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Abstract. Consider the linear congruence equation x1+ . . .+ xk ≡ b (mod ns) for b ∈ Z,
n, s ∈ N. Let (a, b)s denote the generalized gcd of a and b which is the largest ls with l ∈ N
dividing a and b simultaneously. Let d1, . . . , dτ(n) be all positive divisors of n. For each

dj | n, define Cj,s(n) = {1 6 x 6 ns : (x, ns)s = dsj}. K.Bibak et al. (2016) gave a formula
using Ramanujan sums for the number of solutions of the above congruence equation with
some gcd restrictions on xi. We generalize their result with generalized gcd restrictions
on xi and prove that for the above linear congruence, the number of solutions is

1

ns

∑

d|n

cd,s(b)

τ(n)
∏

j=1

(

cn/dj,s

(ns

ds

))gj

where gj = |{x1, . . . , xk} ∩ Cj,s(n)| for j = 1, . . . , τ (n) and cd,s denotes the generalized
Ramanujan sum defined by E. Cohen (1955).
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finite Fourier transform

MSC 2020 : 11D79, 11P83, 11L03, 11A25, 42A16

1. Introduction

The history of attempts to find general solutions of linear congruences is very old.

For the general linear congruence equation

(1.1) a1x1 + . . .+ akxk ≡ b (mod n)

Lehmer (see [9]) proved the following theorem.
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Theorem 1.1. Let a1, . . . , ak, b, n ∈ Z, n > 1. The linear congruence equa-

tion (1.1) has a solution 〈x1, . . . , xk〉 ∈ Zk
n if and only if l | b where l is the gcd of

a1, . . . , ak, n. Furthermore, if this condition is satisfied, then there are ln
k−1 solu-

tions.

The above type of congruence equations is called a restricted linear congruence, if

we put some restrictions on the solution set, like (xi, n) = ti, where ti are given pos-

itive divisors of n. Many authors have attempted to solve this kind of restricted

congruences with various conditions. With ai = 1 and restriction (xi, n) = 1,

Rademacher (see [15]) and Brauer (see [16]) independently gave a formula for the

number of solutions Nn(k, b) of the congruence (1.1). Their formula is

(1.2) Nn(k, b) =
ϕ(n)k

n

∏

p|n,p|b

(

1−
(−1)k−1

(p− 1)k−1

)

∏

p|n,p∤b

(

1−
(−1)k

(p− 1)k

)

,

where ϕ is the Euler totient function and p are all the prime divisors of n. An

equivalent formula involving the Ramanujan sums was proved by Nicol and Vandiver

(see [14]) initially and Cohen (see [7]) later. They proved that

(1.3) Nn(k, b) =
1

n

∑

d|n

cd(b)
(

cn

(n

d

))k

,

where cd(b) denotes the usual Ramanujan sum.

The restricted congruence (1.1) and its solutions have found interesting applica-

tions in various fields like number theory, cryptography, combinatorics and computer

science. The special case of the problem with b = 0 and ai = 1 is related to the

multivariate arithmetic function defined by Liskovets (see [10]) which has many com-

binatorial as well as topological applications. The problem has also found use in

studying universal hashing (see Bibak et al. [4]) which has applications in computer

science.

In [2], Bibak et al. considered the linear congruence (1.1) with ai = 1 and the

restrictions (xi, n) = ti where ti are given positive divisors of n. They proved the

following theorem.

Theorem 1.2. Let b, n ∈ Z, n > 1, and d1, . . . , dτ(n) be the positive divisors of n.

For 1 6 j 6 τ(n), put Cj = {1 6 x 6 n : (x, n) = dj}. The number of solutions of

the linear congruence x1 + . . .+ xk ≡ b (mod n) with gj = |{x1, . . . , xk} ∩ Cj | is
1

(1.4)
1

n

∑

d|n

cd(b)

τ(n)
∏

j=1

(

cn/dj

(n

d

))gj
.

1 The formula appearing in Theorem 1.1 of Bibak et al. (see [2]) seems to contain mistyped d
in the place of n/d in the second Ramanujan sum.
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This result has been proved in some special cases by many authors, for example

in [7], [8], [14], [17]. Bibak et al. themselves gave an alternate proof for the above

result in [3]. The author himself generalized this result in [13] giving a formula for

the number of solutions of the congruence equation as1x1 + . . .+ askxk ≡ b (mod ns)

with the restrictions modified to (xi, n
s)s = dsi where di are the positive divisors of n

and ns is the modulus. We here give an alternate formula for the number of solutions

of the congruence using techniques of finite Fourier transform of arithmetic functions

and properties of Ramanujan sums following [2] closely. At this point, we would like

to mention the quadratic congruence a1x
2
1+ . . .+akx

2
k ≡ b (mod n), the solutions of

which were attempted to be counted by Tóth in [18] using techniques involving the

Jordan totient function and Ramanujan sums. We expect our result and proof, which

use properties of generalized Ramanujan sums, to make some impact on attempts

to solve such nonlinear congruences and to demonstrate the diverse ways in which

generalizations of Ramanujan sums can work.

2. Notations and basic results

For a, b ∈ Z with at least one of them nonzero, the generalized gcd of these numbers

(a, b)s is defined to be the largest l
s with l ∈ N dividing a and b simultaneously.

Therefore (a, b)1 = (a, b), the usual gcd of two integers, τ(n) denotes the number of

positive divisors of an integer n.

For a positive integer r, an arithmetic function f is said to be periodic with period r

(or r-periodic) if f(m+ r) = f(m) for every m ∈ Z. By e(x), we denote the complex

exponential funcion exp(2πix) which has period 1.

Let cr(n) denote the Ramanujan sum which is defined to be the sum of nth powers

of primitive rth roots of unity. That is,

(2.1) cr(n) =

r
∑

j=1,(j,r)=1

e
(jn

r

)

.

For a positive integer s, Cohen (see [5]) generalized the Ramanujan sum defining cr,s

by

(2.2) cr,s(n) =

rs
∑

j=1,(j,rs)s=1

e
(nj

rs

)

.

Note that for s = 1, this definition gives the usual Ramanujan sum defined in
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equation (2.1). In the same paper, Cohen also gave the formula

(2.3) cr,s(n) =
∑

d|r,ds|n

µ
( r

d

)

ds,

where µ is the Moebius function.

We now have an easy, but very useful lemma.

Lemma 2.1. As a function of a, (a, b)s is b-periodic.

P r o o f. Note that (a, b)s is the largest l
s with l ∈ N that divides a and b

simultaneously. So a = lsa1 and b = lsb1 with a1 and b1 sharing no common sth

power. Now ls | a+ b and ls | b. If (a + b, b)s = lsls1 for some l1 ∈ N, then ls1 | a+ b

and ls1 | b so that ls1 | a as well. Therefore (a, b)s = lsls1 and so l1 = 1. Then

(a+ b, b)s = ls. �

Let r, s be positive integers. A function f that satisfies f(m) = f((m, rs)s) is

called an (r, s)-even function. This concept was introduced by McCarthy in [11] and

many of its properties were studied there. The above lemma says that an (r, s)-even

function is rs-periodic.

The following statement appeared as Lemma (2) in [6]. Note that our notation

cr,s(n) is exactly the same as the notation cs(n, r) given by Cohen in [6].

Lemma 2.2. If (n, rs)s = ls, then cr,s(n) = cr,s(l
s).

The above two lemmas combined together tell that cr,s(n) is r
s-periodic. It also

follows that cr,s(−n) = cr,s(n).

We now have one more lemma. Since we could not find a proof for this anywhere,

we prove it using some elementary arguments.

Lemma 2.3. Let e | n. Then ce,s is (n, s)-even. That is, ce,s(m) = ce,s((m,ns)s).

P r o o f. We use two facts;

(1) ce,s is (e, s)-even.

(2) ((m,ns)s, e
s)s = ls if and only if ls is the largest sth power dividing (m,ns)s

and es, that is if and only if ls is the largest sth power dividing m, ns and es.

Therefore ls is the largest sth power dividing m and es, and so (m, es)s = ls. The

conclusion is that ((m,ns)s, e
s)s = (m, es)s.

Combining these two facts, we get

ce,s((m,ns)s) = ce,s(((m,ns)s, e
s)s) = ce,s((m, es)s) = ce,s(m).

�
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For an r-periodic arithmetic function f(n), its finite Fourier transform is defined

as the function

(2.4) f̂(b) =
1

r

r
∑

n=1

f(n)e
(−bn

r

)

.

A Fourier representation of f is given by

(2.5) f(n) =

r
∑

b=1

f̂(b)e
(bn

r

)

.

See, for example, [12], page 109 or [1], Chapter 8 for a detailed study on finite Fourier

transforms.

We are now ready to state and prove our main result.

3. The main theorem

Theorem 3.1. Let b, n ∈ Z, n > 1, and d1 . . . , dτ(n) be the positive divisors of n.

For 1 6 j 6 τ(n), define Cj,s(n) = {1 6 x 6 ns : (x, ns)s = dsj}. The number of

solutions (with all permutations of a solution considered to be the same) of the linear

congruence

(3.1) x1 + . . .+ xk ≡ b (mod ns)

with given numbers gj = |{x1, . . . , xk} ∩ Cj,s(n)|, 1 6 j 6 τ(n) is

(3.2)
1

ns

∑

d|n

cd,s(b)

τ(n)
∏

j=1

(

cn/dj,s

(ns

ds

))gj
.

P r o o f. As we have already mentioned, the proof uses the basic properties

of finite Fourier transforms of rs-periodic functions, the properties of generalized

Ramanujan sums, and some combinatorial arguments. We follow the same approach

used by Bibak et al. in [2].

Let f̂(b) denote the number of solutions of the linear congruence (3.1). Therefore

f̂(b) is the number of possible ways of writing b as a sum modulo ns using gj elements

in Cj,s where j varies from 1 to τ(n). Note that if b is replaced with b + ns in this

equation, it remains the same. So f̂(b) = f̂(b + ns) and therefore f̂ is ns-periodic.

Let us consider the following product of exponential sums:

τ(n)
∏

j=1

(

∑

x∈Cj,s

e
(mx

ns

)

)gj

.
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To understand this product of sums better, put α = e(m). Then the product becomes

τ(n)
∏

j=1

(

∑

x∈Cj,s

αx/ns

)gj

.

Expanding this product of sums, we get terms like α1/ns

, α2/ns

, . . . , α(ns−1)/ns

.

Some of these powers need not occur as it depends on whether the sum of terms

in Cj,s can be equal to that power. For example, α
5/ns

does not exist if the elements

in various Cj,s cannot add up together to give 5 modulo n
s. Now, how many times

does each αb/ns

exist? As many times as is the number of possible solutions of the

linear congruence with gj entries from Cj,s. But this is precisely our f̂(b). So we get

ns

∑

b=1

f̂(b)e
(bm

ns

)

=

τ(n)
∏

j=1

(

∑

x∈Cj,s

e
(mx

ns

)

)gj

.

We now calculate the inner sum in this product,
∑

x∈Cj,s

e
(mx

ns

)

=
∑

16x6ns,
(x,ns)s=ds

j

e
(mx

ns

)

=
∑

16y6ns/ds
j ,

(y,ns/ds
j)s=1

e
( my

ns/dsj

)

= cn/dj ,s(m),

which gives
ns

∑

b=1

f̂(b)e
(bm

ns

)

=

τ(n)
∏

j=1

(cn/dj ,s(m))gj .

Use the fact that f̂(b) is ns-periodic. By the finite Fourier transform theory, we

get

f̂(b) =
1

ns

ns

∑

m=1

τ(n)
∏

j=1

(cn/dj ,s(m))gj e
(−bm

ns

)

now collect the terms with same generalized gcd

=
1

ns

∑

d|n

∑

16m6ns,
(m,ns)s=ds

τ(n)
∏

j=1

(cn/dj ,s(m))gj e
(−bm

ns

)

=
1

ns

∑

d|n

∑

16m′6ns/ds,
(m′,ns/ds)s=1

τ(n)
∏

j=1

(cn/dj ,s(m
′ds))gj e

(−bm′ds

ns

)

=
1

ns

∑

d|n

∑

16m′
6ns/ds,

(m′,ns/ds)s=1

e
(−bm′

ns/ds

)

τ(n)
∏

j=1

(cn/dj ,s((m
′ds, ns)s))

gj
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=
1

ns

∑

d|n

∑

16m′6ns/ds,
(m′,ns/ds)s=1

e
(−bm′

ns/ds

)

τ(n)
∏

j=1

(cn/dj ,s(d
s))gj

=
1

ns

∑

d|n

cn/d,s(b)

τ(n)
∏

j=1

(cn/dj ,s(d
s))gj =

1

ns

∑

d|n

cd,s(b)

τ(n)
∏

j=1

(

cn/dj ,s

(ns

ds

))gj
.

�

We give a small example to demonstrate the result: Consider the linear congruence

x1 + x2 ≡ 5 (mod 16). Here ns = 42, b = 5, k = 2, {d2j} = {1, 4, 16} and so

C1,2 = {1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15},

C2,2 = {4, 8, 12},

C3,2 = {16}.

Suppose that we want to find solutions with the restrictions (x1, 16)2 = 1 and

(x2, 16)2 = 4. In this case g1 = 1, g2 = 1, g3 = 0. By simple observation, we get the

number of solutions to be 3, which are 〈1, 4〉, 〈9, 12〉, 〈13, 8〉. Now according to our

formula, the computation is the following:

∑

d|4

cd,2(5)

3
∏

j=1

c4/dj,2

(16

d2

)gj

= c1,2(5) ·

3
∏

j=1

c4/dj,2

(16

12

)gj
+ c2,2(5) ·

3
∏

j=1

c4/dj,2

(16

22

)gj

+ c4,2(5) ·

3
∏

j=1

c4/dj ,2

(16

42

)gj

= c1,2(5) · (c4,2(16) · c2,2(16)c1,2(16)) + c2,2(5) · (c4,2(4) · c2,2(4)c1,2(4))

+ c4,2(5) · (c4,2(1) · c2,2(1)c1,2(1))

= 1 · 12 · 3 · 1 + (−1) · (−4) · 3 · 1 + 0 · 0 · (−1) · 1 = 48,

which on division by 16 gives 3 as the number of solutions. We have used iden-

tity (2.3) to evaluate cr,s at various values.

Though it appears that computing the number of solutions using the above formula

is more tedious than performing the direct calculations, we feel that such a closed

formula may be useful for many other purposes. For example, the same formula

derived by Bibak et al. in [2] with s = 1 was used to design an almost-universal hash

function family in [4] which had applications in authentication schemes.
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