COVARIANTIZATION OF QUANTIZED CALCULI OVER QUANTUM GROUPS

SEYED EBRAHIM AKRAMI, SHERVIN FARZI, Semnan

Received October 29, 2018. Published online December 9, 2019. Communicated by Simion Breaz

Abstract. We introduce a method for construction of a covariant differential calculus over a Hopf algebra A from a quantized calculus da = [D, a], $a \in A$, where D is a candidate for a Dirac operator for A. We recover the method of construction of a bicovariant differential calculus given by T. Brzeziński and S. Majid created from a central element of the dual Hopf algebra A° . We apply this method to the Dirac operator for the quantum SL(2) given by S. Majid. We find that the differential calculus obtained by our method is the standard bicovariant 4D-calculus. We also apply this method to the Dirac operator for the quantum SL(2) given by P. N. Bibikov and P. P. Kulish and show that the resulted differential calculus is 8-dimensional.

Keywords: Hopf algebra; quantum group; covariant first order differential calculus; quantized calculus; Dirac operator

MSC 2010: 58B32, 81Q30

1. INTRODUCTION

In Connes' noncommutative differential geometry, the quantized differential calculus over a *-algebra A is given by $d_D a = [D, a]$, built on a "Dirac operator" D, acting on a Hilbert space \mathcal{H} (see [3]). On the other hand, in the theory of quantum groups one usually needs covariant differential calculi over a Hopf algebra A (see [7]). Since Connes' calculus is not covariant, it seems that these two theories do not match with each other. Our goal in this paper is to convert any differential calculus over a Hopf algebra to a covariant one.

DOI: 10.21136/MB.2019.0142-18

The first author thanks professor Shahn Majid for valuable discussion during his visit at Queen Mary College, London. This research was in part supported by a grant from IPM Iran No. 83810319 Math. Department.

Our strategy to do this task is as follows. Let (Γ, d) be a left covariant first order differential calculus (l.c.FODC) over a Hopf algebra A and let $\omega: A \to {}_{inv}\Gamma$ be the fundamental map generating the space of left invariant 1-forms, i.e.

(1.1)
$$\omega(a) := S(a_{(1)}) da_{(2)}, \quad a \in A,$$

where S is the antipode of A (see [4]). It is known that Γ is freely generated by the set $\omega(A)$ as a left A-module and $\omega(A)$ is closed under the right adjoint action of A on Γ . Namely, we have

(1.2)
$$Ad_r(b)\omega(a) = \omega(\overline{a}b), \quad a, b \in A,$$

where $Ad_r(b)(\varrho) = S(b_{(1)})\varrho b_{(2)}, b \in A, \varrho \in \Gamma$. On the other hand, if (Γ, d) is a FODC (not necessarily l.c.) over the Hopf algebra A, then we can still define the map ω by (1.1). We have $\Gamma = A\omega(A) = \omega(A)A$ and ω obeys the relation (1.2), but since Γ is not freely generated by the set $\omega(A)$ as a left A-module, in general Γ is not left covariant. The simple but essential idea of this paper is to replace the not necessarily free left action of A on $\omega(A)$ by the formal free left action. Hence we convert any FODC, Γ , to a l.c.FODC, which is the smallest l.c.FODC with Γ as its quotient.

In Connes' approach, the essential idea is to define the differential by da = [D, a], $a \in A$. But in our approach, the essential idea is to introduce left invariant 1-forms as operators

$$\omega(a) := S(a_{(1)})[D, a_{(2)}], \quad a \in A,$$

and then construct a covariant FODC based on these invariant forms (see [7]). We apply this method to an operator constructed from a central element of the dual Hopf algebra A° and we find that our method gives a bicovariant FODC over Awhich coincides with the FODC given in [2]. We also apply this method to the Dirac operator for $A = SL_q(2)$ constructed by Majid in [6]. We show that the FODC obtained by this Dirac operator is bicovariant and 4-dimensional, and it is indeed the standard 4D-calculus of $SL_q(2)$. Finally, we apply our method to the Dirac operator constructed by Bibikov and Kulish over $SL_q(2)$ (see [1]), and show that it is 8-dimensional.

2. Preliminaries

Throughout this paper, we follow the notation of [4]. A denotes a Hopf algebra over \mathbb{C} with coproduct Δ , antipode S and counit ε . We use the Sweedler's notation $\Delta(a) = \sum a_{(1)} \otimes a_{(2)}$ and most often we omit the summation symbol. For $a \in A$, we use the notation $\overline{a} = a - \epsilon(a)1$. We first recall some concepts from [4].

A first order differential calculus (abbreviated a FODC) over an algebra X is a X-bimodule Γ with a linear mapping $d: X \to \Gamma$ such that (i) d satisfies the Leibniz rule $d(xy) = x \cdot dy + dx \cdot y$ for any $x, y \in X$, (ii) Γ is the linear span of elements $x \cdot dy \cdot z$ with $x, y, z \in X$. A left-covariant bimodule (abbreviated l.c. bimodule) over Hopf algebra A is a bimodule Γ over A which is a left comodule of A with coaction $\Delta_{\Gamma}: \Gamma \to A \otimes \Gamma$, such that $\Delta_{\Gamma}(a\varrho b) = \Delta(a)\Delta_{\Gamma}(\varrho)\Delta(b)$ for $a, b \in A$ and $\varrho \in \Gamma$. In Sweedler's notation, the last condition can be written as $\sum (a\varrho b)_{(-1)} \otimes (a\varrho b)_{(0)} = \sum a_{(1)}\varrho_{(-1)}b_{(1)} \otimes a_{(2)}\varrho_{(0)}b_{(2)}$. An element ϱ of a left-covariant bimodule Γ is called left-invariant if $\Delta_{\Gamma}(\varrho) = 1 \otimes \varrho$. The vector space of left-invariant elements of Γ is denoted by $_{inv}\Gamma$. A FODC Γ over A is called left-covariant if it is left-covariant as an A-bimodule with the left coaction $\Delta_{\Gamma}: \Gamma \to A \otimes \Gamma$ and, moreover, $\Delta_{\Gamma}(adb) = \Delta(a)(id \otimes d)\Delta(b)$ for all $a, b \in A$.

There is a well-known one-to-one correspondence between l.c. A-bimodules and right A-modules as follows (see [4], Chapter 13, pages 474–475). Let (Λ, \triangleleft) be a right A-module. By defining

(2.1)
$$b(a \otimes \alpha)c := bac_{(1)} \otimes \alpha \triangleleft c_{(2)},$$

(2.2)
$$\Delta_{\Gamma}(a \otimes \alpha) := a_{(1)} \otimes a_{(2)} \otimes \alpha$$

for all $a, b, c \in A$, $\alpha \in \Lambda$, the vector space $\Gamma := A \otimes \Lambda$ becomes a l.c. bimodule over A(see [4]). Conversely, let Γ be a l.c. bimodule over A and let Λ be the subspace of left invariant elements of Γ . For $a \in A$, $\alpha \in \Lambda$, we set

(2.3)
$$\alpha \triangleleft a := Ad_r(a)\alpha = S(a_{(1)})\alpha a_{(2)}.$$

This is a right A-module structure on Λ . Let $\Gamma' := A \otimes \Lambda$ denote the l.c. A-bimodule given by (2.1) and (2.2) with respect to this right A-action (2.3). It is known that Γ and Γ' are isomorphic as l.c. A-bimodules (see [4]). Now let (Γ, d) be a l.c.FODC over the Hopf algebra A. We define the *fundamental form* of Γ as the map

(2.4)
$$\omega(a) := S(a_{(1)})da_{(2)}, \quad a \in A,$$

the fundamental ideal of Γ as the following right ideal of ker ϵ ,

(2.5)
$$R = \{a \in \ker \epsilon \colon \omega(a) = 0\},\$$

and the *tangent space* of Γ as the following set of linear forms on A,

(2.6)
$$T = \{ X \in A' \colon X(1) = X(a) = 0 \text{ for all } a \in R \}.$$

3. COVARIANTIZATION OF A FODC

Definition 3.1. A differential right module (abbreviated DRM) over a Hopf algebra A is a triple $(\Lambda, \triangleleft, \omega)$, where

(i) (Λ, \triangleleft) is a right A-module, $\triangleleft : \Lambda \otimes A \to \Lambda$, and

(ii) $\omega \colon A \to \Lambda$ is a surjective linear map satisfying

(3.1)
$$\omega(ab) = \omega(a) \triangleleft b + \epsilon(a)\omega(b), \quad a, b \in A.$$

Lemma 3.1. There is a correspondence between the classes of all l.c.FODC's $(\Gamma, d, \Delta_{\Gamma})$ and all DRM's $(\Lambda, \triangleleft, \omega)$ over a Hopf algebra A as follows:

- (i) If (Γ, d, Δ_Γ) is a l.c.FODC over A, then Λ is defined as the space of left invariant 1-forms, ⊲ is defined by (2.3) and ω is the fundamental form of Γ.
- (ii) Conversely, given a DRM $(\Lambda, \triangleleft, \omega)$ then $\Gamma := A \otimes \Lambda$ equipped with (2.1), (2.2) and

$$(3.2) da := a_{(1)} \otimes \omega(a_{(2)}), \quad a \in A.$$

Proof. (i) As we mentioned in the previous section, (Λ, \triangleleft) is a right A-module. We have

$$\begin{split} \omega(ab) &= S((ab)_{(1)})d(ab)_{(2)} = S(b_{(1)})S(a_{(1)})a_{(2)}db_{(2)} + S(b_{(1)})S(a_{(1)})da_{(2)}b_{(2)} \\ &= \epsilon(a)S(b_{(1)})db_{(2)} + S(b_{(1)})\omega(a)b_{(2)} = \epsilon(a)\omega(b) + \omega(a) \triangleleft b, \end{split}$$

so $\omega(ab) = \omega(a) \triangleleft b + \epsilon(a)\omega(b)$. Now we show that ω is surjective. By the definition of a FODC, we have $\Gamma = AdA$. According to Chapter 13 of [4], first we show that for any $a \in A$, $\omega(a) = P(da)$, where $P := \cdot(S \otimes id_A)\Delta_{\Gamma}$ has been introduced in Lemma 1 of Chapter 13 of [4] (page 473–474). Here $\cdot: A \otimes \Gamma \to \Gamma$ is the left action of A on Γ . We have

$$P(da) = \cdot ((S \otimes \mathrm{id}_A)\Delta_{\Gamma}(da)) = \cdot ((S \otimes \mathrm{id}_A)(a_{(1)} \otimes da_{(2)})) = S(a_{(1)})da_{(2)} = \omega(a).$$

Also, if $\alpha \in \Lambda$ then $P(\alpha) = \alpha$ (see [4]). Now since $\Gamma = AdA$ then for $\alpha \in \Lambda \subseteq \Gamma$ there exist some elements $x_i, y_i \in A$ such that $\alpha = \sum_i x_i dy_i$. According to the formula (3) on page 473 of [4], $\alpha = P(\alpha) = \sum_i \epsilon(x_i)\omega(y_i) = \omega(\sum \epsilon(x_i)y_i)$. Thus ω is surjective.

(ii) In the previous section we mentioned that $(\Gamma, \Delta_{\Gamma})$ is a l.c. A-bimodule. Now we have

$$\begin{aligned} d(ab) &= (ab)_{(1)} \otimes \omega((ab)_{(2)}) = a_{(1)}b_{(1)} \otimes \omega(a_{(2)}b_{(2)}) \\ &= a_{(1)}b_{(1)} \otimes (\omega(a_{(2)}) \triangleleft b_{(2)} + \epsilon(a_{(2)})\omega(b_{(2)})) \\ &= a_{(1)}b_{(1)} \otimes \omega(a_{(2)}) \triangleleft b_{(2)} + ab_{(1)} \otimes \omega(b_{(2)}) \\ &= a_{(1)}b_{(1)} \otimes \omega(a_{(2)}) \triangleleft b_{(2)} + a(b_{(1)} \otimes \omega(b_{(2)})) \\ &= (a_{(1)} \otimes \omega(a_{(2)}))b + a(b_{(1)} \otimes \omega(b_{(2)})) = (da)b + a(db). \end{aligned}$$

So the linear map d satisfies the Leibniz rule. To show that $\Gamma = AdA$, let $\varrho = a \otimes \alpha \in \Gamma$. By the surjectivity of ω , there is an element $b \in A$ such that $\alpha = \omega(b)$. Therefore $\varrho = a \otimes \omega(b)$ and

$$\begin{split} \varrho &= a \otimes \omega(b) = a(1 \otimes \omega(b)) = a(\epsilon(b_{(1)}) \otimes \omega(b_{(2)})) = a(S(b_{(1)})b_{(2)} \otimes \omega(b_{(3)})) \\ &= (aS(b_{(1)}))(b_{(2)} \otimes \omega(b_{(3)})) = (aS(b_{(1)}))(db_{(2)}). \end{split}$$

Thus $\rho \in AdA$ and (Γ, d) is a FODC. Finally, for all $a \in A$ we have

$$\begin{aligned} \Delta_{\Gamma}(da) &= \Delta_{\Gamma}(a_{(1)} \otimes \omega(a_{(2)})) = a_{(1)} \otimes a_{(2)} \otimes \omega(a_{(3)}) \\ &= a_{(1)} \otimes da_{(2)} = (\mathrm{id} \otimes d)(a_{(1)} \otimes a_{(2)}) = (\mathrm{id} \otimes d)(\Delta(a)). \end{aligned}$$

Thus $(\Gamma, d, \Delta_{\Gamma})$ is a l.c.FODC.

Proposition 3.1. Let $(\Lambda, \triangleleft, \omega)$ be the DRM associated with a l.c.FODC $(\Gamma, d, \Delta_{\Gamma})$ by part (i) of Lemma 3.1 and also $(\Gamma', d', \Delta_{\Gamma'})$ be the l.c.FODC constructed from this DRM $(\Lambda, \triangleleft, \omega)$ by part (ii) of Lemma 3.1. Then $(\Gamma, d, \Delta_{\Gamma})$ and $(\Gamma', d', \Delta_{\Gamma'})$ are isomorphic as l.c.FODC's.

Proof. We have

$$(\Gamma, d, \Delta_{\Gamma}) \xrightarrow{\text{part (i) of Lemma 3.1}} (\Lambda, \triangleleft, \omega) \xrightarrow{\text{part (ii) of Lemma 3.1}} (\Gamma', d', \Delta_{\Gamma'})$$

We define

$$\nu \colon \Gamma \to \Gamma', \quad \nu(\alpha) = (\mathrm{id} \otimes P) \circ \Delta_{\Gamma}(\alpha),$$

where the map P was introduced in the proof of Lemma 3.1. It is well-known that ν is an isomorphism of l.c. bimodules ([4], page 475). We must show that for all $a \in A$,

 $\nu(da) = d'a.$

We have $\nu(da) = a_{\scriptscriptstyle (1)} \otimes P(da_{\scriptscriptstyle (2)}) = a_{\scriptscriptstyle (1)} \otimes S(a_{\scriptscriptstyle (2)}) da_{\scriptscriptstyle (3)} = a_{\scriptscriptstyle (1)} \otimes \omega(a_{\scriptscriptstyle (2)}) = d'a.$

419

Theorem 3.1. Let (Γ, d) be a FODC over A. Then we obtain a DRM $(\Lambda, \triangleleft, \omega)$ over A by defining $\Lambda = \omega(A)$, where $\omega \colon A \to \Gamma$ is the fundamental form of Γ and $\alpha \triangleleft a = S(a_{(1)})\alpha a_{(2)}$. Hence, by part (ii) of Lemma 3.1 we obtain a l.c.FODC $(\Gamma', d', \Delta_{\Gamma'})$. The map $\zeta \colon \Gamma' \to \Gamma$, $a \otimes b \mapsto ab$ for $a \in A, b \in \Lambda = \omega(A)$, is a surjective map of FODC's such that $\zeta(_{inv}\Gamma') \subseteq \omega(A)$ and $(\Gamma', d', \Delta_{\Gamma'})$ is the smallest l.c.FODC among all l.c.FODC's for which there exists a map ζ with the above mentioned properties. Finally, if $(\Gamma, d, \Delta_{\Gamma})$ is a l.c.FODC, then $(\Gamma, d, \Delta_{\Gamma})$ and $(\Gamma', d', \Delta_{\Gamma'})$ are isomorphic as l.c.FODC's.

Proof. It is clear that Λ is a vector space. We have

$$\begin{split} \omega(ab) &= S((ab)_{(1)})d(ab)_{(2)} \\ &= S(b_{(1)})S(a_{(1)})a_{(2)}db_{(2)} + S(b_{(1)})S(a_{(1)})da_{(2)}b_{(2)} \\ &= \epsilon(a)\omega(b) + \omega(a) \triangleleft b \end{split}$$

for all $a, b \in A$. Thus $\omega(a) \triangleleft b = \omega(ab - \epsilon(a)b)$. This identity shows that Λ is closed with respect to \triangleleft . Also it is well-known that \triangleleft is a right action of A on Γ . Thus \triangleleft is a well-defined right action of A on Λ . Thus $(\Lambda, \triangleleft, \omega)$ is a DRM over A. Next we have

$$\begin{split} \zeta(a(c \otimes e)b) &= \zeta(acb_{(1)} \otimes (e \triangleleft b_{(2)})) = \zeta(acb_{(1)} \otimes S(b_{(2)})eb_{(3)}) \\ &= acb_{(1)}S(b_{(2)})eb_{(3)} = ac\epsilon(b_{(1)})eb_{(2)} = aceb = a\zeta(c \otimes e)b \end{split}$$

for all $a, b, c \in A, e \in \Lambda$. Also

$$\zeta(d'a) = \zeta(a_{(1)} \otimes \omega(a_{(2)})) = a_{(1)}\omega(a_{(2)}) = a_{(1)}S(a_{(2)})da_{(3)} = \epsilon(a_{(1)})da_{(2)} = da.$$

Thus ζ is a map of FODC's. Next, since $\Gamma = AdA$, then for $\alpha \in \Gamma$ there exist some elements $x_i, y_i \in A$ such that $\alpha = \sum_i x_i dy_i$. Thus $\alpha = \sum_i x_i dy_i = \sum_i x_i \zeta(d'y_i) = \zeta\left(\sum_i x_i d'y_i\right)$ and therefore ζ is surjective and $\Gamma' / \ker(\zeta) \simeq \Gamma$. Now, for $\alpha = \sum_i a_i \otimes \beta_i \in {}_{inv}\Gamma'$, $a_i \in A$ and $\beta_i \in \omega(A)$ we have $\Delta_{\Gamma'}(\alpha) = 1 \otimes \alpha$,

i.e. $\sum_{i} (a_i)_{(1)} \otimes (a_i)_{(2)} \otimes \beta_i = \sum_{i} 1 \otimes a_i \otimes \beta_i$. Thus by applying the mapping

$$(m_A \otimes \mathrm{id}_\Gamma)(S \otimes \mathrm{id}_A \otimes \mathrm{id}_\Gamma)$$

followed by the left action of A on Γ to both sides of the latter equation, where $m_A: A \otimes A \to A$ is the product of A, we get $\sum_i S((a_i)_{(1)})(a_i)_{(2)}\beta_i = \sum_i S(1)a_i\beta_i$, so $\sum_i \epsilon(a_i)\beta_i = \sum_i a_i\beta_i$, and hence $\zeta(\alpha) = \sum_i a_i\beta_i = \sum_i \epsilon(a_i)\beta_i \in \omega(A)$. Therefore $\zeta(_{inv}\Gamma') \subseteq \omega(A)$.

Next, we show that Γ' is the smallest l.c.FODC pre-quotient of Γ . Suppose that $(\Upsilon, \Delta_{\Upsilon}), \ \Delta_{\Upsilon}(\alpha) = \alpha_{(-1)} \otimes \alpha_{(0)}$ is an arbitrary l.c.FODC and $\psi \colon \Upsilon \to \Gamma$ is a surjective map of FODC's such that $\psi(_{inv}\Upsilon) \subseteq \omega(A)$. We define $\overline{\psi} \colon \Upsilon \to \Gamma',$ $\overline{\psi} := (\mathrm{id} \otimes \psi)(\mathrm{id} \otimes P_{\Upsilon})\Delta_{\Upsilon}$, where again $P_{\Upsilon} = \cdot(S \otimes \mathrm{id})\Delta_{\Upsilon}$, i.e. $P_{\Upsilon}(\alpha) = S(\alpha_{(-1)})\alpha_{(0)}$. It follows that for all $\alpha \in \Upsilon$

$$\begin{aligned} (\zeta \circ \overline{\psi})(\alpha) &= \zeta(\alpha_{(-2)} \otimes \psi(S(\alpha_{(-1)})\alpha_{(0)})) = \alpha_{(-2)}\psi(S(\alpha_{(-1)})\alpha_{(0)}) \\ &= \psi(\alpha_{(-2)}S(\alpha_{(-1)})\alpha_{(0)}) = \psi(\alpha). \end{aligned}$$

Therefore, $\zeta \circ \overline{\psi} = \psi$.

Finally, if (Γ, d) is left-covariant, then $\Lambda = \omega(A) = {}_{inv}\Gamma$. Therefore, by Proposition 3.1, (Γ, d) is isomorphic with (Γ', d') .

Corollary 3.1. Let V be a complex vector space and $\pi: A \to L(V)$ be an algebra representation of the Hopf algebra A in V, where L(V) denotes the algebra of linear endomorphisms of V. Also, let D be a linear operator on V. Then the map d: $A \to L(V)$, $da := [D, \pi(a)]$ is a differential operator and the space $\Gamma := A(dA)A$ equipped with d and A-bimodule structure given by $aT := \pi(a)T$, $Ta := T\pi(a)$ for all $a \in A$ and $T \in L(V)$ is a FODC over A. Then by Theorem 3.1 we obtain a DRM $\Lambda = \omega_D(A)$ where $\omega_D: A \to L(V)$,

(3.3)
$$\omega_D(a) := \pi(S(a_{(1)}))[D, \pi(a_{(2)})], \quad a \in A.$$

Here the bracket denotes the commutator of two operators.

The proof is obvious. We denote the l.c.FODC associated with this triple by Γ_D .

Remark 3.1. Let (A, H, D) be a commutative spectral triple where A is the Hopf algebra of smooth functions over a Lie group. Then, since it is known that the quantized calculus da = [D, a] is the classical calculus, which is automatically bicovariant (see [3]), we conclude that covariantization of this calculus by our approach using the Dirac operator D gives the classical calculus.

According to the previous Corollary, we have the following result.

Proposition 3.2. Let $a \mapsto L_a$ for $a \in A$ denote the left regular representation of a Hopf algebra A on itself, where $L_a(b) = ab$, $b \in A$, and let φ be a linear functional on A. We define the operator D_{φ} on A by

(3.4)
$$D_{\varphi}(a) := a_{(1)}\varphi(a_{(2)}), \quad a \in A.$$

(i) The map (3.3), which we denote by ω_{φ} , takes the form

(3.5)
$$(\omega_{\varphi}(a))(x) = x_{(1)}\varphi(\overline{a}x_{(2)}), \quad a, x \in A.$$

We denote the associated l.c.FODC by Γ_{φ} .

(ii) The fundamental ideal of Γ_{φ} is

(3.6)
$$R_{\varphi} = \{ a \in \ker \epsilon \colon \varphi(ax) = 0 \text{ for all } x \in A \}.$$

(iii) If the dual Hopf algebra A° (see [1]) separates the elements of A and $\varphi \in A^{\circ}$ is a central element, then the tangent space of Γ_{φ} is

(3.7)
$$T_{\varphi} = \operatorname{span}\{X_a := \varphi_{(2)}(a)\varphi_{(1)} - \varphi(a)\epsilon \colon a \in A\},$$

where $\Delta \varphi = \varphi_{(1)} \otimes \varphi_{(2)}$ is the coproduct of Hopf algebra A° . Moreover, Γ_{φ} is finite-dimensional and bicovariant. Finally we have $D_{\varphi}(a) := \varphi(a_{(1)})a_{(2)}$.

Proof. We have

$$\pi\colon A \to L(A), \quad a \mapsto L_a$$

For $x \in A$, $\pi(ab)(x) = L_{ab}(x) = ab(x) = L_a(L_b(x)) = (\pi(a)\pi(b))(x)$. Thus π is a linear representation.

(i) According to the definition of D_{φ} ,

$$\begin{aligned} (\omega_{\varphi}(a))(x) &= (\pi(S(a_{(1)}))[D_{\varphi},\pi(a_{(2)})])(x) \\ &= \pi(S(a_{(1)}))(D_{\varphi}\pi(a_{(2)})(x) - \pi(a_{(2)})D_{\varphi}(x)) \\ &= \pi(S(a_{(1)}))(D_{\varphi}(a_{(2)}x) - \pi(a_{(2)})x_{(1)}\varphi(x_{(2)})) \\ &= \pi(S(a_{(1)}))D_{\varphi}(a_{(2)}x) - \pi(S(a_{(1)})a_{(2)})x_{(1)}\varphi(x_{(2)}) \\ &= S(a_{(1)})a_{(2)}x_{(1)}\varphi(a_{(3)}x_{(2)}) - S(a_{(1)})a_{(2)}x_{(1)}\varphi(x_{(2)}) \\ &= x_{(1)}\varphi(\epsilon(a_{(1)})a_{(2)}x_{(2)}) - \epsilon(a)x_{(1)}\varphi(x_{(2)}) \\ &= x_{(1)}\varphi(ax_{(2)} - \epsilon(a)x_{(2)}) = x_{(1)}\varphi(\overline{a}x_{(2)}). \end{aligned}$$

(ii) Let R be the fundamental ideal of Γ . We show that $R = R_{\varphi}$. First, we prove that $R \subseteq R_{\varphi}$. For $a \in R$, we have $\overline{a} = a$ and $\omega(a) = 0$, thus $\omega_{\varphi}(a)(x) = 0$, and so $x_{(1)}\varphi(ax_{(2)}) = 0$. We get $\epsilon(x_{(1)}\varphi(ax_{(2)})) = 0$, so $\varphi(ax) = 0$. Therefore $a \in R_{\varphi}$. If $a \in R_{\varphi}$, then for each $x \in A$, $\varphi(ax) = 0$, therefore $x_{(1)}\varphi(ax_{(2)}) = 0$, and $\omega(a) = 0$ and so $R_{\varphi} \subseteq R$. Hence $R = R_{\varphi}$.

(iii) We recall that $A^{\circ} = \{f \in A' : \Delta(f) \in A' \otimes A'\}$, where $\Delta(f)(a \otimes b) = f(ab)$ and A' is the space of all linear functionals on A. Now let $\varphi \in A^{\circ}$ and $\Delta(\varphi) = \varphi_{(1)} \otimes \varphi_{(2)}$. Let $R' := \{a \in \ker \epsilon : X_b(a) = 0 \text{ for all } b \in A\}$. We have

$$R' = \{a \in \ker \epsilon \colon \varphi_{(1)}(a)\varphi_{(2)}(b) = 0 \text{ for all } b \in A\}$$
$$= \{a \in \ker \epsilon \colon \varphi(ab) = 0 \text{ for all } b \in A\} = R_{\varphi}.$$

Thus R' is a right ideal of ker ϵ and we obtain a FODC Γ' . It is well-known that if there are two FODC's with the same fundamental ideal, then they are isomorphic (see [4], Chapter 14, the proof of Proposition 5 for the existence and Proposition 1, part (ii) for the uniqueness). Here, R' is equal to R_{φ} , so Γ' is isomorphic to Γ_{φ} , and thus they have identical tangent spaces. On the other hand, Γ' is a bicovariant finite-dimensional FODC over A such that its tangent space is given by

$$T' = \{X_a = \varphi_{(2)}(a)\varphi_{(1)} - \varphi(a)\epsilon \colon a \in A\}$$

(see [4], page 502, Proposition 11). Thus Γ_{φ} is also a bicovariant finite-dimensional FODC over A and (3.7) is proved.

To prove the last assertion, we let h be an arbitrary linear form in A° . We have

$$\begin{aligned} h(\varphi(a_{(1)})a_{(2)}) &= \varphi(a_{(1)})h(a_{(2)}) = (\varphi h)(a) = (h\varphi)(a) \\ &= h(a_{(1)})\varphi(a_{(2)}) = h(a_{(1)}\varphi(a_{(2)})) \end{aligned}$$

for all $a \in A$. But since A° separates the elements of A, we conclude that

$$\varphi(a_{(1)})a_{(2)} = a_{(1)}\varphi(a_{(2)}), \quad a \in A.$$

Thus $D_{\varphi}(a) = \varphi(a_{(1)})a_{(2)}$.

So, we observe that if we choose the operator D in Corollary 3.1 of the form D_{φ} then the covariant FODC constructed by our method coincides with the covariant FODC constructed by the method mentioned in [2]. Thus we can construct, for example, the standard 4D-calculus over $SL_q(2)$ through our method of covariantization by choosing φ to be the Casimir element. In the next section, we construct examples of covariant FODC's from operators which are not of this form.

4. Example: The l.c.FODC associated with the Dirac-Majid operator of the quantum group $SL_q(2)$

In this section, we use our method to answer the question whether there exists a suitably defined operator on some Hilbert space such that the FODC associated to it is the 4D-calculus on quantum SL(2). We find that the FODC associated to the Dirac operator of Majid (see [6]) is 4-dimensional and coincides with the standard 4D-calculus on quantum SL(2).

We take $\mathcal{A} = \mathrm{SL}_q(2)$ and let \mathcal{A}° be its dual Hopf algebra (see [4]). It is wellknown that this is a coquasitriangular Hopf algebra (see [4], Chapter 10, [5], Chapter 2 and [6]). Thus it is equipped with the standard universal R-form R: $\mathcal{A} \otimes \mathcal{A} \to \mathbb{C}$. Consider the linear form $\mathbf{Q} = \mathrm{R}_{21}\mathrm{R} \colon \mathcal{A} \otimes \mathcal{A} \to \mathbb{C}$, namely $\mathbf{Q}(a \otimes b) = R(b_{(1)}, a_{(1)})R(a_{(2)}, b_{(2)})$. We view it as a linear map $\mathbf{Q} \colon \mathcal{A} \to \mathcal{A}^\circ$ by evaluation, i.e. $\langle \mathbf{Q}(a), b \rangle = \mathbf{Q}(a \otimes b)$ for $a, b \in \mathcal{A}$. Let W be the spin $\frac{1}{2}$ -corepresentation of \mathcal{A} (see [4]), which we view as a two-dimensional representation of \mathcal{A}° with action $\alpha \colon \mathcal{A}^\circ \otimes W \to W$ or equivalently $\alpha \colon \mathcal{A}^\circ \to L(W)$ where L(W) is the algebra of linear operators on W. If $t_{11} = a, t_{12} = b, t_{21} = c, t_{22} = d$ are the standard generators of \mathcal{A} then a basis for W is $\{a, b\}$. If we identify W with \mathbb{C}^2 via $a \mapsto e_1, b \mapsto e_2$, where $\{e_1, e_2\}$ is the canonical basis of \mathbb{C}^2 , then $\alpha(x)$ is the matrix $(\alpha(x))_{ij} = \langle x, t_{ij} \rangle$, $x \in \mathcal{A}^\circ$.

Next, we represent \mathcal{A} on the vector space $\mathcal{A} \oplus \mathcal{A} \simeq \mathcal{A} \otimes \mathbb{C}^2$ as

(4.1)
$$\theta: \mathcal{A} \to L(\mathcal{A} \oplus \mathcal{A}), \quad \theta(a) \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax \\ ay \end{pmatrix}, \quad x, y \in \mathcal{A}.$$

The Dirac operator defined by Majid (see [6]) on the linear space $\mathcal{A} \oplus \mathcal{A}$ is

(4.2)
$$D = \left(\partial_j^i - \sum_{k=1}^2 \mathcal{A}_k^i(\beta(S^{-1}(t_{kj})))\right)_{1 \le i,j \le 2}$$

In other words, for $a = \begin{pmatrix} a^1 \\ a^2 \end{pmatrix} \in \mathcal{A} \oplus \mathcal{A}$ the entries of $Da = \begin{pmatrix} (Da)^1 \\ (Da)^2 \end{pmatrix}$ are given by

(4.3)
$$(Da)^{i} = \sum_{j=1}^{2} \partial_{j}^{i}(a^{j}) - \sum_{j,k=1}^{2} A_{k}^{i}(\beta(S^{-1}(t_{kj})))a^{j},$$

where

$$\partial_j^i(x) = x_{\scriptscriptstyle (1)} \langle \bar{L}_j^i, \bar{x}_{\scriptscriptstyle (2)} \rangle = x_{\scriptscriptstyle (1)} \langle \underline{L}_j^i, x_{\scriptscriptstyle (2)} \rangle \quad \forall x \in \mathcal{A}$$

and $\bar{L}_{j}^{i}, \underline{L}_{j}^{i} \in \mathcal{A}^{\circ}$ are defined by $\bar{L}_{j}^{i}(a) = Q(a, t_{ij})$ for all $a \in \mathcal{A}, \underline{L}_{j}^{i} = \bar{L}_{j}^{i} - \delta_{j}^{i}\mathbf{1}, \delta_{j}^{i}$ is the Kronecker delta, $\beta(a) = (\alpha \circ Q)(\overline{a}), \overline{a} = a - \epsilon(a)\mathbf{1}$, and $A_{j}^{i}: L(W) \to \mathbb{C}$ are some

given linear functionals called connections. In the sequel, we need the following L^{\pm} functionals on \mathcal{A} ,

(4.4)
$$L_j^{+i}(a) = \mathbf{R}(a, t_{ij}), \quad L_j^{-i}(a) = \mathbf{R}(S(t_{ij}), a).$$

It is known that

(4.5)
$$\Delta(L_{j}^{+i}) = \sum_{k} L_{k}^{+i} \otimes L_{j}^{+k}, \quad \Delta(L_{j}^{-i}) = \sum_{k} L_{k}^{-i} \otimes L_{j}^{-k},$$

and

(4.6)
$$\bar{L}_{j}^{i} = \sum_{k} S(L_{k}^{-i})L_{j}^{+k}.$$

We conclude that

(4.7)
$$\Delta(\bar{L}_{j}^{i}) = \sum_{k,l=1}^{2} \bar{L}_{l}^{k} \otimes S(L_{k}^{-i})L_{j}^{+l},$$

because

$$\begin{split} \Delta(\bar{L}_j^i) &= \Delta\bigg(\sum_m S(L_m^{-i})L_j^{+m}\bigg) = \sum_m \bigg(\sum_k S(L_m^{-k}) \otimes S(L_k^{-i}))\bigg(\sum_l L_l^{+m} \otimes L_j^{+l}\bigg) \\ &= \sum_{m,k,l} S(L_m^{-k})L_l^{+m} \otimes S(L_k^{-i})L_j^{+l} = \sum_{k,l} \bar{L}_l^k \otimes S(L_k^{-i})L_j^{+l}. \end{split}$$

Lemma 4.1. There is a faithful representation of $M_2(\mathcal{A}^\circ)$, the algebra of 2×2 -matrices over \mathcal{A}° , in the vector space $\mathcal{A} \oplus \mathcal{A}$ given by

$$\phi\colon M_2(\mathcal{A}^\circ) \to L(\mathcal{A} \oplus \mathcal{A}), \quad u = (u_{ij})_{i,j=1}^2 \mapsto (D_{u_{ij}})_{i,j=1}^2.$$

Namely

$$\phi(u) \begin{pmatrix} a^1 \\ a^2 \end{pmatrix} = \begin{pmatrix} D_{u_{11}}a^1 + D_{u_{12}}a^2 \\ D_{u_{21}}a^1 + D_{u_{22}}a^2 \end{pmatrix} \quad \forall a^1, a^2 \in \mathcal{A},$$

where

$$(4.8) D_x(a) := a_{(1)} \langle x, a_{(2)} \rangle, \quad a \in \mathcal{A}, \ x \in \mathcal{A}^{\circ}.$$

Proof. It is clear that ϕ is linear and we show that ϕ is multiplicative. We first show that D is a faithful representation of \mathcal{A}° in the vector space \mathcal{A} . For each $x \in \mathcal{A}^{\circ}$, D_x is linear and also it is clear that D is linear. We show that D is multiplicative.

$$D_{xy}(a) = a_{(1)} \langle xy, a_{(2)} \rangle = a_{(1)} \langle x, a_{(2)} \rangle \langle y, a_{(3)} \rangle = D_x(a_{(1)} \langle y, a_{(2)} \rangle) = (D_x \circ D_y)(a).$$

To show that D is faithful, let $D_x = 0$. Thus $D_x(a) = 0$ for all $a \in \mathcal{A}$, so $a_{(1)}\langle x, a_{(2)}\rangle = 0$. By applying the counit map to the latter, we get $\langle x, a \rangle = 0$ for all $a \in \mathcal{A}$. Thus we conclude that x = 0.

Now for all $u, v \in M_2(\mathcal{A}^\circ)$, we have

$$\left(\phi(uv)\begin{pmatrix}a^1\\a^2\end{pmatrix}\right)^i = \sum_j D_{(uv)_{ij}}a^j = \sum_{j,k} D_{u_{ik}v_{kj}}a^j$$
$$= \sum_{j,k} D_{u_{ik}}D_{v_{kj}}a^j = \left(\phi(u)\phi(v)\begin{pmatrix}a^1\\a^2\end{pmatrix}\right)^i.$$

Thus ϕ is a representation. The faithfulness of ϕ is obtained by the faithfulness of D.

Henceforth, we embed $M_2(\mathcal{A}^\circ)$ in $L(\mathcal{A} \oplus \mathcal{A})$ by identifying $(u_{ij}), u_{i,j} \in \mathcal{A}^\circ$, with the linear operator $(D_{u_{ij}})$ on $\mathcal{A} \oplus \mathcal{A}$.

Theorem 4.1. By applying our method of covariantization to Majid's Dirac operator of the quantum group $SL_q(2)$, the associated fundamental form is

(4.9)
$$\omega_M(a) = \sum_{k,l=1}^2 \langle \bar{L}_l^k, \bar{a} \rangle (S(L_k^{-i})L_j^{+l})_{i,j=1}^2$$

the associated fundamental ideal is

(4.10)
$$R_M = \ker \epsilon \cap \ker \beta = \{a \in \ker \epsilon \colon \bar{L}^i_j(a) = 0 \text{ for all } i, j = 1, 2\},\$$

and the associated tangent space is

(4.11)
$$T_M = \operatorname{span}\{\bar{L}_j^i - \epsilon_U(\bar{L}_j^i)1: i, j = 1, 2\}.$$

The l.c.FODC associated to this operator denoted by Γ_M is nothing other than the well-known 4D-calculus over quantum group $SL_q(2)$ and therefore is bicovariant.

Proof. According to the representation (4.1) and Corollary 3.1, for $a \in \ker \epsilon$, $x^1, x^2 \in \mathcal{A}$ we have

$$\begin{split} \omega_{M}(a) \begin{pmatrix} x^{1} \\ x^{2} \end{pmatrix} &= \theta(S(a_{(1)})) D\theta(a_{(2)}) \begin{pmatrix} x^{1} \\ x^{2} \end{pmatrix} = \theta(S(a_{(1)})) D \begin{pmatrix} a_{(2)}x^{1} \\ a_{(2)}x^{2} \end{pmatrix} \\ &= \theta(S(a_{(1)})) \begin{pmatrix} \sum_{j=1}^{2} \partial_{j}^{1}(a_{(2)}x^{j}) - \sum_{j,k=1}^{2} A_{k}^{1}(\beta(S^{-1}(t_{kj})))a_{(2)}x^{j} \\ \sum_{j=1}^{2} \partial_{j}^{2}(a_{(2)}x^{j}) - \sum_{j,k=1}^{2} A_{k}^{2}(\beta(S^{-1}(t_{kj})))S(a_{(1)})a_{(2)}x^{j} \end{pmatrix} \\ &= \begin{pmatrix} S(a_{(1)}) \sum_{j=1}^{2} \partial_{j}^{1}(a_{(2)}x^{j}) - \sum_{j,k=1}^{2} A_{k}^{2}(\beta(S^{-1}(t_{kj})))S(a_{(1)})a_{(2)}x^{j} \\ S(a_{(1)}) \sum_{j=1}^{2} \partial_{j}^{1}(a_{(2)}x^{j}) - \sum_{j,k=1}^{2} A_{k}^{2}(\beta(S^{-1}(t_{kj})))S(a_{(1)})a_{(2)}x^{j} \end{pmatrix} \\ &= \begin{pmatrix} S(a_{(1)}) \sum_{j=1}^{2} \partial_{j}^{1}(a_{(2)}x^{j}) - \sum_{j,k=1}^{2} A_{k}^{2}(\beta(S^{-1}(t_{kj})))e(a)x^{j} \\ S(a_{(1)}) \sum_{j=1}^{2} \partial_{j}^{2}(a_{(2)}x^{j}) - \sum_{j,k=1}^{2} A_{k}^{2}(\beta(S^{-1}(t_{kj})))e(a)x^{j} \end{pmatrix} \\ &= \begin{pmatrix} S(a_{(1)}) \sum_{j=1}^{2} \partial_{j}^{1}(a_{(2)}x^{j}) \\ S(a_{(1)}) \sum_{j=1}^{2} \partial_{j}^{2}(a_{(2)}x^{j}) \\ S(a_{(1)}) \sum_{j=1}^{2} \partial_{j}^{2}(a_{(2)}x^{j}) \end{pmatrix} \\ &= \begin{pmatrix} S(a_{(1)}) \sum_{j=1}^{2} \partial_{j}^{2}(a_{(2)}x^{j}) \\ S(a_{(1)}) \sum_{j=1}^{2} \partial_{j}^{2}(a_{(2)}x^{j}) \\ S(a_{(1)}) \sum_{j=1}^{2} \partial_{j}^{2}(a_{(2)}x^{j}) \end{pmatrix} \\ &= \begin{pmatrix} S(a_{(1)}) \sum_{j=1}^{2} \partial_{j}^{2}(a_{(2)}x^{j}) \\ S(a_{(1)}) \sum_{j=1}^{2} a_{(2)}x_{(1)}^{j}(\underline{L}_{j}^{1}, a_{(3)}x_{(2)}^{j}) \\ S(a_{(1)}) \sum_{j=1}^{2} \partial_{j}^{2}(a_{(2)}x^{j}) \end{pmatrix} \\ &= \begin{pmatrix} \sum_{j=1}^{2} x_{j}^{j}((\lambda_{j}^{1}, ax_{(2)}) \\ \sum_{j=1}^{2} x_{j}^{j}((\lambda_{j}^{1}, ax_{(2)}) \\ \sum_{j=1}^{2} x_{j}^{j}((\lambda_{j}^{1}, ax_{(2)}) \\ \sum_{j=1}^{2} x_{j}^{j}((\lambda_{j}^{1}, ax_{(2)}) \end{pmatrix} \\ &= \begin{pmatrix} \sum_{j=1}^{2} x_{j}^{j}((\lambda_{j}^{1}, ax_{(2)}) \\ \sum_{j=1}^{2} x_{j}^{j}((\lambda_{j}^{1}, a) S(L_{k}^{-1})L_{1}^{+1} \\ \sum_{k,l} (\overline{L}_{k}^{1}, a) S(L_{k}^{-1})L_{1}^{+1} \\ \sum_{k,l} (\overline{L}_{k}^{1}, a) S(L_{k}^{-1})L_{1}^{+1} \\ x_{k}^{j} (\overline{L}_{k}^{2}) \\ &= \begin{pmatrix} \sum_{k,l=1}^{2} \langle \overline{L}_{k}^{1}, a\rangle (S(L_{k}^{-1})L_{j}^{+1}) \\ \sum_{i,j=1}^{2} \begin{pmatrix} x^{1} \\ x^{2} \end{pmatrix} \\ &= \begin{pmatrix} \sum_{k,l=1}^{2} \langle \overline{L}_{k}^{1}, a\rangle (S(L_{k}^{-1})L_{j}^{+1}) \\ \sum_{i,j=1}^{2} \begin{pmatrix} x^{1} \\ x^{2} \end{pmatrix} \\ &= \begin{pmatrix} \sum_{k,l=1}^{2} \langle \overline{L}_{k}^{1}, a\rangle (S(L_{k}^{-1})L_{j}^{+1}) \\ \sum_{i,j=1}^{2} \begin{pmatrix} x^{1} \\ x^{2} \end{pmatrix} \\ &= \begin{pmatrix} \sum_{k,l=1}^{$$

In the above, we used the facts $\varepsilon(a) = 0$ in the first equation in line 5, $\langle 1, ax \rangle = \varepsilon(ax) = \varepsilon(a)\varepsilon(x) = 0$ at the beginning of line 7 and the faithful representation (4.8), $u \mapsto D_u$, where $u = S(L_k^{-i})L_j^{+l}$, at the beginning of line 8. So, we proved (4.9) for

 $a \in \ker \epsilon$ and the general case is the result of the identity $\omega_M(\overline{a}) = \omega_M(a)$. To prove (4.10), we write $\Delta(\bar{L}_j^i)$ as $\sum \bar{L}_{j(1)}^i \otimes \bar{L}_{j(2)}^i$ such that for each fixed i, j, the set of all $\bar{L}_{j(2)}^i$ is linearly independent. Now we rewrite the above calculation of $\omega_M(a)$ until line 7 and then continue as follows:

$$\begin{split} \omega_M(a) \begin{pmatrix} x^1\\ x^2 \end{pmatrix} &= \begin{pmatrix} \sum_{j=1}^2 x_{(1)}^j \langle \bar{L}_j^1, a x_{(2)}^j \rangle\\ \sum_{j=1}^2 x_{(1)}^j \langle \bar{L}_j^2, a x_{(2)}^j \rangle \end{pmatrix} = \begin{pmatrix} \sum_j \sum x_{(1)}^j \langle \bar{L}_j^1_{(1)}, a \rangle \langle \bar{L}_{j(2)}^1, x_{(2)}^j \rangle\\ \sum_j \sum x_{(1)}^j \langle \bar{L}_{j(1)}^2, a \rangle \langle \bar{L}_{j(2)}^2, x_{(2)}^j \rangle \end{pmatrix} \\ &= \begin{pmatrix} \sum_j \langle \bar{L}_{1(1)}^1, a \rangle \bar{L}_{1(2)}^1 & \sum_j \langle \bar{L}_{2(1)}^1, a \rangle \bar{L}_{2(2)}^1 \\ \sum_j \langle \bar{L}_{1(1)}^2, a \rangle \bar{L}_{1(2)}^2 & \sum_j \langle \bar{L}_{2(1)}^2, a \rangle \bar{L}_{2(2)}^2 \end{pmatrix} \begin{pmatrix} x^1\\ x^2 \end{pmatrix}. \end{split}$$

Now using this computation and our assumption on the linear independence of functionals $\bar{L}_{j(2)}^i$ for each fixed i, j, and putting $x^2 = 0$ or $x^1 = 0$, we find that $R_M = \{a \in \ker \epsilon : \bar{L}_{j(1)}^i(a) = 0 \text{ for all } i, j \text{ and for all } (1)\}$. Thus $R_M \subseteq \{a \in \ker \epsilon : \bar{L}_{j(ab)}^i = 0 \text{ for all } i, j = 1, 2 \text{ and for all } b \in \mathcal{A}\}$. Conversely, if $a \in \ker \epsilon$ and $\bar{L}_{j(ab)}^i = 0$ for all $b \in \mathcal{A}$, then $\sum \bar{L}_{j(1)}^i(a) \bar{L}_{j(2)}^i = 0$ for all i, j, so we find that $\bar{L}_{j(1)}^i(a) = 0$ for all i, j, (1). Thus

$$R_M = \{ a \in \ker \epsilon \colon \bar{L}^i_i(ab) = 0 \text{ for all } i, j = 1, 2 \text{ and for all } b \in \mathcal{A} \}.$$

On the other hand, by definition we have $\beta(a)_j^i = \bar{L}_j^i(a)$ for $a \in \ker \epsilon$. Therefore $R_M = \{a \in \ker \epsilon : \beta(ab) = 0 \text{ for all } b \in \mathcal{A}\}$. It is well-known that the set $\{a \in \ker \epsilon : \beta(a) = 0\}$ is the fundamental ideal associated to the 4D-calculus over \mathcal{A} (see [6]), thus it is a right ideal of ker ϵ . So we find that $\{a \in \ker \epsilon : \beta(ab) = 0 \text{ for all } b \in \mathcal{A}\} = \{a \in \ker \epsilon : \beta(a) = 0\}$ (since for $b \in \mathcal{A}$ we have $\beta(ab) = \beta(a\bar{b}) + \epsilon(b)\beta(a)$). Hence,

$$R_M = \{a \in \ker \epsilon \colon \beta(a) = 0\} = \{a \in \ker \epsilon \colon \overline{L}^i_j(a) = 0 \text{ for all } i, j = 1, 2\}.$$

Thus the proof of (4.10) is now complete and since the fundamental ideal of Γ_M is equal with the fundamental ideal of the 4D-calculus, we conclude that these two l.c.FODC's coincide. Next, let

$$T' := \operatorname{span}\left\{X_b^{i,j} := \sum_{k,l} \langle S(L_k^{-i})L_j^{+l}, b \rangle \bar{L}_l^k - \langle \bar{L}_j^i, b \rangle 1 \colon i, j = 1, 2, \ b \in \mathcal{A}\right\}.$$

By using (4.7), if we set $R' := \{a \in \ker \epsilon \colon X(a) = 0 \text{ for all } X \in T'\}$ then we have $R' = \{a \in \ker \epsilon \colon \overline{L}_j^i(ab) = 0 \text{ for all } i, j = 1, 2 \text{ and for all } b \in \mathcal{A}\}$. Thus R' is a right ideal of ker ϵ and therefore there exists a unique l.c.FODC over \mathcal{A} such that its fundamental ideal is R' and its tangent space is T' (see [7] or the proof

of Proposition 5 of Chapter 14 in [4]). But since $R' = R_M$, we find that indeed this latter FODC is Γ_M , which is in turn the 4D-calculus, hence $T_M = T'$. On the other hand, it is obvious that $T' \subseteq \text{span}\{\bar{L}_j^i - \langle \bar{L}_j^i, 1 \rangle 1: i, j = 1, 2\}$. But since T_M is four-dimensional we conclude that T' is also four-dimensional and we find that T' = $\text{span}\{\bar{L}_j^i - \langle \bar{L}_j^i, 1 \rangle 1: i, j = 1, 2\}$. So, we recovered the 4D-calculus over $\mathcal{A} = \text{SL}_q(2)$ via our method of covariantization.

5. EXAMPLE: THE L.C.FODC ASSOCIATED WITH THE DIRAC-KULISH-BIBIKOV OPERATOR OF $SU_q(2)$

Let $A = SU_q(2)$ and $U = U_q(su_2)$. Here, we use the notation of [1]. Hence, we denote the generators of U by k, e, f, k^{-1} . There is a standard nondegenerate dual pairing $\langle , \rangle \colon U \otimes A \to \mathbb{C}$ between U and A which enables us to regard U as a subalgebra of A° . Thus we regard each $u \in U$ as a linear functional over A and write u(a) instead of $\langle u, a \rangle$. Let $\pi_1 \colon U \to L(\mathbb{C}^2)$ be the spin $\frac{1}{2}$ -representation. That is

(5.1)
$$\pi_1(k) = \begin{bmatrix} q^{-1/2} & 0 \\ 0 & q^{1/2} \end{bmatrix}, \quad \pi_1(e) = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad \pi_1(f) = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}.$$

Also we have another representation (4.8) of U induced from the dual pairing

(5.2)
$$\pi_2: U \to L(A), \quad \pi_2(u)(a) = a_{(1)}u(a_{(2)}).$$

Thus, we obtain a representation $\pi: U \to L(\mathbb{C}^2 \otimes A), \pi(u) = \pi_1(u_{(1)}) \otimes \pi_2(u_{(2)})$. We set $K := \pi(k), K^{-1} := \pi(k^{-1}), E := \pi(e), F := \pi(f)$. Now let $C \in U$ denote the Casimir element. The Dirac operator is defined by

(5.3)
$$D_{KB} = \lambda^{-2}(\pi(C) - \mu \operatorname{id}_{\mathbb{C}^2} \otimes \pi_2(C)) \in L(\mathbb{C}^2 \otimes A),$$

where $\lambda = q - q^{-1}$ and $\mu = (q^2 - q^{-2})/(q - q^{-1})$. Next, we represent A on the vector space $\mathbb{C}^2 \otimes A$ by the left regular representation in the second component, i.e.

(5.4)
$$\theta \colon A \to L(\mathbb{C}^2 \otimes A), \quad \theta(a)(x \otimes y) := x \otimes ay, \quad x \in \mathbb{C}^2, \ y \in A.$$

Theorem 5.1. For the Dirac operator $D = D_{KB}$, the associated fundamental form is

(5.5)
$$\omega_{KB}(a) = \lambda^{-2} (C_{(2)}(a) - \epsilon_U(C_{(2)})\epsilon_A(a)) (\pi_1(C_{(1)}) - \mu \epsilon_U(C_{(1)}) \operatorname{id}_{\mathbb{C}^2}) \otimes \pi_2(C_{(3)}),$$

the associated fundamental ideal is

(5.6)
$$R_{KB} = \{a \in \ker \epsilon_A \colon C(bac) = 0 \text{ for all } b, c \in A\},\$$

the associated tangent space is

(5.7)
$$T_{KB} = \operatorname{span}\{X_{b,c} := C_{(1)}(b)C_{(3)}(c)C_{(2)} - C(bc)\epsilon_A \colon b, c \in A\},\$$

and the resulted l.c.FODC is 8-dimensional.

Proof. We have

$$\begin{split} \omega_{KB}(a) &= \theta(S(a_{(1)}))[D, \theta(a_{(2)})] = \theta(S(a_{(1)}))D\theta(a_{(2)}) - \theta(S(a_{(1)}))\theta(a_{(2)})D \\ &= \theta(S(a_{(1)}))D\theta(a_{(2)}) - \theta(S(a_{(1)})a_{(2)})D = \theta(S(a_{(1)}))D\theta(a_{(2)}) - \epsilon_A(a)D. \end{split}$$

Thus for $a \in \ker \epsilon_A$,

$$\begin{split} \lambda^2 \omega_{KB}(a)(x \otimes y) &= \lambda^2 \theta(S(a_{(1)})) D(x \otimes a_{(2)}y) \\ &= \theta(S(a_{(1)}))(\pi_1(C_{(1)})(x) \otimes a_{(2)}y_{(1)}C_{(2)}(a_{(3)}y_{(2)}) \\ &- \mu x \otimes a_{(2)}y_{(1)}C(a_{(3)}y_{(2)})) \\ &= \pi_1(C_{(1)})(x) \otimes y_{(1)}C_{(2)}(ay_{(2)}) - \mu x \otimes y_{(1)}C(ay_{(2)}) \\ &= \pi_1(C_{(1)})(x) \otimes y_{(1)}C_{(2)}(a)C_{(3)}(y_{(2)}) - \mu x \otimes y_{(1)}C_{(1)}(a)C_{(2)}(y_{(2)}) \\ &= C_{(2)}(a)\pi_1(C_{(1)})(x) \otimes y_{(1)}C_{(3)}(y_{(2)}) - \mu C_{(1)}(a)x \otimes y_{(1)}C_{(2)}(y_{(2)}) \\ &= (C_{(2)}(a)\pi_1(C_{(1)}) \otimes \pi_2(C_{(3)}) - \mu C_{(1)}(a) \operatorname{id} \otimes \pi_2(C_{(2)}))(x \otimes y) \\ &= C_{(2)}(a)((\pi_1(C_{(1)}) - \mu \epsilon_U(C_{(1)})) \otimes \pi_2(C_{(3)}))(x \otimes y). \end{split}$$

Now, since for $a \in A$ we have $\overline{a} \in \ker \epsilon_A$, $\omega_{KB}(a) = \omega_{KB}(\overline{a})$ and for $u \in U$ we have $u(\overline{a}) = u(a - \epsilon_A(a)1) = u(a) - \epsilon_A(a)\epsilon_U(u)$, we get $\omega_{KB}(a) = \lambda^{-2}(C_{(2)}(a) - \epsilon_U(C_{(2)})\epsilon_A(a))(\pi_1(C_{(1)}) - \mu\epsilon_U(C_{(1)}) \operatorname{id}) \otimes \pi_2(C_{(3)})$. Thus the proof of (5.5) is complete.

Now we prove (5.6). Let $C_{(1)(1)'} \otimes C_{(1)(2)'} \otimes C_{(2)} \in U^{\otimes 3}$ be a presentation of $\Delta^2_U(C) = \Delta_U(\Delta_U \otimes \operatorname{id}_U)(C)$ such that the set $\{C_{(2)}: \text{ for all } (2)\}$ is linearly independent and for each fixed index (1), the set $\{\pi_1(C_{(1)(1)'}) - \mu\epsilon_U(C_{(1)(1)'}) \operatorname{id}_{\mathbb{C}^2}: \text{ for all } (1)'\}$ is also linearly independent (we call such presentation an *extraordinary* presentation and the existence of such presentation will be shown below). Note that this assumption implies that for each fixed index (1), the set $\{C_{(1)(1)'}: \text{ for all } (1)'\}$ is linearly independent: for in general the image of a set of linearly dependent vectors under any linear operator is also linearly dependent. Now since the representation π_2 is faithful (see previous section), we conclude that the set $\{\pi_2(C_{(2)}): \text{ for all } (2)\}$ is also linearly independent. Now let $a \in R_{KB}$, i.e. $a \in \ker \epsilon_A$ and $\omega_{KB}(a) = 0$, and let

 $P_1, P_2: \mathbb{C}^2 \to \mathbb{C}$ be the canonical projections. So by combining the operators $P_i \otimes \mathrm{id}_A$ with the operator $\omega_{KB}(a)$, we get

$$C_{(1)(2)'}(a)P_i(\pi_1(C_{(1)(1)'}) - \mu\epsilon_U(C_{(1)(1)'})\operatorname{id})\pi_2(C_{(2)}) = 0, \quad i = 1, 2.$$

Thus for each fixed index (1) we have $C_{(1)(2)'}(a)(\pi_1(C_{(1)(1)'}) - \mu \epsilon_U(C_{(1)(1)'}) \operatorname{id}) = 0$, and by our assumption we find that $C_{(1)(2)'}(a) = 0$ for each (1) and (2)'. The converse is obviously true, i.e., if $a \in \ker \epsilon_A$ and $C_{(1)(2)'}(a) = 0$ for each (1) and (2)', then $\omega_{KB}(a) = 0$. Thus the fundamental ideal is

$$R_{KB} = \{a \in \ker \epsilon_A \colon \omega_{KB}(a) = 0\} = \{a \in \ker \epsilon_A \colon C_{(1)(2)'}(a) = 0 \text{ for all } (1), (2)'\}$$
$$\subseteq \{a \in \ker \epsilon_A \colon C(bac) = 0 \text{ for all } b, c \in A\}.$$

Conversely, let $a \in \ker \epsilon_A$ such that C(bac) = 0 for all $b, c \in A$. Then

$$C_{(1)(1)'}(b)C_{(1)(2)'}(a)C_{(2)} = 0 \quad \forall b \in A,$$

but since $\{C_{(2)}:$ for all (2) $\}$ is linearly independent, we find that for each fixed index (1) and for all $b \in A$ we have $C_{(1)(1)'}(b)C_{(1)(2)'}(a) = 0$. Thus for each fixed index (1), $C_{(1)(2)'}(a)C_{(1)(1)'} = 0$. But since $\{C_{(1)(1)'}:$ for all (1)' $\}$ is linearly independent, we find that $C_{(1)(2)'}(a) = 0$. Hence,

$$\{a \in \ker \epsilon_A \colon C(bac) = 0 \text{ for all } b, c \in A\} \subseteq \{a \in \ker \epsilon_A \colon C_{(1)(2)'}(a) = 0\} = R_{KB}.$$

Thus the proof of (5.6) is complete and we have also shown that under an extraordinary presentation of $\Delta_{U}^{2}(C)$ we have

(5.8)
$$R_{KB} = \{ a \in \ker \epsilon_A : C_{(1)(2)'}(a) = 0 \text{ for all } (1), (2)' \}.$$

Now we prove (5.7). It is known that if T is a finite-dimensional vector space of linear functionals on a Hopf algebra A such that X(1) = 0 for all $X \in T$ and the set $R = \{a \in \ker \epsilon_A \colon X(a) = 0 \text{ for all } X \in T\}$ is a right ideal of $\ker \epsilon_A$, then there exists a *unique* l.c.FODC Γ over A such that its fundamental ideal is R and its tangent space is T (see [4], Chapter 14, the proof of Proposition 5 for the existence and Proposition 1, part (ii) for the uniqueness). Now let $\sum C_{(1)} \otimes C_{(2)} \otimes C_{(3)}$ be an ordinary presentation of $\Delta^2_U(C) \in U^{\otimes 3}$ and let $T = \operatorname{span}\{X_{b,c} := C_{(1)}(b)C_{(3)}(c)C_{(2)} - \epsilon_U(C_{(2)})\epsilon_A \colon b, c \in A\}$. We have $T \subset \operatorname{span}\{C_{(2)} - \epsilon_U(C_{(2)})\epsilon_A \colon \text{ for all } (2)\}$ and thus Tis finite-dimensional and

$$R := \{ a \in \ker \epsilon_A \colon X(a) = 0 \text{ for all } X \in T \}$$
$$= \{ a \in \ker \epsilon_A \colon C(bac) = 0 \text{ for all } b, c \in A \}.$$

Thus R is a right ideal of ker ϵ_A and since $R = R_{KB}$, we conclude that the l.c.FODC obtained from T is Γ_{KB} , so $T_{KB} = T$. To find the dimension of Γ_{KB} we find a basis for T_{KB} . Above we showed that $T \subset T' := \operatorname{span}\{C_{(2)} - \epsilon_U(C_{(2)})\epsilon_A$: for all (2)} and in the previous paragraph we also showed that for an extraordinary presentation of $\Delta^2_U(C)$, the right ideal $R' := \{a \in \ker \epsilon_A \colon X(a) = 0 \text{ for all } a \in T'\}$ is equal with R_{KB} . Thus by the uniqueness, we conclude that the l.c.FODC obtained from T' is isomorphic with Γ_{KB} and thus $T_{KB} = T'$. Therefore the dimension of Γ_{KB} is the dimension of

(5.9)
$$T' := \operatorname{span}\{C_{(1)(2)'} - \epsilon_U(C_{(1)(2)'})\epsilon_A : \text{ for all } (1), (2)'\}$$

under an extraordinary presentation of $C_{(1)(1)'} \otimes C_{(1)(2)'} \otimes C_{(2)} \in U^{\otimes 3}$. To complete the proof and to find the dimension of this calculus, we find an extraordinary presentation of $\Delta^2_U(C)$ for $q \neq -1, 0, 1$. The Casimir element is given by $C = q^{-1}k^2 + qk^{-2} + \lambda^2 fe$. We have

$$\begin{split} \Delta_U^2(C) &= (\Delta \otimes \operatorname{id})\Delta(C) = C_{\scriptscriptstyle (1)(1)'} \otimes C_{\scriptscriptstyle (1)(2)'} \otimes C_{\scriptscriptstyle (2)} \\ &= ((q^{-1}k^2 + \lambda^2 f e) \otimes k^2 + k^{-2} \otimes \lambda^2 f e + f k^{-1} \otimes \lambda^2 k e + k^{-1} e \otimes \lambda^2 f k) \otimes k^2 \\ &+ k^{-2} \otimes q k^{-2} \otimes k^{-2} + (k^{-2} \otimes \lambda^2 f k^{-1} + f k^{-1} \otimes \lambda^2 \cdot 1) \otimes k e \\ &+ (k^{-2} \otimes \lambda^2 k^{-1} e + k^{-1} e \otimes \lambda^2 1) \otimes f k + k^{-2} \otimes \lambda^2 k^{-2} \otimes f e. \end{split}$$

Thus the set of all $C_{(2)}$'s is $\{k^2, k^{-2}, ke, fk, fe\}$, which is linearly independent because it is a subset of the standard basis of U, and we have four sets of the elements $C_{(1)(1)}$'s,

$$S_1 = \{q^{-1}k^2 + \lambda^2 f e, k^{-2}, f k^{-1}, k^{-1}e\}, \quad S_2 = \{k^{-2}\},$$
$$S_3 = \{k^{-2}, f k^{-1}\}, \quad S_4 = \{k^{-2}, k^{-1}e\}.$$

Let $\tau := \pi_1 - \mu \epsilon_U \operatorname{id}_{\mathbb{C}^2}$. We should show that each of the sets $\tau(S_i)$, $i = 1, \ldots, 4$, is linearly independent. A simple calculation shows that $\tau(S_1)$ is

$$\left\{ \begin{bmatrix} q^{-2} - q^{-1}\mu & 0 \\ 0 & 1 + \lambda^2 - q^{-1}\mu \end{bmatrix}, \begin{bmatrix} q - \mu & 0 \\ 0 & q^{-1} - \mu \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ q^{-1/2} & 0 \end{bmatrix}, \begin{bmatrix} 0 & q^{-1/2} \\ 0 & 0 \end{bmatrix} \right\}.$$

Since $(q^{-2} - q^{-1}\mu)(q - \mu)^{-1} \neq (1 + \lambda^2 - q^{-1}\mu)(q^{-1} - \mu)^{-1}$ for $q \neq \pm 1, 0$, this set is linearly independent. Similarly the other sets $\tau(S_i)$, i = 2, 3, 4, are linearly independent. Hence the proof now is complete and the dimension of the associated l.c.FODC is the dimension of the vector space $\operatorname{span}\{C_{(1)(2)'} - \epsilon_U(C_{(1)(2)'})\epsilon_A:$ for all $(1), (2)'\} = \operatorname{span}\{k^2 - \mu\epsilon_A, fe, ke, fk, k^{-2} - \mu\epsilon_A, fk^{-1}, (1 - \mu)\epsilon_A, k^{-1}e\} =$ $\operatorname{span}\{k^2, fe, ke, fk, k^{-2}, fk^{-1}, 1, k^{-1}e\}$, which is 8-dimensional. \Box Remark 5.1. Comparing Majid's Dirac operator with Kulish-Bibikov's Dirac operator, we observe that the former gives better l.c.FODC than the latter and the natural question arises that given a quantum group, which Dirac operator gives the most suitable covariant FODC on this quantum group?

References

- P. N. Bibikov, P. P. Kulish: Dirac operators on the quantum group SU(2) and the quantum sphere. J. Math. Sci., New York 100 (1997), 2039–2050.
- [2] T. Brzeziński, S. Majid: A class of bicovariant differential calculi on Hopf algebras. Lett. Math. Phys. 26 (1992), 67–78.
- [3] A. Connes: Noncommutative Geometry. Academic Press, San Diego, 1994.
- [4] A. Klimyk, K. Schmüdgen: Quantum Groups and Their Representations. Texts and Monographs in Physics. Springer, Berlin, 1997.
- [5] S. Majid: Foundations of Quantum Group Theory. Cambridge Univ. Press, Cambridge, 1995.
- [6] S. Majid: Riemannian geometry of quantum groups and finite groups with nonuniversal differentials. Commun. Math. Phys. 225 (2002), 131–170.
 Zbl MR doi
- [7] S. L. Woronowicz: Differential calculus on compact matrix pseudogroups (quantum groups). Commun. Math. Phys. 122 (1989), 125–170.
 Zbl MR doi

Authors' address: Seyed Ebrahim Akrami (corresponding author), Shervin Farzi, Department of Mathematics, Faculty of Mathemacis, Statistics and Computer Science, Semnan University, P.O.Box: 35195-363, Semnan 35131-19111, Iran, e-mail: akramisa@ semnan.ac.ir, shervin.farzi@semnan.ac.ir.

zbl MR

zbl MR doi

zbl MR doi