STARLIKE AND CONVEX FUNCTIONS OF COMPLEX ORDER INVOLVING GENERALIZED MULTIPLIER TRANSFORMATIONS

Adela Osman Mostafa, Mohamed Kamal Aouf, Mansoura, Fatma Z. El-Emam, Talkha

Received December 25, 2019. Published online October 6, 2020. Communicated by Grigore Sălăgean

Abstract. We investigate the starlike, convex and close-to-convex functions of complex order involving generalized multiplier transformations by means of the Hadamard product.

Keywords: starlike; convex; close-to-convex; complex order; Hadamard product; generalized multiplier transformations

MSC 2020: 30C45

1. Introduction

Let \mathcal{A} denote the class of functions of the form:

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

which are analytic in $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$. A function $f \in \mathcal{A}$ is said to be starlike of complex order $b\left(b \in \mathbb{C}^{*}=\mathbb{C} \backslash\{0\}\right)$ if $z^{-1} f(z) \neq 0$ and

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{1}{b}\left(\frac{z f^{\prime}(z)}{f(z)}-1\right)\right\}>0 \tag{1.2}
\end{equation*}
$$

and is said to be convex of complex order $b\left(b \in \mathbb{C}^{*}\right)$ if $f^{\prime}(z) \neq 0(z \in \mathbb{U})$ and

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{1}{b} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>0 \tag{1.3}
\end{equation*}
$$

DOI: 10.21136/MB.2020.0188-19

We denote by $S_{0}^{*}(b)$ and $K_{0}(b)$ the subclass of \mathcal{A} consisting of functions which are starlike of complex order b and the subclass of \mathcal{A} consisting of functions which are convex of complex order b, respectively. Furthermore, let $S_{1}^{*}(b)$ and $K_{1}(b)$ denote the classes of functions $f \in \mathcal{A}$ satisfying

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<|b|, \quad b \in \mathbb{C}^{*} \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|<|b|, \quad b \in \mathbb{C}^{*} \tag{1.5}
\end{equation*}
$$

respectively.
We note that $S_{1}^{*}(b) \subset S_{0}^{*}(b)$ and $K_{1}(b) \subset K_{0}(b)$ (see [6]),

$$
\begin{equation*}
f \in K_{0}(b) \Leftrightarrow z f^{\prime} \in S_{0}^{*}(b), \quad b \in \mathbb{C}^{*} \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
f \in K_{1}(b) \Leftrightarrow z f^{\prime} \in S_{1}^{*}(b), \quad b \in \mathbb{C}^{*} . \tag{1.7}
\end{equation*}
$$

The class $S_{0}^{*}(b)$ was introduced and studied by Nasr and Aouf (see [7] and [8]), the class $K_{0}(b)$ was introduced by Wiatrowski (see [13]) and the classes $S_{1}^{*}(b)$ and $K_{1}(b)$ were introduced by Choi (see [6]).

Remark 1.1. Putting $b=1-\alpha, 0 \leqslant \alpha<1$, we have the known class $S_{0}^{*}(1-\alpha)=S^{*}(\alpha)\left(K_{0}(1-\alpha)=K(\alpha)\right)$, where $S^{*}(\alpha)(K(\alpha))$ denotes the usual class of starlike (convex) functions of order α (see [9]).

In [6], Choi introduced the class $C_{0}(b, d)$ of complex order $b\left(b \in \mathbb{C}^{*}\right)$ and complex type $d\left(d \in \mathbb{C}^{*}\right)$ defined as follows.

A function $f \in \mathcal{A}$ is said to be in the class $C_{0}(b, d)\left(b, d \in \mathbb{C}^{*}\right)$ if there exists a function $h(z) \in S_{0}^{*}(d)\left(d \in \mathbb{C}^{*}\right)$ satisfying the condition

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{1}{b}\left(\frac{z f^{\prime}(z)}{h(z)}-1\right)\right\}>0, \quad z \in \mathbb{U} \tag{1.8}
\end{equation*}
$$

Remark 1.2. We note that $C_{0}(b, 1)=C(b)$ is the class of close-to-convex functions of complex order $b\left(b \in \mathbb{C}^{*}\right)$ which was introduced by Al-Amiri and Fernando (see [1]), $C_{0}(1-\alpha, 1-\beta)=C(\alpha, \beta)(0 \leqslant \alpha, \beta<1)$ the class of close-to-convex functions of order α and type β studied by Aouf (see [3]), and $C_{0}(1,1)=C$ the class of close-to-convex functions.

For functions $f \in \mathcal{A}$ given by (1.1) and $g \in \mathcal{A}$ given by

$$
\begin{equation*}
g(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k}, \tag{1.9}
\end{equation*}
$$

we define the Hadamard product (or convolution) of f and g by

$$
\begin{equation*}
(f * g)(z)=z+\sum_{k=2}^{\infty} a_{k} b_{k} z^{k}=(g * f)(z) \tag{1.10}
\end{equation*}
$$

Cătaş et al. (see [4]) motivated the multiplier transformation by the operator $I^{n}(\lambda, l): \mathcal{A} \rightarrow \mathcal{A}\left(n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}=\{0,1,2, \ldots\}, \lambda \geqslant 0, l \geqslant 0\right)$ of the infinite series

$$
\begin{equation*}
I^{n}(\lambda, l) f(z)=z+\sum_{k=2}^{\infty}\left(\frac{1+l+\lambda(k-1)}{1+l}\right)^{n} a_{k} z^{k} \tag{1.11}
\end{equation*}
$$

It follows from (1.11) that $I^{0}(\lambda, l) f(z)=f(z)$,

$$
I^{n_{1}}(\lambda, l)\left(I^{n_{2}}(\lambda, l) f(z)\right)=I^{n_{2}}(\lambda, l)\left(I^{n_{1}}(\lambda, l) f(z)\right)
$$

for all integers n_{1} and n_{2}.
For different values of l, n and λ, the operator $I^{n}(\lambda, l)$ generalizes many others, see cf. [2], [5], [11] and [12].

If f is given by (1.1), then we have

$$
\begin{equation*}
I^{n}(\lambda, l) f(z)=\left(\varphi_{\lambda, l}^{n} * f\right)(z), \tag{1.12}
\end{equation*}
$$

where

$$
\begin{equation*}
\varphi_{\lambda, l}^{n}(z)=z+\sum_{k=2}^{\infty}\left(\frac{1+l+\lambda(k-1)}{1+l}\right)^{n} z^{k} . \tag{1.13}
\end{equation*}
$$

In this paper, we investigate the starlike, convex and close-to-convex functions of complex order involving generalized multiplier transformations by means of the Hadamard product.

To prove our main results, we need the following lemmas.
Lemma $1.1([10])$. Let $\phi(z)$ and $g(z)$ be analytic in \mathbb{U} with $\phi(0)=g(0)=0$, $\phi^{\prime}(0) \neq 0$ and $g^{\prime}(0) \neq 0$. Further, let for every $\sigma(|\sigma|=1)$ and $\varrho(|\varrho|=1)$

$$
\phi(z) *\left(\frac{1+\varrho \sigma z}{1-\sigma z}\right) g(z) \neq 0, \quad z \in \mathbb{U}^{*}=\mathbb{U} \backslash\{0\} .
$$

Then for each function $F(z)$ analytic in \mathbb{U} and satisfying the inequality $\operatorname{Re}\{F(z)\}>0$, $z \in \mathbb{U}$, we get

$$
\operatorname{Re}\left\{\frac{(\phi * F g)(z)}{(\phi * g)(z)}\right\}>0, \quad z \in \mathbb{U}
$$

Lemma $1.2([10])$. If $\phi(z)$ is convex and $g(z)$ is starlike in \mathbb{U} then for every function $F(z)$ analytic in the unit disc \mathbb{U} and satisfying the inequality $\operatorname{Re}\{F(z)\}>0$, $z \in \mathbb{U}$, we get

$$
\operatorname{Re}\left\{\frac{(\phi * F g)(z)}{(\phi * g)(z)}\right\}>0, \quad z \in \mathbb{U}
$$

2. Main Results

We assume in the reminder of this paper that $b \in \mathbb{C}^{*}, n \in \mathbb{N}_{0}, \lambda \geqslant 0, l \geqslant 0, z \in \mathbb{U}^{*}$, $h(z) \in S_{0}^{*}(b)$ and $f(z)$ is defined by (1.1).

Theorem 2.1. Let $f(z) \in S_{0}^{*}(b)$ and let

$$
\begin{equation*}
\varphi_{\lambda, l}^{n}(z) *\left(\frac{1+\varrho \sigma z}{1-\sigma z}\right) b f(z) \neq 0 \tag{2.1}
\end{equation*}
$$

Then

$$
I^{n}(\lambda, l) f(z) \in S_{0}^{*}(b)
$$

for every $\sigma(|\sigma|=1)$ and $\varrho(|\varrho|=1)$.
Proof. It is sufficient to show that for every $\sigma(|\sigma|=1)$ and $\varrho(|\varrho|=1)$,

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{1}{b}\left(\frac{z\left(I^{n}(\lambda, l) f(z)\right)^{\prime}}{I^{n}(\lambda, l) f(z)}-1\right)\right\}>0, \quad z \in \mathbb{U} \tag{2.2}
\end{equation*}
$$

Since

$$
\begin{align*}
1+\frac{1}{b}\left(\frac{z\left(I^{n}(\lambda, l) f(z)\right)^{\prime}}{I^{n}(\lambda, l) f(z)}-1\right) & =1+\frac{1}{b}\left(\frac{I^{n}(\lambda, l)\left(z f^{\prime}(z)\right)}{I^{n}(\lambda, l) f(z)}-1\right) \tag{2.3}\\
& =\frac{\varphi_{\lambda, l}^{n}(z) *\left((b-1) f(z)+z f^{\prime}(z)\right)}{\varphi_{\lambda, l}^{n}(z) * b f(z)}
\end{align*}
$$

putting $\phi(z)=\varphi_{\lambda, l}^{n}(z), g(z)=b f(z)$ and

$$
F(z)=1+\frac{1}{b}\left(\frac{z f^{\prime}(z)}{f(z)}-1\right)
$$

in Lemma 1.1, we see that

$$
\operatorname{Re}\left\{1+\frac{1}{b}\left(\frac{z\left(I^{n}(\lambda, l) f(z)\right)^{\prime}}{I^{n}(\lambda, l) f(z)}-1\right)\right\}>0
$$

which completes the proof of Theorem 2.1.

Putting $l=0$ in Theorem 2.1, we get
Corollary 2.1. Let $f(z) \in S_{0}^{*}(b)$ and

$$
D_{\lambda}^{n}\left(\frac{1+\varrho \sigma z}{1-\sigma z}\right) b f(z) \neq 0
$$

Then

$$
D_{\lambda}^{n} f(z) \in S_{0}^{*}(b)
$$

for every $\sigma(|\sigma|=1)$ and $\varrho(|\varrho|=1)$.
Putting $l=0$ and $\lambda=1$ in Theorem 2.1, we get
Corollary 2.2. Let $f(z) \in S_{0}^{*}(b)$ and

$$
D^{n}\left(\frac{1+\varrho \sigma z}{1-\sigma z}\right) b f(z) \neq 0
$$

Then

$$
D^{n} f(z) \in S_{0}^{*}(b)
$$

for every $\sigma(|\sigma|=1)$ and $\varrho(|\varrho|=1)$.
Putting $\lambda=1$ in Theorem 2.1, we get
Corollary 2.3. Let $f(z) \in S_{0}^{*}(b)$ and

$$
I_{l}^{n}\left(\frac{1+\varrho \sigma z}{1-\sigma z}\right) b f(z) \neq 0
$$

Then

$$
I_{l}^{n} f(z) \in S_{0}^{*}(b)
$$

for every $\sigma(|\sigma|=1)$ and $\varrho(|\varrho|=1)$.
Putting $l=\lambda=1$ in Theorem 2.1, we get
Corollary 2.4. Let $f(z) \in S_{0}^{*}(b)$ and

$$
I_{n}\left(\frac{1+\varrho \sigma z}{1-\sigma z}\right) b f(z) \neq 0
$$

Then

$$
I_{n} f(z) \in S_{0}^{*}(b)
$$

for every $\sigma(|\sigma|=1)$ and $\varrho(|\varrho|=1)$.

Corollary 2.5. Let $\varphi_{\lambda, l}^{n}(z)$ be convex and let $f(z) \in S_{1}^{*}(b),|b|<1$, where $\varphi_{\lambda, l}^{n}(z)$ is given by (1.13). Then $I^{n}(\lambda, l) f(z) \in S_{0}^{*}(b)$.

Proof. From the hypothesis, we have

$$
f(z) \in S_{1}^{*}(b) \subset S^{*}(0)=S^{*}, \quad|b|<1
$$

where S^{*} denotes the class of all functions in \mathcal{A} which are starlike (with respect to the origin) in \mathbb{U}. By applying Lemma 1.2 and in view of Theorem 2.1, we have the desired result immediately.

Theorem 2.2. Let $f(z) \in K_{0}(b)$ and

$$
I^{n}(\lambda, l)\left(\frac{1+\varrho \sigma z}{1-\sigma z}\right) b z f^{\prime}(z) \neq 0
$$

Then

$$
I^{n}(\lambda, l) f(z) \in K_{0}(b)
$$

for every $\sigma(|\sigma|=1)$ and $\varrho(|\varrho|=1)$.
Proof. Applying (1.6) and Theorem 2.1, we observe that

$$
\begin{aligned}
f(z) \in K_{0}(b) & \Leftrightarrow z f^{\prime}(z) \in S_{0}^{*}(b) \Rightarrow I^{n}(\lambda, l) z f^{\prime}(z) \in S_{0}^{*}(b) \Rightarrow z\left(I^{n}(\lambda, l) f(z)\right)^{\prime} \in S_{0}^{*}(b) \\
& \Leftrightarrow I^{n}(\lambda, l) f(z) \in K_{0}(b)
\end{aligned}
$$

which evidently proves Theorem 2.2.
Taking $l=0$ in Theorem 2.2, we get
Corollary 2.6. Let $f(z) \in K_{0}(b)$ and

$$
D_{\lambda}^{n}\left(\frac{1+\varrho \sigma z}{1-\sigma z}\right) b z f^{\prime}(z) \neq 0 .
$$

Then

$$
D_{\lambda}^{n} f(z) \in K_{0}(b)
$$

for every $\sigma(|\sigma|=1)$ and $\varrho(|\varrho|=1)$.
Taking $l=0$ and $\lambda=1$ in Theorem 2.2, we get
Corollary 2.7. Let $f(z) \in K_{0}(b)$ and

$$
D^{n}\left(\frac{1+\varrho \sigma z}{1-\sigma z}\right) b z f^{\prime}(z) \neq 0
$$

Then

$$
D^{n} f(z) \in K_{0}(b)
$$

for every $\sigma(|\sigma|=1)$ and $\varrho(|\varrho|=1)$.

Taking $\lambda=1$ in Theorem 2.2, we get
Corollary 2.8. Let $f(z) \in K_{0}(b)$ and

$$
I_{l}^{n}\left(\frac{1+\varrho \sigma z}{1-\sigma z}\right) b z f^{\prime}(z) \neq 0
$$

Then

$$
I_{l}^{n} f(z) \in K_{0}(b)
$$

for every $\sigma(|\sigma|=1)$ and $\varrho(|\varrho|=1)$.
Taking $l=\lambda=1$ in Theorem 2.2, we get
Corollary 2.9. Let $f(z) \in K_{0}(b)$ and

$$
I_{n}\left(\frac{1+\varrho \sigma z}{1-\sigma z}\right) b z f^{\prime}(z) \neq 0
$$

Then

$$
I_{n} f(z) \in K_{0}(b)
$$

for every $\sigma(|\sigma|=1)$ and $\varrho(|\varrho|=1)$.
Corollary 2.10. Let $\varphi_{\lambda, l}^{n}(z)$ be convex and let $f(z) \in K_{1}(b),|b|<1$, where $\varphi_{\lambda, l}^{n}(z)$ is given by (1.13). Then $I^{n}(\lambda, l) f(z) \in K_{0}(b)$.

Theorem 2.3. Let $f(z) \in C_{0}(b, b)$ and

$$
\varphi_{\lambda, l}^{n}(z) *\left(\frac{1+\varrho \sigma z}{1-\sigma z}\right) b h(z) \neq 0 .
$$

Then

$$
I^{n}(\lambda, l) f(z) \in C_{0}(b, b)
$$

for every $\sigma(|\sigma|=1)$ and $\varrho(|\varrho|=1)$.
Proof. By Theorem 2.1, we have that if $h(z) \in S_{0}^{*}(b)$, then $I^{n}(\lambda, l) h(z) \in S_{0}^{*}(b)$. It is sufficient to show that

$$
\operatorname{Re}\left\{1+\frac{1}{b}\left(\frac{z\left(I^{n}(\lambda, l) f(z)\right)^{\prime}}{I^{n}(\lambda, l) h(z)}-1\right)\right\}>0, \quad z \in \mathbb{U}
$$

Since

$$
\begin{aligned}
1+\frac{1}{b}\left(\frac{z\left(I^{n}(\lambda, l) f(z)\right)^{\prime}}{I^{n}(\lambda, l) h(z)}-1\right) & =1+\frac{1}{b}\left(\frac{I^{n}(\lambda, l)\left(z f^{\prime}(z)\right)}{I^{n}(\lambda, l) h(z)}-1\right) \\
& =\frac{\varphi_{\lambda, l}^{n}(z) *\left((b-1) h(z)+z f^{\prime}(z)\right)}{\varphi_{\lambda, l}^{n}(z) * b h(z)},
\end{aligned}
$$

putting $\phi(z)=\varphi_{\lambda, l}^{n}(z), g(z)=b h(z)$ and

$$
F(z)=1+\frac{1}{b}\left(\frac{z f^{\prime}(z)}{h(z)}-1\right)
$$

in Lemma 1.1, we see that

$$
\operatorname{Re}\left\{1+\frac{1}{b}\left(\frac{z\left(I^{n}(\lambda, l) f(z)\right)^{\prime}}{I^{n}(\lambda, l) h(z)}-1\right)\right\}>0
$$

which completes the proof of Theorem 2.3.
Taking $l=0$ in Theorem 2.3, we get

Corollary 2.11. Let $f(z) \in C_{0}(b, b)$ and

$$
D_{\lambda}^{n}\left(\frac{1+\varrho \sigma z}{1-\sigma z}\right) b h(z) \neq 0 .
$$

Then

$$
D_{\lambda}^{n} f(z) \in C_{0}(b, b)
$$

for every $\sigma(|\sigma|=1)$ and $\varrho(|\varrho|=1)$.
Taking $l=0$ and $\lambda=1$ in Theorem 2.3, we get

Corollary 2.12. Let $f(z) \in C_{0}(b, b)$ and

$$
D^{n}\left(\frac{1+\varrho \sigma z}{1-\sigma z}\right) b h(z) \neq 0 .
$$

Then

$$
D^{n} f(z) \in C_{0}(b, b)
$$

for every $\sigma(|\sigma|=1)$ and $\varrho(|\varrho|=1)$.
Taking $\lambda=1$ in Theorem 2.3, we get
Corollary 2.13. Let $f(z) \in C_{0}(b, b)$ and

$$
I_{l}^{n}\left(\frac{1+\varrho \sigma z}{1-\sigma z}\right) b h(z) \neq 0 .
$$

Then

$$
I_{l}^{n} f(z) \in C_{0}(b, b)
$$

for every $\sigma(|\sigma|=1)$ and $\varrho(|\varrho|=1)$.

Taking $l=\lambda=1$ in Theorem 2.3, we get
Corollary 2.14. Let $f(z) \in C_{0}(b, b)$ and

$$
I_{n}\left(\frac{1+\varrho \sigma z}{1-\sigma z}\right) b h(z) \neq 0 .
$$

Then

$$
I_{n} f(z) \in C_{0}(b, b)
$$

for every $\sigma(|\sigma|=1)$ and $\varrho(|\varrho|=1)$.
Acknowledgments. We would like to thank the referee for his/her suggestions given to improve the content of the article.

References

[1] H. S. Al-Amiri, T. S. Fernando: On close-to-convex functions of complex order. Int. J. Math. Math. Sci. 13 (1990), 321-330.
[2] F. M. Al-Oboudi: On univalent functions defined by a generalized Sălăgean operator. Int. J. Math. Math. Sci. 2004 (2004), 1429-1436.
zbl MR doi
[3] M. K. Aouf: On a class of p-valent close-to-convex functions of order β and type α. Int. J. Math. Math. Sci. 11 (1988), 259-266.

Zbl MR doi
[4] A. Cătaş, G.I. Oros, G. Oros: Differential subordinations associated with multiplier transformations. Abstr. Appl. Anal. 2008 (2008), Article ID 845724, 11 pages.
zbl MR doi
[5] N.E.Cho, H. M. Srivastava: Argument estimates of certain analytic functions defined by a class of multiplier transformations. Math. Comput. Modelling 37 (2003), 39-49.
zbl MR doi
[6] J. H. Choi: Starlike and convex functions of complex order involving a certain fractional integral operator. RIMS Kokyuroku 1012 (1997), 1-13.
zbl MR
[7] M. A. Nasr, M. K. Aouf: On convex functions of complex order. Mansoura Sci. Bull. Egypt 9 (1982), 565-582.
[8] M. A. Nasr, M. K. Aouf: Starlike function of complex order. J. Nat. Sci. Math. 25 (1985), 1-12.

Zbl MR
[9] M.I.S. Robertson: On the theory of univalent functions. Ann. Math. (2) 37 (1936), 374-408.
[10] S. Ruscheweyh, T. Sheil-Small: Hadamard products of Schlicht functions and PolyaSchoenberg conjecture. Comment Math. Helv. 48 (1973), 119-135.
[11] G. S. Sălăgean: Subclasses of univalent functions. Complex Analysis: Fifth Roma-
nian-Finnish Seminar, Part 1. Lecture Notes in Mathematics 1013. Springer, Berlin,
[11] G.S.S. Sălăgean: Subclasses of univalent functions. Complex Analysis: Fifth Roma-
nian-Finnish Seminar, Part 1. Lecture Notes in Mathematics 1013. Springer, Berlin, 1983, pp. 362-372.
zbl MR doi
zbl MR doi
[12] B. A. Uralegaddi, C. Somanatha: Certain classes of univalent functions. Current Topics in Analytic Function Theory. World Scientific, Singapore, 1992, pp. 371-374.
zbl MR doi
[13] P. Wiatrowski: On the coefficients of some family of regular functions. Zesz. Nauk. Uniw. Lodz., Ser. II, Nauki Mat.-Przyrodn. 39 (1970), 75-85. (In Polish.)
zbl MR
Authors' addresses: Adela Osman Mostafa, Mohamed Kamal Aouf, Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt, e-mail: adelaeg254@yahoo.com, mkaouf127@yahoo.com; Fatma Z. El-Emam, Delta Higher Institute for Engineering \& Technology, Talkha Sherbeen St, Talkha City, Talkha, Dakahlia Governorate, Egypt, e-mail: fatma_elemam@yahoo.com.

