
146 (2021) MATHEMATICA BOHEMICA No. 3, 279–288

ON AN ENTIRE FUNCTION REPRESENTED BY MULTIPLE

DIRICHLET SERIES

Lakshika Chutani, Sohna

Received May 27, 2019. Published online September 30, 2020.
Communicated by Grigore Sălăgean

Abstract. Consider the space L of entire functions represented by multiple Dirichlet
series that becomes a non uniformly convex Banach space which is also proved to be dense,
countable and separable. Continuing further, for the given space L the characterization of
bounded linear transformations in terms of matrix and characterization of linear functional
has been obtained.
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1. Introduction

A series of the form

f(s) =

∞∑

n=1

ane
λns, s = σ + it, σ, t ∈ R,

where an’s belong to C and λn is a strictly increasing sequence of positive numbers

in R which satisfies

0 < λ1 < λ2 < λ3 < . . . < λn . . . , λn → ∞ as n → ∞,

is called a Dirichlet series. Originally the above series in the form
∞∑
n=1

ann
−s was first

instigated by Dirichlet for his studies in the number theory. Dirichlet and Dedekind

considered only the real values of the variable s and obtained many results. The

initial results were obtained by Cahen (see [6]) who involved the complex values of s

and determined the nature of the region of convergence of the series (1.1). Further
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Littlewood in [9] succeeded in proving that the Dirichlet series could be used in the

study of entire functions. Moving a step ahead in the given field it was established

in [19], that the Dirichlet series could also be used in the study of meromorphic

functions.

Let

(1.1) f(s1, s2, . . . , sn) =
∞∑

m1=1

∞∑

m2=1

. . .
∞∑

mn=1

am1,m2,...,mn
e(λ1m1

s1+λ2m2
s2+...+λnmn

sn)

be a multiple Dirichlet series, where sj = σj + itj , j ∈ {1, 2, . . . , n}, and

am1,m2,...,mn
∈ C. Also

0 < λp1
< λp2

< . . . < λpk
→ ∞ as k → ∞ for p = 1, 2, . . . , n.

To simplify the form of an n-tuple Dirichlet series we use the following notations:

s = (s1, s2, . . . , sn) ∈ Cn,

m = (m1,m2, . . . ,mn) ∈ Cn,

λnmn
= (λ1m1

, λ2m2
, . . . , λnmn

) ∈ Rn,

λnmn
s = λ1m1

s1 + λ2m2
s2 + . . .+ λnmn

sn,

|λnmn
| = λ1m1

+ λ2m2
+ . . .+ λnmn

,

|m| = m1 +m2 + . . .+mn.

Thus, the series (1.1) can be written as

(1.2) f(s) =

∞∑

m=1

ameλnmn
s.

Janusauskas in [10] showed that if there exists a tuple p > 0̄ = (0, 0, . . . , 0) such

that

(1.3) lim sup
|m|→∞

∑∞
k=1 logmk

pλnmn

= 0,

then the domain of absolute convergence of (1.2) coincides with its domain of con-

vergence. Sarkar in [27] proved that the necessary and sufficient condition for the

series (1.2), where am ∈ C satisfies (1.3), to be entire is that

(1.4) lim
|m|→∞

log |am|

|λnmn
|
= −∞.
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Meili and Zongsheng in [20] investigated the convergence and growth of an n-tuple

Dirichlet series and thus established the equivalence relation between the order and

its coefficients. Vaish in [31] proved a necessary and sufficient condition so that the

Goldberg order of a multiple Dirichlet series defining an entire function remained

unaltered under the rearrangements of coefficients of the series.

Let u(s) =
∞∑

m=1
αmeλnmn

s be a fixed Dirichlet series having none of αm’s equal

to zero and exponents satisfying (1.3). Let L be the class of all functions f having

the same sequence {λnmn
} of exponents as that of u and |am/αm| → 0 as |m| → ∞.

Moreover, if u represents an entire function then L includes entire functions only.

The norm in L is defined as

(1.5) ‖f‖ = sup
|m|

∣∣∣ am
αm

∣∣∣.

Since ages many researchers have worked in the field of Dirichlet series in one variable

which can be seen in [14] and [15]. Various results have been proved for different

classes of entire Dirichlet series and a few of them may be found in [1]–[5], [7], [8],

[11], [14]–[16], [20]–[31].

Further in [16] Kumar and Manocha studied results for a Dirichlet series having

complex frequencies. Very recently Akanksha and Srivastava in [1] studied the vector-

valued Dirichlet series in a half-plane and thus proved certain fruitful results. In [13]

Kumar and Lakshika worked on Dirichlet series in two variables thus expanding the

field further. Kong and Gan in [12] and Kong in [11] studied facts on order and type

of Dirichlet series.

In [5] emphasis was laid on the bornological properties of the space of entire

functions of several complex variables which further widens the field of the Dirichlet

series.

In the present paper multiple Dirichlet series (1.1) are considered, their form is

reduced to (1.2) and certain aspects of bounded linear transformations in the form

of a matrix and characterization of a linear functional are obtained. This further

expands the field taking it to different heights. The theory of Dirichlet series was

further expanded when eloquent developments were made by Tanaka (see [28]–[30]),

Azpeitia (see [2]–[4]), Rahman (see [21]–[26]) and Dagene (see [7]).

2. Main results

In this section main results are proved. For the definitions of terms used refer

to [17] and [18].

Theorem 1. L is a non uniformly convex Banach space which is also separable.
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P r o o f. In order to prove this theorem we need to show that L is complete

under the norm defined in (1.5). Let {fp} be any Cauchy sequence in L where

fp(s) =

∞∑

m=1

a(p)m eλnmn
s.

Then for a given ε > 0 we have

‖fp − fq‖ < ε ∀ |p|, |q| > |M |,

that is,

sup
|m|

∣∣∣a
(p)
m − a

(q)
m

αm

∣∣∣ < ε ∀ |p| > |M |.

This shows that {a
(p)
m } forms a Cauchy sequence in C for all values of |m| > 1. Hence

lim
|p|→∞

a(p)m = am ∀ |m| > 1.

Letting |q| → ∞ above we get

sup
|m|

∣∣∣a
(p)
m − am
αm

∣∣∣ < ε ∀ |p| > |M |.

Thus fp → f as |p| → ∞. Also

∣∣∣ am
αm

∣∣∣ 6
∣∣∣a

(p)
m − am
αm

∣∣∣+
∣∣∣a

(p)
m

αm

∣∣∣ → 0.

Thus L is complete, therefore a Banach space. Further consider f and g defined as

f(s) =
∞∑

m=1

αmeλnmn
s and g(s) =

∞∑

m=1

α̇me
λṅṁṅ

s
+ αmeλnmn

s,

where |m|, |n|, |ṁ|, |ṅ| are fixed positive integers.

Clearly f, g ∈ L and ‖f‖ = ‖g‖ = 1, ‖f − g‖ = 1 > ε, but ‖f + g‖ = 2 � 2 − 2δ

for any positive δ(ε) which shows that L is not uniformly convex.

Further, L is proved to be separable. For this consider the set consisting of the

functions f represented as f(s) =
k∑

m=1
cmeλnmn

s, where |k| is a positive integer, and

define cm = rm + qm such that rm, qm are rational numbers.
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Clearly the given set is countable and dense in L. We know that f(s) =
∞∑

m=1
ameλnmn

s ∈ L if and only if |am/αm| → 0, |m| → ∞. This implies |am/αm| 6 1
2ε

for |m| > |M̃ |.

Define h(s) ∈ L as h(s) =
∞∑

m=1
cmeλnmn

s such that bm = 0 for |m| > |M̃ | and

∣∣∣am − cm
αm

∣∣∣ 6 1

2
ε for |m| = 1, 2, 3, . . . , |M̃ |.

Then

‖f − h‖ 6 sup
|m|6|M̃|

∣∣∣∣
am − cm

αm

∣∣∣∣+ sup
|m|>|M̃|

∣∣∣∣
am
αm

∣∣∣∣ 6
ε

2
+

ε

2
= ε.

Thus L is separable which proves the theorem. �

Theorem 2. Every bounded linear functional ϕ defined for f ∈ L is of the form

ϕ(f) =

∞∑

m=1

ampm where

∞∑

m=1

|αmpm| < ∞

and {pm} is a sequence of real numbers.

To prove the theorem we need the following lemma.

Lemma 1. fm̂ → f where f m̂(s) =
m̂∑

m=1
ame

λn
m̂n

s
and f(s) =

∞∑
m=1

ameλnmn
s if

and only if |am/αm| → 0, |m| → ∞, i.e. f ∈ L.

P r o o f. If f ∈ L, where f(s) =
∞∑

m=1
ameλnmn

s, we have |am/αm| → 0 as

|m| → ∞. Now ‖f − fm̂‖ = sup
|m|>|m̂|

|am/αm| → 0 as |m| → ∞. Conversely, if f /∈ L

then

‖fpq‖ = max
|p|6|m|6|q|

∣∣∣ am
αm

∣∣∣, where fpq(s) =

q∑

m=p

ameλnmn
s,

so that {fpq} is not even a Cauchy sequence. �

P r o o f of Theorem 2. Let ϕ be defined on L as ϕ(f) =
∞∑

m=1

ampm. It is

∞∑

m=1

|ampm| 6 sup
|m|

∣∣∣ am
αm

∣∣∣
∞∑

m=1

|αmpm| = ‖f‖

∞∑

m=1

|αmpm| < ∞.
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Hence ϕ is a well defined functional on L. Clearly

|ϕ(f)| 6

∞∑

m=1

|ampm| 6 ‖f‖

∞∑

m=1

|αmpm|.

This implies ‖ϕ‖ 6
∞∑

m=1
|αmpm|.

Therefore ϕ is a bounded linear functional on L which also belongs to L∗, the dual

space of L.

Conversely, if ϕ ∈ L∗ and is defined as ϕ(δm) = pm, where δm(s) = eλnmn
s for

each |m|. Then for any f ∈ L∗

f(s) =
∞∑

m=1

ameλnmn
s =

∞∑

m=1

amδm(s),

ϕ(f) = ϕ
(

lim
|m−|→∞

fm−

)
= ϕ

(
lim

|t|→∞

|t|∑

m=1

amδm

)
= lim

|t|→∞

|t|∑

m=1

amϕ(δm) =

∞∑

m=1

ampm.

Further we prove that
∞∑

m=1
|αmpm| 6 ‖ϕ‖ so that

∞∑
m=1

|αmpm| < ∞. Let |d| > 1, then

define

am =

{
|αm| sgn(pm) for 1 6 |m| 6 |d|,

0 for |m| > |d|.

If f(s) =
∞∑

m=1
ameλnmn

s then f ∈ L and ‖f‖ = 1, and hence

|ϕ(f)| =

∣∣∣∣
|d|∑

m=1

|αm| sgn(pm)ϕ(δm)

∣∣∣∣ =
|d|∑

m=1

|αmpm|,

whereas |ϕ(f)| 6 ‖ϕ‖·‖f‖ = ‖ϕ‖ so that
|d|∑

m=1
|αmpm| 6 ‖ϕ‖ and

∞∑
m=1

|αmpm| =

sup
|d|

|d|∑
m=1

|αmpm| 6 sup
|d|

‖ϕ‖ 6 ‖ϕ‖. Thus from the above stated we conclude the

theorem. �
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3. Characterization of a bounded linear transformation

Theorem 3. Let (ζm,k)|m|,|k|∈N be an infinite matrix of complex entries and B

be a transformation on L defined as B(f)(s) =
∞∑

m=1
Bm(f)eλnmn

s where Bm(f) =
∞∑
k=1

ζmk
ak where f(s) =

∞∑
k=1

ake
λn

kn
s
. Let

(i) ζmk
/αm → 0 as |m| → ∞ where |k| are fixed.

(ii) O = sup
|m|

∞∑
k=1

|αkζmk
/αm| < ∞.

Then B is a bounded linear operator on L such that ‖B‖ = O.

P r o o f. Let f ∈ L then B(f) ∈ L provided that |Bm/αm| → 0 as |m| → ∞.

Thus

∣∣∣Bm

αm

∣∣∣=
|d|∑

k=1

∣∣∣ζmkak

αm

∣∣∣+
∞∑

k=|d|+1

∣∣∣ζmk
ak

αm

∣∣∣ < ‖f‖

|d|∑

k=1

∣∣∣ζmk
αk

αm

∣∣∣+
(

max
|k|>|d|+1

∣∣∣ ak
αk

∣∣∣
)
O.

If we assume |d| large enough so that max
|k|>|d|+1

|ak/αk| < ε for ε > 0, choose |d| so

large that
|d|∑
k=1

|ζmk
/αmαk| < ε.

Thus from (i) and using the above statements one can make |Bm/αm| small and

conclude that |Bm/αm| → 0 as |m| → ∞. Clearly B is linear. Also

(3.1) ‖B(f)‖ 6 ‖f‖ sup
|m|

∞∑

k=1

∣∣∣ζmk

αm

αk

∣∣∣ = O‖f‖,

proving that O is bounded and

(3.2) ‖B‖ 6 O.

Since ε > 0 is given then there exists a positive integer |m′| such that

∞∑

k=1

∣∣∣
ζm′

k

αm′

αk

∣∣∣> G−
1

2
ε.

But
∞∑
k=1

|αkζm′

k
/αm′ | is finite so there exists a positive integer |j| such that

∑

|k|>|p|

∣∣∣
ζm′

k

αm′

αk

∣∣∣ < 1

2
ε.
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Define

ak =

{
αk sgn(ζm′

k
) for 1 6 |k| 6 |j|,

0 for |k| > |j|.

Then f(s) =
∞∑
k=1

ake
λn

kn
s ∈ L and ‖f‖ = 1.

Also
‖B(f)‖

‖f‖
= ‖B(f)‖ = sup

|m|

∣∣∣Bm(f)

αm

∣∣∣ >
∣∣∣Bm′(f)

αm′

∣∣∣ > O − ε

but ‖B‖ = sup ‖B(f)‖/‖f‖ provided f 6= γ where in γ(s) =
∞∑

m=1
ameλnmn

s it is such

that am = 0 for each |m| and therefore

(3.3) ‖B‖ > O.

Therefore from (3.2) and (3.3) we have ‖B‖ = O which concludes the theorem. �

Theorem 4. Let B be a bounded linear transformation on L, then it determines

a matrix (ζmk
), |m| = 1, 2, . . . such that Bm(f) =

∞∑
k=1

ζmk
ak and the conditions (i)

and (ii) of Theorem 3 hold where (B(f)(s)) =
∞∑

m=1
Bm(f)eλnmn

s, f ∈ L is given as

f(s) =
∞∑
k=1

ake
λn

kn
s
.

P r o o f. Consider the set {δk, δk(s) = eλn
kn

s, |k| = 1, 2, . . .} and let B be defined

on it as B(δk(s)) =
∞∑

m=1

ζmk
eλnmn

s. Since B is linear and bounded it follows

B(f)(s) =

∞∑

k=1

akB(δk(s)) =

∞∑

m=1

( ∞∑

k=1

ζmk
ak

)
eλnmn

s =

∞∑

m=1

Bm(f)eλnmn
s

where

Bm(f) =

∞∑

k=1

ζmk
ak.

Also
Bm(f)

αm

=

∞∑

k=1

ζmk

αm

ak.

Since B(δk(s)) ∈ L for each |k| this implies ζmk
/αm → 0 as |m| → ∞.

Next we prove that ‖B‖ = O. Since

∣∣∣Bm

αm

∣∣∣ 6 ‖B(f)‖ 6 ‖B‖‖f‖,
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{Bm(f)/αm} clearly is a sequence of bounded linear functionals on L and it also

follows that lim
|m|→∞

Bm(f)/αm = 0 since

∥∥∥Bm

αm

∥∥∥ =

∞∑

k=1

∣∣∣ζmk

αm

αk

∣∣∣ < ∞.

It is also shown that O = sup
|m|

( ∞∑
k=1

|αkζmk
/αm|

)
< ∞. Thus from the above proof it

follows that ‖B‖ = O.

Hence the theorem has been proved. �
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