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1. Introduction

Let (Lm)m>0 be the Lucas sequence given by L0 = 2, L1 = 1 and Lm = Lm−1 +

Lm−2 for m > 2. The first few terms of this sequence are

2,1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, . . .

For the beauty and rich applications of Lucas numbers, one can see Koshy’s book [6].

Recently, Castillo in [4] dubbed a number of the form Ftn = n! + 1
2n(n + 1) for

n > 0, a factoriangular number. The first few factoriangular numbers are

1,2, 5, 12, 34, 135, 741, 5068, 40356, 362925, . . .

In [5], Luca and Gómez-Ruiz proved that the only Fibonacci factoriangular num-

bers are 2, 5 and 34. This settled a conjecture of Castillo from [4]. Luca, Odjoumani

and Togbé in [7] proved that the only Pell factoriangular numbers are 2, 5 and 12.

In this paper, we prove the following related result.

Theorem 1. The only Lucas numbers which are factoriangular are 1 and 2.

c© The author(s) 2018. This is an open access article under the CC BY-NC-ND licence cbnd

DOI: 10.21136/MB.2018.0021-18 33

https://creativecommons.org/licenses/by-nc-nd/4.0
http://dx.doi.org/10.21136/MB.2018.0021-18


Our method is similar to the one from [5]. First, we assume that Lm = Ftn for

positive integers n and m. Then we use linear forms in p-adic logarithms to find

some bounds on n and m. The resulting bounds are large, so we run a calculation to

reduce these bounds. This computation is highly nontrivial and relates on reducing

the Diophantine equation Lm = Ftn modulo the primes from a carefully selected

finite set of suitable primes.

2. p-adic linear forms in logarithms

Our main tool is an upper bound for a nonzero p-adic linear form in two logarithms

of algebraic numbers due to Bugeaud and Laurent (see [2]). Let η be an algebraic

number of degree d over Q with minimal primitive polynomial over the integers

f(x) = a0

d
∏

i=1

(X − η(i)) ∈ Z[X ],

where the leading coefficient a0 is positive and η(i), i = 1, . . . , d are the conjugates

of η. The logarithmic height of η is given by

h(η) =
1

d

(

log a0 +

d
∑

i=1

max{1, log |η(i)|}
)

.

Let K be an algebraic number field of degree dK. Let η1, η2 ∈ K \ {0, 1} and b1, b2
be positive integers. We put

Λ = ηb11 − ηb22 .

For a prime ideal π of the ring OK of algebraic integers in K and η ∈ K, we denote

by ordπ(η) the order at which π appears in the prime factorization of the principal

fractional ideal ηOK generated by η in K. When η is an algebraic integer, ηOK is

an ideal of OK. When K = Q, π is just a prime number. Let eπ and fπ be the

ramification index and the inertial degree of π, respectively, and let p ∈ Z be the

only prime number such that π | p. Then

pOK =

k
∏

i=1

π
eπi

i ,
∣

∣

∣

OK

π

∣

∣

∣
= pfπi , dK =

k
∑

i=1

eπi
fπi

,

where π1 := π, . . . , πk are prime ideals in OK. We set D := dK/fπ. Let A1, A2 be

positive real numbers such that

logAi > max
{

h(ηi),
log p

D

}

, i = 1, 2.
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Further, let

b′ :=
b1

D logA2
+

b2
D logA1

.

With the above notations, Bugeaud and Laurent proved the following result (see

Corollary 1 of Theorem 3 in [2]).

Theorem 2. Assume that η1, η2 are algebraic integers which are multiplicatively

independent and that π does not divide η1η2. Then

ordπ(Λ) 6
24p(pfπ − 1)

(p− 1)(log p)4
D5 logA1 logA2

×
(

max
{

log b′ + log(log p) +
4

10
,
10 logp

D
, 10

})2

.

In the actual statement of [2], there is only a dependence of D4 on the right-hand

side of the above inequality, but there all the valuations are normalized. Since we

work with the actual order ordπ(Λ), we must multiply the upper bound of [2] by

another factor of dK/fπ = D.

3. Proof of Theorem 1

Recall that if k is any nonnegative integer, then

(1) Lk = αk + βk,

where

(2) α =
1 +

√
5

2
and β =

1−
√
5

2

are the solutions of the quadratic equation x2 − x− 1 = 0. Equation (1) is known as

Binet’s formula for Lucas numbers.

Lemma 1. The inequalities

(3) αk−1
6 Lk 6 αk+1

hold for all k > 1.

P r o o f. The proof follows immediately by induction on k. See [1]. �
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We now study the Diophantine equation

(4) Lm = Ftn.

Further, the inequalities

(n

e

)n

6 n! +
n(n+ 1)

2
6 nn

hold for n > 3, see [5]. By taking the logarithms, we get

(5) n(logn− 1) < log
(

n! +
n(n+ 1)

2

)

< n logn

for all n > 3. Also, inequalities (3) yield

(6) (m− 1) logα 6 logLm 6 (m+ 1) logα.

Combining inequalities (5) and (6), we get

n(logn− 1) < (m+ 1) logα and (m− 1) logα < n logn.

Hence,

(7)
n(logn− 1)

logα
− 1 < m <

n logn

logα
+ 1.

If n 6 200, then the above inequality implies that m 6 2204. We listed all Lucas

numbers Lm with m 6 2204 and all factoriangular numbers Ftn with n 6 200 and

intersected these two lists. The only solutions of (4) in this range are the ones listed

in Theorem 1.

Our next goal is to find an upper bound for n and we assume that n > 200. We

rewrite the Diophantine equation (4) using the Binet formula (1) as

αm + βm = n! +
n(n+ 1)

2
.

Now, using the fact that β = −α−1, the above equation yields

n! = α−m
(

α2m − n(n+ 1)

2
αm + ε

)

,

where ε = (−1)m+1 = ±1. We note that

α−m
(

α2m − n(n+ 1)

2
αm + ε

)

= α−m(αm − z1)(α
m − z2),

36



where

z1,2 =
n(n+ 1)±

√

n2(n+ 1)2 − 16ε

4

are the roots of the polynomial

z2 − n(n+ 1)

2
z + ε.

Therefore, equation (4) is equivalent to

(8) n! = α−m(αm − z1)(α
m − z2).

Let L = Q(z1) and π be a prime ideal lying above 2 in OK. From equation (8), we

have

(9) ord2(n!) 6 ordπ(α
m − z1) + ordπ(α

m − z2).

We use Theorem 2 to get an upper bound on ordπ(α
m − zi) for i = 1, 2. We fix

i ∈ {1, 2} and take

η1 = α, η2 = zi, b1 = m, b2 = 1 and Λi = αm − zi.

Note that z1z2 = ε and z1+ z2 =
1
2n(n+1). In particular, z1, z2 and α are all units,

so π does not divide any one of them and all these numbers are in L. Next, we need

to check that α and zi are multiplicatively independent. Since z2 = ±z−1
1 , it suffices

to show that this is so only for i = 1. Let d be that squarefree integer such that for

some positive integer u we have

n2(n+ 1)2 − 16ε = du2.

Clearly, d > 0 as n > 200. Since the left-hand side above is a multiple of 4 and d is

squarefree, it follows that u is even and

(n(n+ 1)

2

)2

− 4ε = d
(u

2

)2

.

Next, d 6= 1. Indeed, if d = 1, then

(n(n+ 1)

2

)2

− 4ε =
(u

2

)2

.

Hence, (x, y) = (12u,
1
2n(n+ 1)) is a positive integer solution of the equation

x2 − y2 = ±4,
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giving us (x+ y)(x− y) = ±4, which implies both x+ y = ±2 and x− y = ±2. So,

x = L1 = 0, 2 =
n(n+ 1)

2

and n > 200, which is impossible. Next, let d = 5. We get

(n(n+ 1)

2

)2

− 5
(u

2

)2

= ±4.

It is well-known that all positive integer solutions (x, y) of x2 − 5y2 = ±4 are of

the form (x, y) = (Lk, Fk) for some positive integer k. Hence, Lk = 1
2n(n + 1) is

a triangular number. Ming in [8] proved that the largest triangular Lucas number

is 5778, which gives us n 6 107, contradicting our hypothesis that n > 200. Thus,

(12n(n+1))2− 4ε = d(12u)
2 holds with some squarefree integer d > 1, d 6= 5. Since α

is a unit in Q(
√
5) and zi is a unit in Q(

√
d) while d 6= 1, 5, it follows that α and zi

cannot be multiplicatively dependent.

Next, we calculate the upper bounds for the logarithmic heights of α and zi. The

minimal polynomial of α over the integers is x2 − x− 1 and h(α) = 1
2 logα. So, we

take logA1 = 1
2 logα. For the logarithmic height of zi we note that the minimal

polynomial of zi over the integers is

z2 − n(n+ 1)

2
z ± 1.

Next, each zi has degree 2 and its conjugates are

z
(j)
i =

±n(n+ 1)±
√

n2(n+ 1)2 − 16ε

4

satisfying

|z(j)i | 6 n(n+ 1)

4
+

√

(n(n+ 1)

4

)2

+ 1 < n21/10

for n > 200. Hence, we get

h(zi) =
1

2

2
∑

j=1

logmax{|z(j)i |, 1} 6
1

2

2
∑

j=1

logn21/10 <
21

10
logn

for i = 1, 2. We take logA2 = 21
10 logn, and therefore

b′ =
m

42
10 logn

+
1

logα
.
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From inequality (7) we have

m <
n logn

logα
+ 1 <

21

10
n logn

for n > 200. We then get

b′ =
n

2
+

1

logα
<

6

10
n

for n > 200. Thus,

log b′ + log(log 2) +
4

10
< log

( 6

10
n
)

+ log(log 2) +
4

10
< logn.

We deduce that

max
{

log b′ + log(log 2) +
4

10
,
10 log 2

2
, 10

}

equals

max{logn, 10}

because 5 log 2 < logn for n > 200. By Theorem 2, we get

ordπ(Λi) <
24× 2× 3

(log 2)4
× 25 × 0.5 logα× 21

10
logn× (max{logn, 10})2(10)

< 10087(max{logn, 10})3

for i = 1, 2. We now return to inequalities (9), and give a lower bound to ord2(n!).

It is well known that for any prime p we have

ordp(n!) =
⌊n

p

⌋

+
⌊ n

p2

⌋

+ . . .+
⌊ n

pt

⌋

+ . . .

Hence,

ord2(n!) =
⌊n

2

⌋

+
⌊ n

22

⌋

+ . . .+
⌊ n

2t

⌋

+ . . .

Since n > 2k, we have
⌊ n

2k

⌋

>
n

2k
− 2k − 1

2k
.

We now conclude, using the fact that n > 200 > 25,

(11) ord2(n!) >
5

∑

k=1

( n

2k
− 2k − 1

2k

)

=
31n− 129

32
>

15n

16
.

Assume further that logn > 10 (that is, n > 22027). Combining inequalities (9),

(10) and (11), we obtain

n < 21519(logn)3,

which leads to n 6 1.5× 108.
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In summary, we proved the following result.

Lemma 2. Let (n,m) be a solution of Diophantine equation (4) with n > 200.

Then the inequalities

n(logn− 1)

logα
− log 2

logα
< m <

n logn

logα
+ 1 and n 6 1.5× 108

hold.

Let ⌊x⌉ denote the nearest integer to the real number x. The range for which
we search the positive integer solutions (n,m) of the Diophantine equation (4) with

n > 200 is

(n,m) ∈ [201, 1.5× 108]×
[⌊n(logn− 1)

logα
− log 2

logα

⌉

,
⌊n logn

logα
+ 1

⌉]

.

The bounds for n andm are too large for our Diophantine equation (4) to be verified,

even computationally. To reduce these bounds, we use the procedure described in [5].

We first write equation (4) as

Lm = n!
(

1 +
n+ 1

2(n− 1)!

)

.

Put

ν := 1 +
n+ 1

2(n− 1)!
.

From inequalities (3) we get

αm−1 6 νn! 6 2αm,

which leads to

(12)
logn! + log ν

logα
− log 2

logα
6 m 6

logn! + log ν

logα
+ 1.

By Stirling’s theorem for n! (see [9]),

n! =
√
2πn

nn

en
eλn , where

1

12n+ 1
< λn <

1

12n
.

We write inequalities (12) as

(13)
(12n+ 1)−1 + log ν

logα
− log 2

logα

6 m− log
√
2π +

(

n+ 1
2

)

logn− n

logα
6

1
12n

−1 + log ν

logα
+ 1.
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Hence, we conclude here that if (n,m) is a solution of Diophantine equation (4) with

n > 200, then

(14) m =
⌊ log

√
2π +

(

n+ 1
2

)

logn− n

logα

⌉

+ δ with δ ∈ {−2, 1}.

We consider two cases for n ∈ [201, 1.5× 108].

Case 1 : n ∈ [201, 2.5 × 105]. For each n in this interval we generate the list of

Lm ≡ n (mod 1020), that is, we take only last 20 digits of the Lucas numbers Lm,

where m is given by the last equation (14). Since n! ≡ 0 (mod 1020), we explored

the congruence

(15)
n(n+ 1)

2
≡ Lm (mod 1020).

A simple calculation in Maple shows that the above equation has no solutions in

this range. This proves that equation (4) has no solutions in this range.

Case 2 : n ∈ (2.5 × 105, 1.5 × 108]. The Lucas sequence is periodic modulo any

positive integer. For a prime number q, let l be the period of Lm (mod q). Then

l | q − 1 if q ≡ ±1 (mod 5),

or

l | 2q + 2 if q ≡ ±2 (mod 5)

(see [3]).

We set A := 24 × 32 × 52 × 7 × 11. We found all the primes q ≡ 1 (mod 5) such

that q − 1 | A. They are

11, 31, 41, 61, 71, 101, 151, 181, 211, 241, 281, 331, 401, 421, 601, 631, 661, 701, 881,

991, 1051, 1201, 1321, 1801, 2311, 2521, 2801, 3301, 3851, 4201, 4621, 4951, 6301,

9241, 9901, 11551, 12601, 15401, 18481, 19801, 34651, 55441, 92401.

For each prime q in the list above, Lm is periodic modulo q and the period of the

Lucas sequence modulo q divides A. Hence, if (n,m) is a solution of the Diophantine

equation (4) with n > 2.5× 105, then n! ≡ 0 (mod q). Further,

Lm ≡ n(n+ 1)

2
(mod q),

which is equivalent to

8Lm + 1 ≡ (2n+ 1)2 (mod q).
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However, a quick search in Maple shows that for each m ∈ [1, A] there is a prime q

in the above list such that the Legendre symbol

(8Lm + 1

q

)

= −1

except for m ∈ {1, 2, 3, 4, 6}.
Hence, we conclude that the only possible values of n ∈ (3.6 × 105, 1.8 × 108],

which can be the solutions of the Diophantine equation (4), satisfy the conditions

(16)
n(n+ 1)

2
≡ Lm0

(mod A) for m0 = 1, 2, 3, 4, 6.

We generate the set Nm0
of residue classes for n (mod A) of equation (16) for the

corresponding values of m0.
m0 Nm0

1 1, 92399
2 2, 92398
3 40999, 51401
4 6742, 85658
6 17382, 75018

So, we have the following result.

Lemma 3. If n ∈ (2.5 × 105, 1.5 × 108] and (m,n) is a solution of Diophantine

equation (4), then

n ≡ n0 (mod A),

where A := 24 × 32 × 52 × 7× 11 and n0 ∈ Nm0
for m0 = 1, 2, 3, 4, 6. Furthermore,

m =
⌊ log

√
2π +

(

n+ 1
2

)

logn− n

logα

⌉

+ δ

with δ ∈ {−2, 1}.

Next, we computationally analysed equation (4) with the restrictions

n = n0 + t×A with 1 6 t 6
⌊1.5× 108

A

⌋

, n0 ∈ Nm0
,

where m0 ∈ {1, 2, 3, 4, 6}. We compare last 20 digits of the Lucas numbers and the
factoriangular numbers in pairs (m,n) satisfying the above restrictions. An extensive

computational search with Maple shows that equation (15) has no solutions other

than the ones from the statement of Theorem 1.

This completes the proof of Theorem 1. �
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