{L}}: \mathcal{L}(W) \rightarrow X$ such that

$$
F(I)=F_{\mathcal{L}}(I) \quad \text { for all } I \in \mathcal{I}_{W} .
$$

Moreover, if F is sAC on W, then $F_{\mathcal{L}}$ is of bounded variation on W.
Proof. We set

$$
\mathscr{B}_{r}(W)=\left\{W \cap B_{r}: B_{r} \in \mathscr{B}_{r}\left(\mathbb{R}^{m}\right)\right\} .
$$

It is easy to see that $\mathcal{E}=\mathscr{B}_{r}(W) \cup\{\emptyset\}$ is an elementary family. Therefore, by Proposition 1.7 in [7], it follows that the collection \mathscr{A} of finite disjoint unions of members of \mathcal{E} is an algebra. Since

$$
\mathscr{B}(W)=\sigma(\mathscr{A}),
$$

where $\sigma(\mathscr{A})$ is the σ-algebra generated by \mathscr{A}, and since the closure of \mathscr{A} with respect to ϱ is a σ-algebra, it follows that \mathscr{A} is a dense subset of $\mathscr{B}(W)$ with respect to ϱ.

Assume that an arbitrary nonempty set $A \in \mathscr{A}$ is given. If $\left\{I_{1}, \ldots, I_{p}\right\}$ and $\left\{J_{1}, \ldots, J_{q}\right\}$ are finite collections of pairwise disjoint bricks in $\mathscr{B}_{r}(W)$ such that

$$
A=I_{1} \cup \ldots \cup I_{p}=J_{1} \cup \ldots \cup J_{q}
$$

then

$$
B=\left\{I_{i} \cap J_{j}: I_{i} \cap J_{j} \neq \emptyset, i=1, \ldots, p, j=1, \ldots, q\right\}
$$

is a finite collection of pairwise disjoint bricks in $\mathscr{B}_{r}(W)$ and $A=\bigcup_{I \in B} I$. Then, since F is additive and any two representations of A as a finite disjoint union of bricks have a common refinement, the sum

$$
F\left(\bar{I}_{1}\right)+\ldots+F\left(\bar{I}_{p}\right)
$$

is independent of the particular family $\left\{I_{1}, \ldots, I_{p}\right\}$ of pairwise disjoint bricks whose union is A, where \bar{I}_{i} is the closure of I_{i}. Thus, we can define vector $F_{\mathscr{A}}(A)$ by equation

$$
F_{\mathscr{A}}(A)=F\left(\bar{I}_{1}\right)+\ldots+F\left(\bar{I}_{p}\right) .
$$

In particular, we define $F_{\mathscr{A}}(\emptyset)=0$.
From the fact that F is AC it follows that

$$
\lim _{\substack{(A \in \mathscr{A}) \\|A| \rightarrow 0}} F_{\mathscr{A}}(A)=0 .
$$

Hence, $F_{\mathscr{A}}$ is a strongly additive and countably additive vector measure on \mathscr{A}. Therefore by Caratheodory-Hahn-Kluvanek Extension theorem, Theorem I.5.2 in [3], $F_{\mathscr{A}}$ has a unique countable additive λ-continuous extension $F_{\mathscr{B}}: \mathscr{B}(W) \rightarrow X$, and since

$$
F_{\mathscr{B}}\left(B^{\prime}\right)-F_{\mathscr{B}}\left(B^{\prime \prime}\right)=F_{\mathscr{B}}\left(B^{\prime} \backslash B^{\prime \prime}\right)-F_{\mathscr{A}}\left(B^{\prime \prime} \backslash B^{\prime}\right), \quad B^{\prime}, B^{\prime \prime} \in \mathscr{B}(W),
$$

it follows that $F_{\mathscr{B}}$ is uniformly continuous on $\mathscr{B}(W)$ with respect to ϱ.
Since $F_{\mathscr{B}}$ is a countably additive λ-continuous vector measure on $\mathscr{B}(W)$, it has a unique countable additive λ-continuous extension $F_{\mathcal{L}}: \mathcal{L}(W) \rightarrow X$.

We now assume that F is sAC on W. It is enough to show that $F_{\mathscr{B}}$ is of bounded variation on W. To see this, let us consider a finite collection $\left\{B_{i}: i=1,2, \ldots, p\right\}$ of pairwise disjoint members of $\mathscr{B}(W)$. Since $F_{\mathscr{B}}$ is uniformly continuous with respect to ϱ on $\mathscr{B}(W)$, given $0<\varepsilon<1$ there exists $\delta>0$ such that for each $B, B^{\prime} \in \mathscr{B}(W)$ we have

$$
\varrho\left(B, B^{\prime}\right)=\left|B \Delta B^{\prime}\right|<\delta \Rightarrow\left\|F_{\mathscr{B}}(B)-F_{\mathscr{B}}\left(B^{\prime}\right)\right\|<\frac{\varepsilon}{2 p^{2}}
$$

Since \mathscr{A} is dense in $\mathscr{B}(W)$ with respect to ϱ, for each B_{i} there exists an $A_{i} \in \mathscr{A}$ such that

$$
\varrho\left(B_{i}, A_{i}\right)=\left|B_{i} \Delta A_{i}\right|<\frac{\delta}{2}
$$

and since

$$
\left(A_{i} \cap A_{j}\right) \backslash B_{i} \subset A_{i} \Delta B_{i}, \quad\left(A_{i} \cap A_{j}\right) \backslash B_{j} \subset A_{j} \Delta B_{j}
$$

and

$$
A_{i} \cap A_{j} \subset\left(\left(A_{i} \cap A_{j}\right) \backslash B_{i}\right) \cup\left(\left(A_{i} \cap A_{j}\right) \backslash B_{j}\right)
$$

it follows that

$$
\varrho\left(\left(A_{i} \cap A_{j}\right), \emptyset\right)=\left|A_{i} \cap A_{j}\right|<\delta, \quad i \neq j
$$

Therefore, if we set

$$
C_{1}=A_{1}, \quad C_{2}=A_{2} \backslash A_{1}, \quad \ldots, \quad C_{p}=A_{p} \backslash \bigcup_{k=1}^{p-1} A_{k}
$$

then

$$
\begin{aligned}
\sum_{i=1}^{p}\left\|F_{\mathscr{B}}\left(B_{i}\right)\right\| & \leqslant \sum_{i=1}^{p}\left\|F_{\mathscr{B}}\left(B_{i}\right)-F_{\mathscr{B}}\left(A_{i}\right)\right\|+\sum_{i=1}^{p}\left\|F_{\mathscr{B}}\left(A_{i}\right)\right\|<\sum_{i=1}^{p}\left\|F_{\mathscr{A}}\left(A_{i}\right)\right\|+\frac{\varepsilon}{2} \\
& \leqslant \sum_{i=1}^{p}\left\|F_{\mathscr{A}}\left(C_{i}\right)\right\|+\sum_{\substack{i \neq j \\
i, j}}\left\|F_{\mathscr{A}}\left(A_{i} \cap A_{j}\right)\right\|+\frac{\varepsilon}{2} \\
& <V_{F}(W)+\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=V_{F}(W)+\varepsilon<V_{F}(W)+1 .
\end{aligned}
$$

Since F is sAC on W, the last result together with Lemma 1.3 yields

$$
\left|F_{\mathscr{B}}\right|(W) \leqslant V_{F}(W)+1<\infty .
$$

Thus, $F_{\mathscr{B}}$ is of bounded variation on W, and this ends the proof.
The next lemma gives full descriptive characterizations of Lebesgue integral.

Lemma 2.4. Let $F: \mathcal{I}_{W} \rightarrow \mathbb{R}$ be an additive interval function and let $f: W \rightarrow \mathbb{R}$ be a function. Then the following statements are equivalent:
(i) F is $A C$ on W;
(ii) F is sAC on W;
(iii) $V_{\mathcal{M}} \ll \lambda$;
(iv) F is $A C$ on $W, F_{\mathrm{c}}^{\prime}(t)$ exists and $F_{\mathrm{c}}^{\prime}(t)=f(t)$ for almost all $t \in W$;
(v) F is sAC on $W, F_{\mathrm{c}}^{\prime}(t)$ exists and $F_{\mathrm{c}}^{\prime}(t)=f(t)$ for almost all $t \in W$;
(vi) $V_{\mathcal{M}} \ll \lambda, F_{\mathrm{c}}^{\prime}(t)$ exists and $F_{\mathrm{c}}^{\prime}(t)=f(t)$ for almost all $t \in W$;
(vii) f is Lebesgue integrable on W with the primitive F, i.e.

$$
F(I)=\int_{I} f \mathrm{~d} \lambda \quad \text { for all } I \in \mathcal{I}_{W} .
$$

Proof. Since F is a real valued function, it is easy to see that if F is AC on W, then F is sAC on W. Therefore (i) \Leftrightarrow (ii) and (iv) \Leftrightarrow (v). By virtue of Lemma 1.9 it follows that (ii) \Leftrightarrow (iii) and (v) \Leftrightarrow (vi).
(ii) \Rightarrow (vii): Assume that F is sAC on W. Then by Lemma 2.3 there exists a unique countably additive λ-continuous vector measure $F_{\mathcal{L}}: \mathcal{L}(W) \rightarrow \mathbb{R}$ of bounded variation on W such that $F_{\mathcal{L}}(I)=F(I)$ for all $I \in \mathcal{I}_{W}$. Therefore, by Lebesgue-Radon-Nikodym theorem, see Theorem 3.8 in [7], there exists a Lebesgue integrable function $f: W \rightarrow \mathbb{R}$ such that $F_{\mathcal{L}}(E)=\int_{E} f \mathrm{~d} \lambda$ for all $E \in \mathcal{L}(W)$. In particular, we have $F(I)=\int_{I} f \mathrm{~d} \lambda$ for all $I \in \mathcal{I}_{W}$.
(vii) \Rightarrow (iv): Assume that (vii) holds. Then by Corollary 3.6 in [7], F is AC on W. Also, since $F(I)=\int_{I} f \mathrm{~d} \lambda$ for all $I \in \mathcal{I}_{W}$, by Lemma 2.1 it follows that $F_{\mathrm{c}}^{\prime}(t)$ exists and $F_{\mathrm{c}}^{\prime}(t)=f(t)$ for almost all $t \in W$.

Clearly, (iv) \Rightarrow (i), and this ends the proof.
We now show full descriptive characterizations of Pettis integral.

Lemma 2.5. Let $F: \mathcal{I}_{W} \rightarrow X$ be an additive interval function and let $f: W \rightarrow X$ be a function. Then the following statements are equivalent:
(i) f is Pettis integrable on W with the primitive F, i.e.

$$
F(I)=(P) \int_{I} f \mathrm{~d} \lambda \quad \text { for all } I \in \mathcal{I}_{W}
$$

(ii) F is $A C$ on W and for each $x^{*} \in X^{*},\left(x^{*} \circ F\right)_{\mathrm{c}}^{\prime}(t)$ exists and

$$
\left(x^{*} \circ F\right)_{\mathrm{c}}^{\prime}(t)=\left(x^{*} \circ f\right)(t) \quad \text { for almost all } t \in W
$$

(the exceptional set may vary with x^{*}).
Proof. (i) \Rightarrow (ii): Assume that (i) holds. Then each $\left(x^{*} \circ f\right)$ is Lebesgue integrable on W with the primitive $\left(x^{*} \circ F\right)$. Therefore for each $x^{*} \in X^{*}$, by Lemma 2.4, $\left(x^{*} \circ F\right)_{\mathrm{c}}^{\prime}(t)$ exists and $\left(x^{*} \circ F\right)_{\mathrm{c}}^{\prime}(t)=\left(x^{*} \circ f\right)(t)$ for almost all $t \in W$.

Since f is Pettis integrable on W, by Theorem II.3.5 in [3], the vector measure $\nu: \mathcal{L}(W) \rightarrow X$ defined as

$$
\nu(E)=(P) \int_{E} f \mathrm{~d} \lambda \quad \text { for all } E \in \mathcal{L}(W)
$$

is a countably additive λ-continuous vector measure on $\mathcal{L}(W)$, and since λ is a finite measure on $\mathcal{L}(W)$, we obtain by Theorem I.2.1 in [3] that F is $A C$.
(ii) \Rightarrow (i): Assume that (ii) holds. Then by Lemma 2.4, each $\left(x^{*} \circ f\right)$ is Lebesgue integrable on W with the primitive $\left(x^{*} \circ F\right)$, i.e.

$$
\left(x^{*} \circ F\right)(I)=\int_{I}\left(x^{*} \circ f\right) \mathrm{d} \lambda \quad \text { for all } I \in \mathcal{I}_{W} .
$$

Since F is $A C$ on W, by Lemma 2.3 there exists a unique countably additive λ-continuous vector measure $\nu: \mathcal{L}(W) \rightarrow X$ such that $F(I)=\nu(I)$ for all $I \in \mathcal{I}_{W}$. It follows that for each $x^{*} \in X^{*}$ we have

$$
x^{*}(\nu(I))=\int_{I}\left(x^{*} \circ f\right) \mathrm{d} \lambda \quad \text { for all } I \in \mathcal{I}_{W}
$$

It is easy to see that the family

$$
\mathcal{C}=\left\{B \in \mathscr{B}(W): \forall x^{*} \in X^{*}, \quad\left[x^{*}(\nu(B))=\int_{B}\left(x^{*} \circ f\right) \mathrm{d} \lambda\right]\right\}
$$

is a σ-algebra such that

$$
\mathcal{I}_{W} \subset \mathcal{C} \subset \mathscr{B}(W)
$$

and since $\mathscr{B}(W)=\sigma\left(\mathcal{I}_{W}\right)$, it follows that $\mathcal{C}=\mathscr{B}(W)$. Thus, for each $B \in \mathscr{B}(W)$ we have

$$
x^{*}(\nu(B))=\int_{B}\left(x^{*} \circ f\right) \mathrm{d} \lambda \quad \text { for all } x^{*} \in X^{*} .
$$

Hence, since ν is λ-continuous, for each $E \in \mathcal{L}(W)$ we have

$$
x^{*}(\nu(E))=\int_{E}\left(x^{*} \circ f\right) \mathrm{d} \lambda \quad \text { for all } x^{*} \in X^{*} .
$$

This means that f is Pettis integrable on W, and this ends the proof.
By Theorem 3.5 in [13] it follows that if $V_{\mathcal{M}} F \ll \lambda, F^{\prime}(t)$ exists and $F^{\prime}(t)=f(t)$ for almost all $t \in W$, then $f: W \rightarrow X$ is variationally McShane integrable on W with the primitive $F: \mathcal{I}_{W} \rightarrow X$. Since $F_{\mathrm{c}}^{\prime}(t)$ is a generalization of $F^{\prime}(t)$, we need to prove the following theorem.

Theorem 2.6. Let $F: \mathcal{I}_{W} \rightarrow X$ be an additive interval function and let $f: W \rightarrow X$ be a function. Assume that F is $s A C$ on $W, F_{\mathrm{c}}^{\prime}(t)$ exists and $F_{\mathrm{c}}^{\prime}(t)=f(t)$ for almost all $t \in W$. Then f is variationally McShane integrable function with the primitive F, i.e.

$$
F(I)=(M) \int_{I} f \mathrm{~d} \lambda \quad \text { for all } I \in \mathcal{I}_{W}
$$

Proof. By hypothesis, for all $x^{*} \in X^{*}$ we have $\left(x^{*} \circ F\right)_{\mathrm{c}}^{\prime}(t)$ exists and

$$
\left(x^{*} \circ F\right)_{\mathrm{c}}^{\prime}(t)=\left(x^{*} \circ f\right)(t) \quad \text { for almost all } t \in W
$$

Therefore, by Lemma 2.5, f is Pettis integrable on W with the primitive F. Hence, by Theorem II.3.5 in [3], the vector measure $\nu: \mathcal{L}(W) \rightarrow X$ defined by

$$
\nu(E)=(P) \int_{E} f \mathrm{~d} \lambda \quad \text { for all } E \in \mathcal{L}(W)
$$

is a countably additive λ-continuous vector measure. Since F is sAC on W and since

$$
\nu(I)=F(I) \quad \text { for all } I \in \mathcal{I}_{W},
$$

we obtain by Lemma 2.3 that ν is of bounded variation.
We obtain by Lemma 2.2 that $Y_{0}=\left\{F(I): I \in \mathcal{I}_{W}\right\}$ is a separable subset of X. If Y is the closed linear subspace spanned by Y_{0}, then Y is also a separable subset of X. Since $F(I) /|I| \in Y$ for all $I \in \mathcal{I}_{W}(t)$, we obtain that $f(t) \in Y$ for almost all $t \in W$. Hence, f is λ-essentially separably valued. Since f is Pettis integrable on W,
we have also that f is weakly measurable. Therefore by Theorem II.1.2 in [3], the function f is measurable. Hence, by Remark 4.1 in [18] it follows that

$$
|\nu|(E)=\int_{E}\|f(t)\| \mathrm{d} \lambda \quad \text { for each } E \in \mathcal{L}(W)
$$

and since ν is of bounded variation, the function $\|f(\cdot)\|$ is Lebesgue integrable on W. Further, by Theorem II.2.2 in [3], function f is Bochner integrable on W. Since the Bochner and Pettis integrals coincide whenever they coexist, we have $F(I)=$ (B) $\int_{I} f \mathrm{~d} \lambda$ for all $I \in \mathcal{I}_{W}$. Thus, function f is Bochner integrable and therefore by Theorem 5.1.4 in [21], f is variationally McShane integrable on W with the primitive F, and this ends the proof.

According to Theorem 3.1 in [13], if $F: \mathcal{I}_{W} \rightarrow X$ is the primitive of a variationally McShane integrable function $f: W \rightarrow X$, then $V_{\mathcal{M}} F \ll \lambda$. Therefore, to prove (i) \Rightarrow (ii) in Theorem 2.8, it is enough to prove that if F is the primitive of a variationally McShane integrable function f, then $F_{\mathrm{c}}^{\prime}(t)$ exists and $F_{\mathrm{c}}^{\prime}(t)=f(t)$ for almost all $t \in W$.

Theorem 2.7. Let $F: \mathcal{I}_{W} \rightarrow X$ be an additive interval function. Assume that a function $f: W \rightarrow X$ is variationally McShane integrable on W with the primitive F, i.e.

$$
F(I)=(M) \int_{I} f \mathrm{~d} \lambda \quad \text { for all } I \in \mathcal{I}_{W}
$$

Then $F_{\mathrm{c}}^{\prime}(t)$ exists and $F_{\mathrm{c}}^{\prime}(t)=f(t)$ for almost all $t \in W$.
Proof. By Theorem 5.1.4 in [21], f is Bochner integrable on W and

$$
F(I)=(B) \int_{I} f \mathrm{~d} \lambda \quad \text { for all } I \in \mathcal{I}_{W} .
$$

Since f is measurable, we assume without loss of generality that f is separably valued. Then there exists a countable set

$$
Y=\left\{x_{k} \in X: k \in \mathbb{N}\right\}
$$

such that Y is a dense subset of $f(W)$. By virtue of Theorem II.2.2 in [3], $\left\|f(\cdot)-x_{k}\right\|$ is Lebesgue integrable on W. Hence, by Lemma 2.1 there exists a subset $Z_{k} \subset W$ with $\left|Z_{k}\right|=0$ such that for all $t \in W \backslash Z_{k}$ we have

$$
\lim _{\substack{I \in \mathcal{I}_{W}(t) \\|I| \rightarrow 0}} \frac{1}{|I|} \int_{I}\left\|f(s)-x_{k}\right\| \mathrm{d} \lambda(s)=\left\|f(t)-x_{k}\right\|
$$

Fix an arbitrary $t \in W \backslash Z$, where $Z=\bigcup_{k=1}^{\infty} Z_{k}$. Since

$$
\frac{1}{|I|} \int_{I}\|f(s)-f(t)\| \mathrm{d} \lambda(s) \leqslant \frac{1}{|I|} \int_{I}\left\|f(s)-x_{k}\right\| \mathrm{d} \lambda(s)+\left\|x_{k}-f(t)\right\|
$$

we obtain

$$
\limsup _{\substack{I \in \mathcal{I}_{W}(t) \\|I| \rightarrow 0}} \frac{1}{|I|} \int_{I}\|f(s)-f(t)\| \mathrm{d} \lambda(s) \leqslant 2\left\|x_{k}-f(t)\right\| \quad \text { for all } k \in \mathbb{N} .
$$

The last inequality together with the fact that Y is a dense subset of $f(W)$ yields

$$
\limsup _{\substack{I \in \mathcal{I}_{\mathcal{W}}(t) \\|I| \rightarrow 0}} \frac{1}{|I|} \int_{I}\|f(s)-f(t)\| \mathrm{d} \lambda(s)=0
$$

and therefore

$$
\lim _{\substack{I \in \mathcal{I}_{W}(t) \\|I| \rightarrow 0}} \frac{1}{|I|} \int_{I}\|f(s)-f(t)\| \mathrm{d} \lambda(s)=0 .
$$

The last result together with

$$
\left\|\frac{1}{|I|}(B) \int_{I} f(s) \mathrm{d} \lambda(s)-f(t)\right\| \leqslant \frac{1}{|I|} \int_{I}\|f(s)-f(t)\| \mathrm{d} \lambda(s)
$$

yields

$$
\lim _{\substack{I \in \mathcal{I}_{W}(t) \\|I| \rightarrow 0}} \frac{1}{|I|}(B) \int_{I} f(s) \mathrm{d} \lambda(s)=f(t) .
$$

Since t is arbitrary, the last equality holds at all $t \in W \backslash Z$. Thus, $F_{\mathrm{c}}^{\prime}(t)$ exists and $F_{\mathrm{c}}^{\prime}(t)=f(t)$ for almost all $t \in W$, and this ends the proof.

We are now ready to present the main result.

Theorem 2.8. Let $F: \mathcal{I}_{W} \rightarrow X$ be an additive interval function and let f : $W \rightarrow X$ be a function. Then the following statements are equivalent:
(i) f is variationally McShane integrable on W with the primitive F, i.e.

$$
F(I)=(M) \int_{I} f \mathrm{~d} \lambda \quad \text { for all } I \in \mathcal{I}_{W}
$$

(ii) F is $s A C$ on $W, F_{\mathrm{c}}^{\prime}(t)$ exists and $F_{\mathrm{c}}^{\prime}(t)=f(t)$ for almost all $t \in W$;
(iii) $V_{\mathcal{M}} F \ll \lambda, F_{\mathrm{c}}^{\prime}(t)$ exists and $F_{\mathrm{c}}^{\prime}(t)=f(t)$ for almost all $t \in W$.

Proof. By virtue of Lemma 1.9, we obtain immediately that (ii) \Leftrightarrow (iii). By Theorem 2.6 it follows that (ii) \Rightarrow (i). Theorem 2.7 together with Theorem 3.1 in [13] yields that (i) \Rightarrow (iii), and this ends the proof.

References

[1] D. Candeloro, L. DiPiazza, K. Musiat, A. R. Sambucini: Gauge integrals and selections of weakly compact valued multifunctions. J. Math. Anal. Appl. 441 (2016), 293-308.
zbl MR doi
[2] D. Candeloro, L. Di Piazza, K. Musiat, A. R. Sambucini: Relations among gauge and Pettis integrals for $c w k(X)$-valued multifunctions. Ann. Mat. Pura Appl. (4) 197 (2018), 171-183.
[3] J. Diestel, J. J. Uhl, Jr.: Vector Measures. Mathematical Surveys 15. AMS, Providence, 1977.
zbl MR doi
[4] L. Di Piazza: Variational measures in the theory of the integration in \mathbb{R}^{m}. Czech. Math. J. 51 (2001), 95-110.
zbl MR doi
[5] L. Di Piazza, K. Musiat: A characterization of variationally McShane integrable Ba-nach-space valued functions. Ill. J. Math. 45 (2001), 279-289.
zbl MR
[6] N. Dunford, J. T. Schwartz: Linear Operators I. General Theory. Pure and Applied Mathematics. Vol. 7. Interscience Publishers, New York, 1958.
zbl MR
[7] G. B. Folland: Real Analysis. Modern Techniques and Their Applications. Pure and Applied Mathematics. A Wiley-Interscience Series of Texts, Monographs, and Tracts. Wiley, New York, 1999.
zbl MR
[8] D. H. Fremlin: The generalized McShane integral. Ill. J. Math. 39 (1995), 39-67.
[9] R. A. Gordon: The Denjoy extension of the Bochner, Pettis, and Dunford integrals. Stud. Math. 92 (1989), 73-91.
zbl MR
zbl MR doi
[10] R. A. Gordon: The McShane integral of Banach-valued functions. Ill. J. Math. 34 (1990), 557-567.
zbl MR
[11] R. A. Gordon: The Integrals of Lebesgue, Denjoy, Perron, and Henstock. Graduate Studies in Mathematics 4. AMS, Providence, 1994.
zbl MR doi
[12] S. B. Kaliaj: Descriptive characterizations of Pettis and strongly McShane integrals. Real Anal. Exch. 39 (2014), 227-238.
zbl MR doi
[13] T.- Y. Lee: Some full characterizations of the strong McShane integral. Math. Bohem. 129 (2004), 305-312.
zbl MR
[14] T. Y. Lee: Henstock-Kurzweil Integration on Euclidean Spaces. Series in Real Analysis 12. World Scientific, Hackensack, 2011.
zbl MR doi
[15] V. Marraffa: The variational McShane integral in locally convex spaces. Rocky Mt. J. Math. 39 (2009), 1993-2013.
zbl MR doi
[16] E. J. McShane: Unified Integration. Pure and Applied Mathematics 107. Academic Press, Orlando (Harcourt Brace Jovanovich, Publishers), 1983.
zbl MR
[17] K. Musiat: Vitali and Lebesgue convergence theorems for Pettis integral in locally convex spaces. Atti Semin. Mat. Fis. Univ. Modena 35 (1987), 159-165.
zbl MR
[18] K. Musiat: Topics in the theory of Pettis integration. Rend. Ist. Math. Univ. Trieste 23 (1991), 177-262.
zbl MR
[19] K. Musiat: Pettis integral. Handbook of Measure Theory. Vol. I. and II. (E. Pap, ed.). North-Holland, Amsterdam, 2002, pp. 531-586.
[20] W. F. Pfeffer: Derivation and Integration. Cambridge Tracts in Mathematics 140. Cam-
bridge University Press, Cambridge, 2001.
zbl MR doi
zbl MR doi
[21] S. Schwabik, G. Ye: Topics in Banach Space Integration. Series in Real Analysis 10. World Scientific, Hackensack, 2005.
[22] M. Talagrand: Pettis integral and measure theory. Mem. Am. Math. Soc. 51 (1984), 224 pages.
zbl MR doi
[23] B. S. Thomson: Derivates of interval functions. Mem. Am. Math. Soc. 452 (1991), 96 pages.
zbl MR doi
[24] B. S. Thomson: Differentiation. Handbook of Measure Theory. Volume I. and II. (E. Pap, ed.). North-Holland, Amsterdam, 2002, pp. 179-247.
zbl MR doi
[25] C. Wu, X. Yao: A Riemann-type definition of the Bochner integral. J. Math. Study ${ }^{27}$ (1994), 32-36.
zbl MR
[26] G. Ye: On Henstock-Kurzweil and McShane integrals of Banach space-valued functions. J. Math. Anal. Appl. 330 (2007), 753-765.

Author's address: Sokol Bush Kaliaj, Department of Mathematics, Faculty of Natural Science, Aleksander Xhuvani University, Rruga Rinia, Elbasan, Albania, e-mail: sokolkaliaj@yahoo.com.

