A NOTE ON THE SIZE RAMSEY NUMBERS
FOR MATCHINGS VERSUS CYCLES

EDY TRI BASKORO, Bandung, TOMÁŠ VETRÍK, Bloemfontein

Received December 30, 2018. Published online June 2, 2020.
Communicated by Riste Škrekovski

Abstract. For graphs G, F_1, F_2, we write $G \to (F_1, F_2)$ if for every red-blue colouring of the edge set of G we have a red copy of F_1 or a blue copy of F_2 in G. The size Ramsey number $\hat{r}(F_1, F_2)$ is the minimum number of edges of a graph G such that $G \to (F_1, F_2)$. Erdős and Faudree proved that for the cycle C_n of length n and for $t \geq 2$ matchings tK_2, the size Ramsey number $\hat{r}(tK_2, C_n) < n + (4t + 3)\sqrt{n}$. We improve their upper bound for $t = 2$ and $t = 3$ by showing that $\hat{r}(2K_2, C_n) \leq n + 2\sqrt{3n} + 9$ for $n \geq 12$ and $\hat{r}(3K_2, C_n) < n + 6\sqrt{n} + 9$ for $n \geq 25$.

Keywords: size Ramsey number; matching; cycle

MSC 2020: 05C55, 05C35

1. INTRODUCTION

Ramsey theory studies problems which can be grouped under the common theme that every large system contains a highly organized subsystem. Ramsey-type theorems have roots in various branches of mathematics and the theory developed from them has influenced areas such as set theory, number theory, ergodic theory, geometry and theoretical computer science.

The size Ramsey number was introduced by Erdős et al. (see [3]) who investigated the size Ramsey number for various graphs. Size Ramsey numbers for all pairs of connected graphs having at most four vertices were found by Faudree and Sheehan (see [4]). Bounds on the size Ramsey number for trees were presented by Ke in [5], paths and stars were investigated by Lortz and Mengersen in [6]. Modifications of

The work of E. T. Baskoro was supported by the WCU-ITB Research Incentive in House Collaboration, Institut Teknologi Bandung, Ministry of Research, Technology and Higher Education, Indonesia.

DOI: 10.21136/MB.2020.0174-18

© The author(s) 2020. This is an open access article under the CC BY-NC-ND licence ☑️
the size Ramsey number have been studied extensively, too (see [1] and [7] for results on the size multipartite Ramsey numbers).

We denote the edge set of a graph G by $E(G)$ and the number of edges in G by $|E(G)|$. For an edge set $E_1 \subseteq E(G)$, the edge-induced subgraph of G consists of the edges in E_1 and the vertices incident to edges in E_1.

A cycle of length n (an n-cycle) $C_n = v_1v_2 \ldots v_nv_1$ is a graph with n vertices v_1, v_2, \ldots, v_n and n edges $v_1v_2, v_2v_3, \ldots, v_{n-1}v_n$ and v_nv_1. Similarly, a path $v_1v_2 \ldots v_n$ of length $n - 1$ contains $n - 1$ edges $v_1v_2, v_2v_3, \ldots, v_{n-1}v_n$. For $t \geq 1$, the graph which consists of t independent edges (matchings) is denoted by tK_2 (it is a 1-regular graph having $2t$ vertices).

For simple graphs G, F_1, F_2, we write $G \to (F_1, F_2)$ if for each 2-colouring (say red and blue) of $E(G)$ we necessarily get a red copy of F_1 or a blue copy of F_2 in G. The size Ramsey number $\hat{r}(F_1, F_2)$ is the minimum number of edges in a graph G such that $G \to (F_1, F_2)$.

Erdős and Faudree (see [2]) mentioned that the difficulty in calculating $\hat{r}(tK_2, C_n)$ is surprising. They proved that for a fixed $t \geq 2$, there exist positive constants c_1, c_2, such that $n + c_1\sqrt{n} < \hat{r}(tK_2, C_n) < n + c_2\sqrt{n}$. Their upper bound depends on t and it has the form

$$\hat{r}(tK_2, C_n) < n + (4t + 3)\sqrt{n}.$$

We considerably improve this bound for $t = 2$ and $t = 3$ by showing that $\hat{r}(2K_2, C_n) \leq n + 2\sqrt{3n} + 9$ for $n \geq 12$ and $\hat{r}(3K_2, C_n) < n + 6\sqrt{n} + 9$ for $n \geq 25$.

2. Results

Let us present upper bounds on the size Ramsey numbers $\hat{r}(2K_2, C_n)$ and $\hat{r}(3K_2, C_n)$.

Theorem 2.1. Let $n \geq 12$. Then $\hat{r}(2K_2, C_n) \leq n + 2\sqrt{3n} + 9$.

Proof. Let k be an integer where $k\varphi + 2 \leq n < (k+1)\varphi + 2$, and $\varphi = \left\lfloor \frac{1}{\sqrt{3}}n \right\rfloor$. Then we can write $n = k\varphi + 2 + p$, where $0 \leq p \leq \varphi - 1$. Let $t_1, t_2 \in \mathbb{Z}$, where $1 \leq t_1 + 1 < t_2 \leq k + 2$ and $(t_1, t_2) \neq (0, k + 2)$. Let G be a graph having $n' = (k + 3)\varphi$ vertices $v_0, v_1, v_2, \ldots, v_{n'-1}$ and

$$E(G) = \{v_iv_{i+1} : i = 0, 1, 2, \ldots, n'-1\} \cup \{v_jv_{j+2\varphi} : j = 0, \varphi, 2\varphi, \ldots, (k+2)\varphi\} \cup \{v_{t_1\varphi}v_{(t_1+1)\varphi - p}, v_{t_2\varphi}v_{(t_2+1)\varphi - p}\}$$.
the indices are taken modulo \(n' \). Since \(n \geq 12 \), we have \(\varphi \geq 2 \) and \(v_{t_1\varphi}v_{(t_1+1)\varphi-p} \),\(v_{t_2\varphi}v_{(t_2+1)\varphi-p} \notin \{v_iv_{i+1}: i = 0, 1, 2, \ldots, n'-1\} \). Thus
\[
|E(G)| = (k + 3)\varphi + (k + 3) + 2 = n - p + 3\varphi + k + 3.
\]

It can be checked that \(k \leq 3\varphi + 6 \) (where \(k = 3\varphi + 6 \) only if \(\frac{1}{9}(n + 1) \) is a square). Therefore
\[
|E(G)| \leq n + 6\varphi + 9 \leq n + 2\sqrt{3n} + 9.
\]

It remains to show that \(G \) contains a red \(2K_2 \) or a blue \(C_n \). Assume that \(G \) does not contain a red \(2K_2 \). We show that \(G \) contains a blue \(C_n \). Let us consider two cases.

Case 1. A graph induced by red edges is a subgraph of a star. Let \(v_i \) be the center of this star. Without loss of generality we can suppose that \(1 \leq i \leq \varphi \). We have a blue path \(v_{2\varphi}v_{2\varphi+1}\ldots v_{(k+3)\varphi-1}v_0 \) of length \((k + 1)\varphi \) and a blue cycle \(C' = v_0v_{2\varphi}v_{2\varphi+1}\ldots v_{(k+3)\varphi-1}v_0 \) of length \((k + 1)\varphi + 1 \). Then we can replace the path \(v_{t_2\varphi}v_{t_2\varphi}v_{(t_2+1)\varphi}v_{(t_2+1)\varphi}v_{(t_2+1)\varphi}v_{(t_2+1)\varphi}v_{(t_2+1)\varphi}v_{(t_2+1)\varphi}v_0 \) of length \(p + 1 \) to obtain a blue cycle \(C \) of length \(k\varphi + p + 2 = n \).

Case 2. A graph induced by red edges is a 3-cycle. The graph \(G \) contains 3-cycles only if \(p = \varphi - 2 \) (cycles \(v_{t_i\varphi}v_{t_i\varphi+1}v_{t_i\varphi+2}v_{t_i\varphi} \) for \(i = 1, 2 \)). Without loss of generality we can suppose that \(t_1 = 0 \) and the 3-cycle \(v_0v_1v_2v_0 \) is red. Then \(G \) contains blue cycles \(C' \) and \(C \) described in the previous case. The proof is complete. \(\square \)

Theorem 2.2. Let \(n \geq 25 \). Then \(\hat{r}(3K_2, C_n) < n + 6\sqrt{n} + 9 \).

Proof. Let \(k \) be an integer such that \(k\omega + 3 \leq n < (k+1)\omega + 3 \), where \(\omega = \lfloor \sqrt{n} \rfloor \). Then we can write
\[
(2.1) \quad n = k\omega + 3 + p,
\]
where \(0 \leq p \leq \omega - 1 \). Let \(t_1, t_2, t_3 \in \mathbb{Z} \), where \(1 \leq t_1 + 1 < t_2 \leq t_3 - 1 \leq k + 1 \) and \((t_1, t_3) \neq (0, k + 2) \). Let \(G \) be a graph having \(n' = (k + 3)\omega \) vertices \(v_0, v_1, v_2, \ldots, v_{n'-1} \) and
\[
\begin{align*}
E(G) = \{v_iv_{i+1}: i = 0, 1, 2, \ldots, n'-1\} \cup \{v_jv_{j+\omega}: j = 0, \omega, 2\omega, \ldots, n'-\omega\} \\
\cup \{v_sv_{s+\omega}: r = \left\lfloor \frac{\omega}{2} \right\rfloor, \left\lfloor \frac{3\omega}{2} \right\rfloor, \left\lfloor \frac{5\omega}{2} \right\rfloor, \ldots, n'-\left\lfloor \frac{\omega}{2} \right\rfloor\} \\
\cup \{v_sv_{s+2\omega-1}: s = 0, \omega, 2\omega, \ldots, n'-\omega\} \cup \{v_{t_i\omega}v_{(t_i+1)\omega-p}: i = 1, 2, 3\},
\end{align*}
\]
the indices are taken modulo \(n' \). Then

\[
\tag{2.2}
|E(G)| = (k + 3)\omega + 3(k + 3) + 3 = (n - 3 - p) + 3\omega + 3(k + 3) + 3 \\
\leq n + 3\omega + 3k + 9.
\]

It can be checked that \(k \leq \lceil \sqrt{n} \rceil \). Note that \(k = \lceil \sqrt{n} \rceil \) only if \(n \) has the form \(n = b^2 - b + 3 + p \) (where \(0 \leq p \leq b - 4 \)). Then \(\omega = b - 1 \) and \(k = b \). We obtain

\[
\tag{2.3}
\omega + k = 2\left(b - \frac{1}{2}\right) < 2\sqrt{n},
\]

since \(n = (b - \frac{1}{2})^2 + \frac{11}{4} + p \). From (2.2) and (2.3) we get \(|E(G)| < n + 6\sqrt{n} + 9 \).

If \(k = \omega \), then from (2.1) we know that \(\sqrt{n} \) is not an integer \((\omega < \sqrt{n}) \) and by (2.2), we obtain \(|E(G)| < n + 6\sqrt{n} + 9 \). If \(k < \omega \), again by (2.2), \(|E(G)| < n + 6\sqrt{n} + 9 \).

It remains to show that \(G \) has a red \(3K_2 \) or a blue \(C_n \). Assume that \(G \) does not contain a red \(3K_2 \). We show that \(G \) contains a blue \(C_n \). Let us consider a few cases.

Case 1. A graph induced by red edges is a subgraph of two stars. Let \(v_i \) and \(v_j \) be the centers of these stars. Without loss of generality we can suppose that \(1 \leq i \leq \omega \) and \(1 \leq j - i \leq \frac{1}{2}n' \). If \(j \leq 2\omega - 2 \), then \(G \) has a blue path \(v_0v_{2\omega-1}v_{2\omega} \) of length 2 and also a blue cycle \(C' = v_0v_{2\omega-1}v_{2\omega} \ldots v_{(k+3)\omega-1}v_0 \) of length \((k + 1)\omega + 2 \). We can replace the path \(v_{t3\omega}v_{t3\omega+1} \ldots v_{(t3+1)\omega} \) of length \(\omega \) in \(C' \) by the blue path

\[
v_{t3\omega}v_{(t3+1)\omega-p}v_{(t3+1)\omega-p+1} \ldots v_{(t3+1)\omega}
\]

of length \(p + 1 \) to obtain a blue cycle of length \(k\omega + p + 3 = n \).

Let \(j \geq 2\omega - 1 \). If \(i \neq \omega \), then \(G \) contains a blue path \(v_0v_{\omega}v_{\omega+1} \ldots v_{[3\omega/2]} \) of length \(\lceil \frac{1}{2}\omega \rceil + 1 \), and if \(i = \omega \), then \(G \) contains a blue path \(v_0v_1 \ldots v_{[\omega/2]}v_{[3\omega/2]} \) of length \(\lceil \frac{1}{2}\omega \rceil + 1 \).

Note that \(\frac{1}{2}(c - 1)\omega < j \leq \frac{1}{2}(c + 1)\omega \) for some even \(c \geq 4 \). If \(j \neq \frac{1}{2}(c + 1)\omega \), then \(v_{[(c-1)\omega/2]}v_{[(c+1)\omega/2]}v_{[(c+1)\omega/2]+1} \ldots v_{(c+1)\omega} \) is a blue path having length \(\lceil \frac{1}{2}\omega \rceil + 1 \), and if \(j = \frac{1}{2}(c + 1)\omega \), then \(v_{[(c-1)\omega/2]}v_{[(c-1)\omega/2]+1} \ldots v_{(c/2)\omega}v_{(c/2+1)\omega} \) is a blue path of length \(\lceil \frac{1}{2}\omega \rceil + 1 \).

\(G \) also contains a blue path \(v_{[3\omega/2]}v_{[3\omega/2]+1} \ldots v_{[(c-1)\omega/2]} \) having length \(\frac{1}{2}(c - 2)\omega \) and a blue path \(v_{(c/2+1)\omega}v_{(c/2+1)\omega+1} \ldots v_{(k+3)\omega-1}v_0 \) having length \((k - \frac{1}{2}c + 2)\omega \).

Thus \(G \) contains a blue cycle \(C'' \) having length

\[
\left(\left\lceil \frac{\omega}{2} \right\rceil + 1 \right) + \left(\left\lceil \frac{\omega}{2} \right\rceil + 1 \right) + \left(\frac{c}{2} - 2 \right)\omega + \left(k - \frac{c}{2} + 2 \right)\omega = k\omega + \omega + 2.
\]

From the definition of the edges \(v_{t\omega}v_{(t+1)\omega-p} \), it follows that the cycle \(C'' \) contains a path \(v_{t\omega}v_{(t+1)\omega} \ldots v_{(t+1)\omega} \) of length \(\omega \) for some \(i \in \{1, 2, 3\} \). That path can be
replaced by the blue path $v_{t_1,\omega} v_{(t_1+1)\omega-p} v_{(t_1+1)\omega-p+1} \cdots v_{(t_1+1)\omega}$ of length $p+1$, which implies that G has a blue cycle of length $k\omega + p + 3 = n$.

Case 2. A graph induced by red edges contains a 3-cycle. G contains 3-cycles only if $p = 1$ (cycles $v_{t_1,\omega} v_{(t_1+1)\omega-i} v_{(t_1+1)\omega}$ for $i = 1, 2, 3$) or $p = \omega - 2$ (cycles $v_{t_1,\omega} v_{t_1,\omega+1} v_{t_1,\omega+2} v_{t_1,\omega}$ for $i = 1, 2, 3$).

Without loss of generality we can suppose that $t_1 = 0$ and the 3-cycle $v_0 v_{\omega-1} v_0 v_0$ is red for $p = 1$, and the 3-cycle $v_0 v_1 v_2 v_0$ is red for $p = \omega - 2$.

Case 2.1. A graph induced by red edges is a 3-cycle and a subgraph of a star. Let v_j be the center of this star. If $j \leq 2\omega - 2$, then G has a blue cycle $C' = v_0 v_{2\omega-1} v_2 v_\omega \cdots v_{(k+3)\omega-1} v_0$ of length $(k+1)\omega + 2$. Let us replace the path $v_{t_3,\omega} v_{t_3,\omega+1} \cdots v_{(t_3+1)\omega}$ of length ω in C' by the blue path $v_{t_3,\omega} v_{(t_3+1)\omega-p} v_{(t_3+1)\omega-p+1} \cdots v_{(t_3+1)\omega}$ of length $p + 1$ to obtain a blue cycle of length $k\omega + p + 3 = n$.

If $j \geq 2\omega - 1$, then G contains a blue path $v_0 v_1 \cdots v_{\lfloor \omega/2 \rfloor} v_{3\omega/2}$ of length $\lfloor \frac{1}{\omega} \omega \rfloor + 1$ for $p = 1$, and a blue path $v_0 v_{\omega} v_{\omega+1} \cdots v_{3\omega/2}$ of length $\lfloor \frac{2}{\omega} \omega \rfloor + 1$ for $p = \omega - 2$. It can be shown as in the last three paragraphs of Case 1 that G has a blue cycle of length n.

Case 2.2. A graph induced by red edges consists of two 3-cycles. Without loss of generality we can suppose that $v_{z\omega} v_{z\omega+1} v_{z\omega+2} v_{z\omega}$ or $v_{z\omega} v_{(z-1)\omega} v_{z\omega-1} v_{z\omega}$ for some $z \geq 2$ is the other red 3-cycle. Thus G contains a blue path $v_{\lfloor 3\omega/2 \rfloor} v_{\lfloor 3\omega/2 \rfloor+1} \cdots v_{\lfloor (z-1)\omega \rfloor} v_{\lfloor (z+1)\omega \rfloor} v_{\lfloor (z+1)\omega \rfloor+1} \cdots v_{(k+3)\omega-1} v_0$ of length $k\omega + \lfloor \frac{1}{\omega} \omega \rfloor + 1$. Note that we also have a blue path of length $\lfloor \frac{1}{\omega} \omega \rfloor + 1$ between v_0 and $v_{\lfloor 3\omega/2 \rfloor}$, which means that G contains a blue cycle C'' of length $k\omega + \omega + 2$. This cycle contains a path $v_{t_i,\omega} v_{t_i,\omega+1} \cdots v_{t_{(i+1)\omega}}$ for some $i \in \{1, 2, 3\}$. That path can be replaced by the blue path $v_{t_i,\omega} v_{(t_i+1)\omega-p} v_{(t_i+1)\omega-p+1} \cdots v_{(t_i+1)\omega}$, so G has a blue cycle of length $k\omega + p + 3 = n$.

Case 3. A graph induced by red edges consists of a 5-cycle. Since $n \geq 25$, every 5-cycle of G contains an edge $v_{t_i,\omega} v_{(t_i+1)\omega-p}$ for some i, where $1 \leq i \leq 3$. Without loss of generality we can suppose that $t_i = 0$ and the red 5-cycle contains the edge $v_0 v_{\omega-p}$.

All 5-cycles (except for two 5-cycles) containing the edge $v_0 v_{\omega-p}$ consist only of edges connecting some of the vertices $v_0, v_1, \ldots, v_{\lfloor 3\omega/2 \rfloor}$ or some of the vertices $v_{(k+2)\omega}, v_{(k+2)\omega+1}, \ldots, v_{\lfloor \omega/2 \rfloor}$. Then we have a blue cycle $v_0 v_{2\omega-1} v_{2\omega} \cdots v_{(k+3)\omega-1} v_0$ or a blue cycle $v_{(k+2)\omega} v_{\omega-1} v_{\omega} \cdots v_{(k+2)\omega}$ (of length $(k+1)\omega + 2$). These cycles contain the path $v_{t_3,\omega} v_{t_3,\omega+1} \cdots v_{t_{(t_3+1)\omega}}$. We replace this path by the blue path $v_{t_3,\omega} v_{t_3,\omega+1} \cdots v_{t_{(t_3+1)\omega}-p} v_{t_{(t_3+1)\omega}-p+1} \cdots v_{t_{(t_3+1)\omega}}$ to obtain a blue cycle of length $k\omega + p + 3 = n$.

233
Those two exceptions are the 5-cycles

\[v_0v_{(k+2)\omega}v_{\omega-1}v_{\omega-2}v_{\omega-3}v_0 \quad \text{and} \quad v_0v_{2\omega-1}v_{2\omega}v_{\omega}v_{\omega-1}v_0 \]

(note that these cycles exist only for particular values of \(p \)).

If the 5-cycle \(v_0v_{(k+2)\omega}v_{\omega-1}v_{\omega-2}v_{\omega-3}v_0 \) is red, then the cycle

\[v_0v_{2\omega-1}v_{2\omega}v_{\omega}v_{\omega-1}v_0 \]

is blue, and if the 5-cycle \(v_0v_{2\omega-1}v_{2\omega}v_{\omega}v_{\omega-1}v_0 \) is red, then we have a blue cycle \(v_{\lfloor \omega/2 \rfloor}v_{\lfloor 3\omega/2 \rfloor}v_{\lfloor 5\omega/2 \rfloor}v_{\lfloor 5\omega/2 \rfloor+1} \cdots v_{\lfloor \omega/2 \rfloor} \). These blue cycles have length \((k+1)\omega+2 \) and it is easy to obtain a blue cycle having length \(k\omega+p+3 = n \).

\[\square \]

References

Authors’ addresses: Edy Tri Baskoro, Institut Teknologi Bandung, Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Jl. Ganesa 10, Bandung, Jawa Barat, Indonesia, e-mail: ebaskoro@math.itb.ac.id; Tomáš Vetrík, University of the Free State, Department of Mathematics and Applied Mathematics, 205 Nelson Mandela Drive, Park West, Bloemfontein, 9301, South Africa, e-mail: vetrikt@ufs.ac.za.