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Abstract. The concept of measures of noncompactness is applied to prove the existence
of a solution for a boundary value problem for an infinite system of second order differential
equations in ℓp space. We change the boundary value problem into an equivalent system of
infinite integral equations and result is obtained by using Darbo’s type fixed point theorem.
The result is illustrated with help of an example.
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1. Introduction and preliminaries

In 1930 Kuratowski (see [12]) introduced the concept of measure of noncompact-

ness which was further extended to general Banach spaces by Banas̀ and Goebel

(see [3]). In 1955 Darbo (see [7]) proved a fixed point theorem for condensing opera-

tors using the concept of measures of noncompactness, which generalized the classical

Schauder fixed point theorem and Banach contraction principle. The method of fixed

point arguments has been widely used to study the existence of solutions of functional

equations, like Banach contraction principle in [1] and Schauder’s fixed point theo-

rem in [11], [13]. But if compactness and Lipschitz condition are not satisfied these

results cannot be used. Measure of noncompactness comes handy in such situations.

The Hausdorff measure of noncompactness is used frequently in finding the exis-

tence of solutions for various functional equations and is defined as follows:

Definition 1.1 ([3]). Let (Ω, d) be a metric space and A a bounded subset of Ω.

Then the Hausdorff measure of noncompactness (the ball-measure of noncompact-
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ness) of the set A, denoted by χ(A), is defined to be the infimum of the set of all

real ε > 0 such that A can be covered by a finite number of balls of radii < ε, that is

χ(A) = inf
{

ε > 0: A ⊂
n
⋃

i=1

B(xi, ri), xi ∈ Ω, ri < ε, i = 1, . . . , n, n ∈ N

}

where B(xi, ri) denotes the ball of radius ri centered at xi.

Let (X, ‖·‖) be a Banach space; for any E ⊂ X , E denotes closure of E and

conv(E) denotes the closed convex hull of E. We denote the family of nonempty

bounded subsets of X by MX and the family of nonempty and relatively compact

subsets of X by NX . Let N denote the set of natural numbers and R the set of real

numbers; for R+ = [0,∞), the axiomatic definition of measure of noncompactness is

given below

Definition 1.2 ([5]). A mapping µ : MX → R+ is said to be the measure of

noncompactness in X , if the following conditions hold:

(i) The family Kerµ = {E ∈ MX : µ(E) = 0} is nonempty and Kerµ ⊂ NX ;

(ii) E1 ⊂ E2 ⇒ µ(E1) 6 µ(E2);

(iii) µ(E) = µ(E);

(iv) µ(convE) = µ(E);

(v) µ(λE1 + (1 − λ)E2) 6 λµ(E1) + (1− λ)µ(E2) for 0 6 λ 6 1;

(vi) if (En) is a sequence of closed sets from MX such that En+1 ⊂ En and

lim
n→∞

µ(En) = 0 then the intersection set E∞ =
∞
⋂

n=1
En is nonempty.

Further properties of measures of noncompactness can be found in [3], [5].

The fixed point theorem of Darbo’s (see [7]) is stated below:

Lemma 1.3 ([7]). Let E be a nonempty, bounded, closed, and convex subset of

a Banach space X and let T : E → E be a continuous mapping. Assume that there

exists a constant k ∈ [0, 1) such that µ(T (E)) 6 kµ(E) for any nonempty subset E

of X . Then T has a fixed point in the set E.

The idea of equicontinuous sets is defined as follows:

Definition 1.4. Let (Ω1, d) and (Ω2, d) be two metric spaces, and T the family
of functions from Ω1 to Ω2. The family T is equicontinuous at a point m0 ∈ Ω1 if

for every ε > 0, there exists δ > 0 such that d(f(m), f(m0)) < ε for all f ∈ T and
all m ∈ Ω1 such that d(m,m0) < δ. The family is pointwise equicontinuous if it is

equicontinuous at each point of Ω1.
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For fixed p > 1, we denote by ℓp the Banach sequence space with a norm defined

as:

‖x‖p = ‖(xn)‖p =

( ∞
∑

n=1

|xn|p
)1/p

for x = (xn) ∈ ℓp. In order to apply Lemma 1.3 in a given Banach space X , we need

a formula expressing the measures of noncompactness in a simple manner. Such

formulas are known only for few sequence spaces (see [3], [5]).

For the Banach sequence space (ℓp, ‖·‖p), Hausdorff measure of noncompactness
is given by

(1.1) χ(E) = lim
n→∞

{

sup
(ek)∈E

(

∑

k>n

|ek|p
)1/p}

where E ∈ Mℓp . The above formula will be used in the sequel of the paper.

In recent years many researchers have worked on the infinite system of second

order differential equations of the form

(1.2)
d2ui

dt2
= −fi(t, u1, u2, . . .), ui(0) = ui(T ) = 0, i ∈ N, t ∈ [0, T ]

and obtained conditions for the existence of solutions of (1.2) in different Banach

spaces (see [2], [6], [18], [19]).

Measures of noncompactness has been used to obtain conditions under which an

infinite system of differential equations has a solution in the given Banach space

(see [2], [4], [5], [6], [15], [16], [17], [19], [20]).

We consider the infinite system of second order differential equations of the form

(1.3)
d2vj
dt2

− vj = fj(t, v(t))

where t ∈ [0, T ], v(t) = (vj(t))
∞

j=1 and j = 1, 2, . . .

The above system will be studied together with the boundary conditions

(1.4) vj(0) = 0, vj(T ) = 0.

The solution is investigated using the infinite system of integral equations and Green’s

function (see [10]). Such systems appear in the study of the theory of neural sets,

theory of branching processes and theory of dissociation of polymers (see [8], [9]).

In this paper, we find conditions under which the system given in (1.3) under the

boundary conditions (1.4) has a solution in the Banach sequence space ℓp, for that

we define an equivalent infinite system of integral equations. The result is supported

by an example.
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2. Main results

Let I = [0, T ], by C(I,R) we denote the space of continuously differentiable func-

tions on I and by C2(I,R) we denote the space of twice continuously differentiable

functions on I. A function v ∈ C2(I,R), is a solution of (1.3) if and only if v is a

solution of the infinite system of integral equations

(2.1) vj(t) =

∫ T

0

G(t, s)fj(s, v(s)) ds, t ∈ I

where fj(t, v) ∈ C(I,R), j = 1, 2, 3, . . . and Green’s function G(s, t) is defined on I2

as:

(2.2) G(t, s) =















sinh(t) sinh(T − s)

sinh(T )
; 0 6 s < t 6 T,

sinh(s) sinh(T − t)

sinh(T )
; 0 6 t < s 6 T.

Using standard methods, it can be easily shown that

(2.3) G(t, s) 6
1

2
tanh

(

1
2T

)

for all (t, s) ∈ I2.

From equations (2.1) and (2.2) we have

vj(t) =

∫ t

0

sinh(t) sinh(T − s)

sinh(T )
fj(s, v(s)) ds+

∫ T

t

sinh(s) sinh(T − t)

sinh(T )
fj(s, v(s)) ds.

Differentiating the above equation, we get

dvj
dt

=

∫ t

0

cosh(t) sinh(T − s)

sinh(T )
fj(s, v(s)) ds+

∫ T

t

− sinh(s) cosh(T − t)

sinh(T )
fj(s, v(s)) ds.

Further differentiation gives

d2vj
dt2

=

∫ t

0

sinh(t) sinh(T − s)

sinh(T )
fj(s, v(s)) ds+

cosh(t) sinh(T − t)

sinh(T )
fj(t, v(t))

+

∫ T

t

sinh(s) sinh(T − t)

sinh(T )
fj(s, v(s)) ds+

sinh(t) cosh(T − t)

sinh(T )
fj(t, v(t))

=

∫ T

0

G(t, s)fj(s, v(s)) ds

+
1

sinh(T )
(sinh(t) cosh(T − t) + cosh(t) sinh(T − t))fj(t, v(t))

= vj(t) + fj(t, v(t)).

Thus vj(t) given in (2.1) satisfies (1.3).
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Hence, finding existence of a solution for the system (1.3) with boundary condi-

tions (1.4) is equivalent to finding the existence of a solution for the infinite system

of integral equations (2.1).

The functions v = v(t) act continuously from the interval I into the space ℓp, the

class of such functions C(I, ℓp) is a Banach space endowed by the classical supremium

norm

‖v‖C = sup{‖v(t)‖p : t ∈ I}.

R em a r k 2.1. If X is a Banach space and χX denotes its Hausdorff measure

of noncompactness, then the Hausdorff measure of noncompactness of a subset E of

C(I,X) in the Banach space of continuous functions is given by (see [3], [14])

χ(E) = sup{χX(X(t)) : t ∈ I},

where E is equicontinuous on the interval I = [0, T ].

In order to find conditions under which the system (2.1) has a solution the following

assumptions are made:

(A1) The functions fj are real valued, defined on the set I × R
∞, j = 1, 2, 3, . . .

(A2) The operator F defined on the space I × ℓp as

(t, v) 7→ (Fv)(t) = (f1(t, v), f2(t, v), f3(t, v), . . .)

transforms the space I × ℓp into ℓp.

The class of all functions {(Fv)(t)}t∈I is equicontinuous at each point of the

space ℓp, that is for each v ∈ ℓp fixed arbitrarily and for a given ε > 0 there

exists δ > 0 such that

(2.4) ‖(Fu)(t)− (Fv)(t)‖p < ε

for each t ∈ I and for any u ∈ ℓp such that ‖u− v‖p < δ.

(A3) For each t ∈ I, v(t) = (vj(t)) ∈ ℓp, the following inequality holds:

(2.5) |fj(t, v(t))|p 6 gj(t) + hj(t)|vj |p, n ∈ N

where hj(t) and gj(t) are real valued continuous functions on I. Moreover, we

assume that the function gj, j = 1, 2, . . . is continuous on I and the function

series
∑

k>1

gk(t) is uniformly convergent, while the function sequence (hj(t))j∈N

is equibounded on I.
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The function g = g(t) defined on the interval I as g(t) =
∞
∑

j=1

gj(t) is continuous

under the assumption (A3), and the constants defined as

G = max{g(t) : t ∈ I}, H = sup{hj(t) : t ∈ I, j ∈ N}

are finite.

Theorem 2.2. Under the assumptions (A1)–(A3), with H
1/pT tanh(12T ) < 2, the

infinite system of integral equations (2.1) has at least one solution v(t) = (vj(t)) in

the space ℓp, i.e. (vj(t)) ∈ ℓp, for each t ∈ I.

P r o o f. We consider the space C(I, ℓp) of all continuous functions on I = [0, T ]

with supremum norm given as

‖v‖ = sup
t∈I

{‖v(t)‖p}.

Define the operator F on the space C(I, ℓp) by

(2.6) (Fv)(t) = ((Fv)j(t)) =

(
∫ T

0

G(t, s)fj(s, v(s)) ds

)

=

(
∫ T

0

G(t, s)f1(s, v(s)) ds,

∫ T

0

G(t, s)f2(s, v(s)) ds, . . .

)

.

The operator F as defined in (2.6) transforms the space C(I, ℓp) into itself, which

we will show. Fix v = v(t) = (vj(t)) in C(I, ℓp), then for arbitrary t ∈ I using

assumption (A3), inequality (2.3) and Hölder’s inequality we have

‖(Fv)(t)‖pp =

∞
∑

j=1

∣

∣

∣

∣

∫ T

0

G(t, s)fj(s, v(s)) ds

∣

∣

∣

∣

p

6

∞
∑

j=1

(
∫ T

0

|G(t, s)|p|fj(s, v(s))|p ds
)(

∫ T

0

ds

)p/q

6 T p/q
∞
∑

j=1

(
∫ T

0

|G(t, s)|p(gj(s) + hj(s)|vj(s)|p) ds
)

6

(1

2
tanh(12T )

)p

T p/q
∞
∑

j=1

(
∫ T

0

gj(s) ds+

∫ T

0

hj(s)|vj(s)|p ds
)

6

(T 1/q

2
tanh(12T )

)p
(
∫ T

0

∞
∑

j=1

(gj(s)) ds+

∫ T

0

∞
∑

j=1

(hj(s)|vj(s)|p) ds
)

.
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Now, using the Lebesgue dominated convergence theorem we get

‖(F(v))(t)‖pp 6

(T 1/q

2
tanh(12T )

)p
(
∫ T

0

g(s) ds+H

∫ T

0

∞
∑

j=1

|vj(s)|p ds
)

6

(T 1/q

2
tanh(12T )

)p

(GT +HT (‖v‖p)p)

=
(T

2
tanh(12T )

)p

(G+H(‖v‖p)p).

Therefore,

(2.7) ‖F(v)(t)‖pp 6

(T

2
tanh(12T )

)p

(G+H(‖v‖p)p).

Hence, Fv is bounded on the interval I. Thus F transforms the space C(I, ℓp) into

itself. From (2.7) we get

(2.8) ‖(F(v))(t)‖p 6
T

2
tanh(12T )(G+H(‖v‖p)p)1/p.

Now, using (2.1) and following the procedure as above we get

‖v‖pp 6

(T

2
tanh (12T )

)p

(G +H(‖v‖p)p)

⇒ (2p −H(T tanh(12T ))
p)(‖v‖p)p 6 G(T tanh(12T ))

p

⇒ ‖v‖pp 6
G(T tanh(12T ))

p

2p −H(T tanh(12T ))
p

⇒ ‖v‖p 6
G1/p(T tanh(12T ))

(2p −H(T tanh(12T ))
p)1/p

.

Thus, the positive number

r =
G1/p(T tanh(12T ))

(2p −H(T tanh(12T ))
p)1/p

is the optimal solution of the inequality

T

2
tanh(12T )(G+HRp)1/p 6 R.

Hence, by (2.8) the operator F transforms the ball Br ⊂ C(I, ℓp) into itself.
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We now show that F is continuous on Br. Let ε > 0 be arbitrarily fixed and let

v = (v(t)) ∈ Br be any arbitrarily fixed function, then if u = (u(t)) ∈ Br is any

function such that ‖u− v‖p < ε, then for any t ∈ I we have

‖(Fu)(t)− (Fv)(t)‖pp =

∞
∑

j=1

∣

∣

∣

∣

∫ T

0

G(t, s)(fj(s, u(s))− fj(s, v(s))) ds

∣

∣

∣

∣

p

6

∞
∑

j=1

∫ T

0

|G(t, s)|p|fj(s, u(s))− fj(s, v(s))|p ds
(
∫ T

0

ds

)p/q

6 T p/q
∞
∑

j=1

∫ T

0

|G(t, s)|p|fj(s, u(s))− fj(s, v(s))|p ds.

Now, by using (2.3) and the assumption (A2) of equicontinuity, we get

(2.9) ‖(Fu)(t)− (Fv)(t)‖pp

6 T p/q
(1

2
tanh(12T )

)p ∞
∑

j=1

∫ T

0

|fj(s, u(s))− fj(s, v(s))|p ds

=
(T 1/q

2
tanh(12T )

)p

lim
m→∞

m
∑

j=1

∫ T

0

|fj(s, u(s))− fj(s, v(s))|p ds

=
(T 1/q

2
tanh(12T )

)p

lim
m→∞

∫ T

0

m
∑

j=1

|fj(s, u(s))− fj(s, v(s))|p ds.

Define the function δ(ε) as

δ(ε) = sup{|fj(s, u(s))− fj(s, v(s))| : u, v ∈ ℓp, ‖u− v‖p 6 ε, t ∈ I, j ∈ N}.

Then clearly δ(ε) → 0 as ε → 0, since the family {(fv)(t) : t ∈ I} is equicontinuous
at every point v ∈ ℓp.

Therefore, by (2.9) and using the Lebesgue dominated convergence theorem, we

have

‖(Fu)(t)− (Fv)(t)‖pp 6

(T 1/q

2
tanh(12T )

)p
∫ T

0

(δ(ε))p ds

=
(T

2
tanh(12T )

)p

(δ(ε))p.

This implies that the operator F is continuous on the ball Br.

Since G(t, s) as defined in (2.2) is uniformly continuous on I2, so by the definition

of the operator F it is easy to show that {Fu : u ∈ Br} is equicontinuous on I.

Let Br1 = conv(FBr), then Br1 ⊂ Br and the functions from the set Br1 are

equicontinuous on I.
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Let E ⊂ Br1 , then E is equicontinuous on I. If v ∈ E is a function then for

arbitrarily fixed t ∈ I we have by assumption (A3)

∞
∑

j=k

|(Fv)j(t)|p =

∞
∑

j=k

∣

∣

∣

∣

∫ T

0

G(t, s)fj(s, v(s)) ds

∣

∣

∣

∣

p

6

∞
∑

j=k

(
∫ T

0

|G(t, s)||fj(s, v(s))| ds
)p

.

Using Hölder’s inequality and (2.3), we get

∞
∑

j=k

|(Fv)j(t)|p 6

∞
∑

j=k

(
∫ T

0

|G(t, s)|p|fj(s, v(s))|p ds
)(

∫ T

0

ds

)p/q

6 T p/q
(1

2
tanh(12T )

)p ∞
∑

j=k

(
∫ T

0

|fj(s, v(s))|p ds
)

.

Again, using the Lebesgue dominated convergence theorem and the assumption (A3),

we get

∞
∑

j=k

|(Fv)j(t)|p 6

(T 1/q

2
tanh(12T )

)p
∫ T

0

∞
∑

j=k

(gj(s) + hj(s)|vj(s)|p) ds

=
(T 1/q

2
tanh(12T )

)p
(
∫ T

0

∞
∑

j=k

gj(s) ds+

∫ T

0

∞
∑

j=k

hj(s)|vj(s)|p ds
)

6

(T 1/q

2
tanh(12T )

)p
(
∫ T

0

∞
∑

j=k

gj(s) ds+H

∫ T

0

∞
∑

j=k

|vj(s)|p ds
)

.

Taking supremum over all v ∈ E, we obtain

sup
v∈E

∞
∑

j=k

|(Fv)j(t)|p 6

(T 1/q

2
tanh(12T )

)p

×
(
∫ T

0

∞
∑

j=k

gj(s) ds+H sup
v∈E

∫ T

0

∞
∑

j=k

|vj(s)|p ds
)

.

Using the definition of the Hausdorff measure of noncompactness in the ℓp space and

noting that E is the set of equicontinuous functions on I, by applying Remark 2.1,

we get

(χ(FE))p 6 H
(T

2
tanh(12T )

)p

(χ(E))p ⇒ χ(FE) 6 H1/p
(T

2
tanh(12T )

)

χ(E).

Hence, if

H1/pT

2
tanh(12T ) < 1 ⇒ H1/pT tanh(12T ) < 2

then, by Lemma 1.3, the operator F on the set Br1 has a fixed point, which completes

the proof of the theorem. �
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N o t e. The value of T is chosen in such a way that the condition

H1/pT tanh(12T ) < 2

is satisfied.

The above result is illustrated by the following example:

E x am p l e 2.3. Consider the infinite system of second order differential equa-

tions in ℓ2

(2.10)
d2vn
dt2

− vn =
t3−nt

n
+

∞
∑

k=n

cos t

(1 + 2n)
√

(k − 1)!
· vk(t)(1 −

√
k − n vk(t))√

k − n+ 1

for n = 1, 2, . . .

S o l u t i o n : Comparing the infinite system of differential equations (2.10)

with (1.3) we have

(2.11) fn(t, v) =
t3−nt

n
+

∞
∑

k=n

cos t

(1 + 2n)
√

(k − 1)!
· vk(t)(1 −

√
k − n vk(t))√

k − n+ 1
.

Clearly fj , j = 1, 2, . . . is a real valued function, so assumption (A1) of Theorem 2.2

is satisfied. We now show that assumption (A2) of Theorem 2.2 is also satisfied, that

is

(2.12) |fn(t, v)|2 6 gn(t) + hn(t)|vn|2.

Using the Cauchy-Schwarz inequality and equation (2.10) we have

|fn(t, v)|2 =
∣

∣

∣

t3−nt

n
+

∞
∑

k=n

cos t

(1 + 2n)
√

(k − 1)!
· vk(t)(1 −

√
k − nvk(t))√

k − n+ 1

∣

∣

∣

2

6 2

(

t23−2nt

n2
+

( ∞
∑

k=n

cos t

(1 + 2n)
√

(k − 1)!
· vk(t)(1 −

√
k − n vk(t))√

k − n+ 1

)2)

6 2
t23−2nt

n2
+ 2

∞
∑

k=n

cos2 t

(1 + 2n)2(k − 1)!
·

∞
∑

k=n

(vk(t)(1 −
√
k − nvk(t))√

k − n+ 1

)2

.

Again, using the fact that

(2.13)
α(1− αβ)

β
6

1

(2β)2
, β 6= 0
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for any real α, β we have

|fn(t, v)|2 6 2
t23−2nt

n2
+ 2

cos2 t

(1 + 2n)2
e

(

v2n +

∞
∑

k=n+1

(vk(t)(1 −
√
k − nvk(t))√

k − n+ 1

)2
)

6 2
t23−2nt

n2
+ 2

e cos2 t

(1 + 2n)2

(

v2n +

∞
∑

k=n+1

(vk(t)(1−
√
k − n vk(t))√

k − n

)2
)

6 2
t23−2nt

n2
+ 2

e cos2 t

(1 + 2n)2
v2n + 2

e cos2 t

(1 + 2n)2

∞
∑

k=n+1

( 1

(2
√
k − n)2

)2

6 2
t23−2nt

n2
+

1

8

e cos2 t

(1 + 2n)2
π
2

6
+ 2

e cos2 t

(1 + 2n)2
v2n.

Hence, by taking

gn(t) = 2
t23−2nt

n2
+

π
2

48

e cos2 t

(1 + 2n)2
, hn(t) = 2

e cos2 t

(1 + 2n)2

it is clear that gn(t) and hn(t) are real valued continuous functions on I.

Also, for each t ∈ I

|gn(t)| 6 2
T 2

n2
+

π
2

48

e

(1 + 2n)2
6

(

2T 2 +
π
2e

48

) 1

n2
.

Thus, by Weierstrass test for uniform convergence of function series we see that
∑

k>1

gk(t) is uniformly convergent on I.

Further, we have

|hj(t)| 6
2e

(1 + 2n)2
∀ t ∈ I.

Hence, the function sequence (hj(t)) is equibounded on I.

Thus (2.11) is satisfied and hence the assumption (A3) is satisfied.

Also

G = sup

{

∑

k>1

gk(t) : t ∈ I

}

=
(

2T 2 +
π
2e

12

)

π
2

6

and

H = sup{hj(t) : t ∈ I} =
2e

9
.

The assumption (A2) is also satisfied as for fixed t ∈ T and (vj(t)) = (v1(t),

v2(t), . . .) ∈ ℓ2 we have

∞
∑

j=1

|fj(t, v)|2 =

∞
∑

j=1

gj(t) +

∞
∑

j=1

hj(t)|vj(t)|2 6 G+H

∞
∑

j=1

|vj(t)|2.

Hence, the operator f = (fj) transforms the space (I, ℓ2) into ℓ2.
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Also, for ε > 0 and u = (uj), v = (vj) ∈ ℓ2 with ‖u− v‖2 < ε, we have

‖(fu)(t) − (fv)(t)‖22

=
∞
∑

n=1

|fn(t, u(t))− fn(t, v(t))|2

=

∞
∑

n=1

∣

∣

∣

∣

∞
∑

k=n

(cos t)uk(t)(1 −
√
k − nuk(t))

(1 + 2n)
√
k − n+ 1

√

(k − 1)!
− (cos t)vk(t)(1 −

√
k − nvk(t))

(1 + 2n)
√
k − n+ 1

√

(k − 1)!

∣

∣

∣

∣

2

6

∞
∑

n=1

1

(1 + 2n)2

∣

∣

∣

∣

∞
∑

k=n

uk(t)(1 −
√
k − nuk(t))− vk(t)(1− (k − n)vk(t))√

k − n+ 1
√

(k − 1)!

∣

∣

∣

∣

2

6

∞
∑

n=1

1

(1 + 2n)2

( ∞
∑

k=n

∣

∣

∣

(uk(t)− vk(t))(1 − (k − n)(uk(t) + vk(t)))
√

(k − 1)!
√
k − n+ 1

∣

∣

∣

)2

.

Using Hölder’s inequality we get

‖(fu)(t)− (fv)(t)‖22 6

∞
∑

n=1

1

(1 + 2n)2

∞
∑

k=n

1

(k − 1)!

×
∞
∑

k=n

∣

∣

∣

(uk(t)− vk(t))(1 −
√
k − n(uk(t) + vk(t)))√

k − n+ 1

∣

∣

∣

2

6 e

∞
∑

n=1

1

(1 + 2n)2

(

|un(t)− vn(t)|2

+

∞
∑

k=n+1

|uk(t)− vk(t)|2
∣

∣

∣

1−
√
k − n(uk(t) + vk(t))√

k − n

∣

∣

∣

2
)

6 e

∞
∑

n=1

1

(1 + 2n)2

(

|un(t)− vn(t)|2 +
π
2

48

)

using (2.13)

6 e

( ∞
∑

n=1

|un(t)− vn(t)|2 +
π
2

48

∞
∑

n=1

1

(1 + 2n)2

)

.

Thus, for any t ∈ I, we have

‖(fu)(t)− (fv)(t)‖2 6

√

e
(

ε2 +
π
4

384

)

.

Therefore, the family {(fv)(t) : t ∈ I} is equicontinuous.
Finally, we see that the condition H1/2T tanh(12T ) < 2 is satisfied for all T . So,

by Theorem 2.2 there exists at least one solution to the given infinite system of

differential equations (2.10) in C(I, ℓ2).
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