STARLIKE AND CONVEX FUNCTIONS OF COMPLEX ORDER INVOLVING GENERALIZED MULTIPLIER TRANSFORMATIONS

Adela Osman Mostafa, Mohamed Kamal Aouf, Mansoura, Fatma Z. El-Emam, Talkha

Received December 25, 2019. Published online October 6, 2020. Communicated by Grigore Sălăgean

Abstract. We investigate the starlike, convex and close-to-convex functions of complex order involving generalized multiplier transformations by means of the Hadamard product.

Keywords: starlike; convex; close-to-convex; complex order; Hadamard product; generalized multiplier transformations

MSC 2020: 30C45

1. INTRODUCTION

Let \mathcal{A} denote the class of functions of the form:

(1.1)
$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k,$$

which are analytic in $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$. A function $f \in \mathcal{A}$ is said to be *starlike* of complex order b ($b \in \mathbb{C}^* = \mathbb{C} \setminus \{0\}$) if $z^{-1}f(z) \neq 0$ and

(1.2)
$$\operatorname{Re}\left\{1 + \frac{1}{b}\left(\frac{zf'(z)}{f(z)} - 1\right)\right\} > 0,$$

and is said to be convex of complex order $b \ (b \in \mathbb{C}^*)$ if $f'(z) \neq 0 \ (z \in \mathbb{U})$ and

(1.3)
$$\operatorname{Re}\left\{1 + \frac{1}{b} \frac{zf''(z)}{f'(z)}\right\} > 0.$$

DOI: 10.21136/MB.2020.0188-19

We denote by $S_0^*(b)$ and $K_0(b)$ the subclass of \mathcal{A} consisting of functions which are starlike of complex order b and the subclass of \mathcal{A} consisting of functions which are convex of complex order b, respectively. Furthermore, let $S_1^*(b)$ and $K_1(b)$ denote the classes of functions $f \in \mathcal{A}$ satisfying

(1.4)
$$\left|\frac{zf'(z)}{f(z)} - 1\right| < |b|, \quad b \in \mathbb{C}^*,$$

and

(1.5)
$$\left|\frac{zf''(z)}{f'(z)}\right| < |b|, \quad b \in \mathbb{C}^*,$$

respectively.

We note that $S_1^*(b) \subset S_0^*(b)$ and $K_1(b) \subset K_0(b)$ (see [6]),

(1.6)
$$f \in K_0(b) \Leftrightarrow zf' \in S_0^*(b), \quad b \in \mathbb{C}^*$$

and

(1.7)
$$f \in K_1(b) \Leftrightarrow zf' \in S_1^*(b), \quad b \in \mathbb{C}^*.$$

The class $S_0^*(b)$ was introduced and studied by Nasr and Aouf (see [7] and [8]), the class $K_0(b)$ was introduced by Wiatrowski (see [13]) and the classes $S_1^*(b)$ and $K_1(b)$ were introduced by Choi (see [6]).

Remark 1.1. Putting $b = 1 - \alpha$, $0 \leq \alpha < 1$, we have the known class $S_0^*(1-\alpha) = S^*(\alpha)$ $(K_0(1-\alpha) = K(\alpha))$, where $S^*(\alpha)$ $(K(\alpha))$ denotes the usual class of starlike (convex) functions of order α (see [9]).

In [6], Choi introduced the class $C_0(b, d)$ of complex order $b \ (b \in \mathbb{C}^*)$ and complex type $d \ (d \in \mathbb{C}^*)$ defined as follows.

A function $f \in \mathcal{A}$ is said to be *in the class* $C_0(b,d)$ $(b,d \in \mathbb{C}^*)$ if there exists a function $h(z) \in S_0^*(d)$ $(d \in \mathbb{C}^*)$ satisfying the condition

(1.8)
$$\operatorname{Re}\left\{1 + \frac{1}{b}\left(\frac{zf'(z)}{h(z)} - 1\right)\right\} > 0, \quad z \in \mathbb{U}.$$

R e m a r k 1.2. We note that $C_0(b, 1) = C(b)$ is the class of close-to-convex functions of complex order b ($b \in \mathbb{C}^*$) which was introduced by Al-Amiri and Fernando (see [1]), $C_0(1 - \alpha, 1 - \beta) = C(\alpha, \beta)$ ($0 \le \alpha, \beta < 1$) the class of close-to-convex functions of order α and type β studied by Aouf (see [3]), and $C_0(1, 1) = C$ the class of close-to-convex functions. For functions $f \in \mathcal{A}$ given by (1.1) and $g \in \mathcal{A}$ given by

(1.9)
$$g(z) = z + \sum_{k=2}^{\infty} b_k z^k,$$

we define the Hadamard product (or convolution) of f and g by

(1.10)
$$(f * g)(z) = z + \sum_{k=2}^{\infty} a_k b_k z^k = (g * f)(z).$$

Cătaş et al. (see [4]) motivated the multiplier transformation by the operator $I^n(\lambda, l): \mathcal{A} \to \mathcal{A} \ (n \in \mathbb{N}_0 = \mathbb{N} \cup \{0\} = \{0, 1, 2, \ldots\}, \ \lambda \ge 0, \ l \ge 0)$ of the infinite series

(1.11)
$$I^{n}(\lambda, l)f(z) = z + \sum_{k=2}^{\infty} \left(\frac{1+l+\lambda(k-1)}{1+l}\right)^{n} a_{k} z^{k}.$$

It follows from (1.11) that $I^0(\lambda, l)f(z) = f(z)$,

$$I^{n_1}(\lambda, l)(I^{n_2}(\lambda, l)f(z)) = I^{n_2}(\lambda, l)(I^{n_1}(\lambda, l)f(z))$$

for all integers n_1 and n_2 .

For different values of l, n and λ , the operator $I^n(\lambda, l)$ generalizes many others, see cf. [2], [5], [11] and [12].

If f is given by (1.1), then we have

(1.12)
$$I^n(\lambda, l)f(z) = (\varphi_{\lambda,l}^n * f)(z),$$

where

(1.13)
$$\varphi_{\lambda,l}^n(z) = z + \sum_{k=2}^\infty \left(\frac{1+l+\lambda(k-1)}{1+l}\right)^n z^k.$$

In this paper, we investigate the starlike, convex and close-to-convex functions of complex order involving generalized multiplier transformations by means of the Hadamard product.

To prove our main results, we need the following lemmas.

Lemma 1.1 ([10]). Let $\phi(z)$ and g(z) be analytic in \mathbb{U} with $\phi(0) = g(0) = 0$, $\phi'(0) \neq 0$ and $g'(0) \neq 0$. Further, let for every $\sigma(|\sigma| = 1)$ and $\varrho(|\varrho| = 1)$

$$\phi(z) * \left(\frac{1+\varrho\sigma z}{1-\sigma z}\right)g(z) \neq 0, \quad z \in \mathbb{U}^* = \mathbb{U} \setminus \{0\}.$$

Then for each function F(z) analytic in \mathbb{U} and satisfying the inequality $\operatorname{Re}\{F(z)\} > 0$, $z \in \mathbb{U}$, we get

$$\operatorname{Re}\left\{\frac{(\phi * Fg)(z)}{(\phi * g)(z)}\right\} > 0, \quad z \in \mathbb{U}.$$

Lemma 1.2 ([10]). If $\phi(z)$ is convex and g(z) is starlike in \mathbb{U} then for every function F(z) analytic in the unit disc \mathbb{U} and satisfying the inequality $\operatorname{Re}\{F(z)\} > 0$, $z \in \mathbb{U}$, we get

$$\operatorname{Re}\left\{\frac{(\phi * Fg)(z)}{(\phi * g)(z)}\right\} > 0, \quad z \in \mathbb{U}.$$

2. Main results

We assume in the reminder of this paper that $b \in \mathbb{C}^*$, $n \in \mathbb{N}_0$, $\lambda \ge 0$, $l \ge 0$, $z \in \mathbb{U}^*$, $h(z) \in S_0^*(b)$ and f(z) is defined by (1.1).

Theorem 2.1. Let $f(z) \in S_0^*(b)$ and let

(2.1)
$$\varphi_{\lambda,l}^n(z) * \left(\frac{1+\varrho\sigma z}{1-\sigma z}\right) bf(z) \neq 0.$$

Then

$$I^n(\lambda, l)f(z) \in S_0^*(b)$$

for every σ $(|\sigma| = 1)$ and ϱ $(|\varrho| = 1)$.

Proof. It is sufficient to show that for every σ ($|\sigma| = 1$) and ρ ($|\rho| = 1$),

(2.2)
$$\operatorname{Re}\left\{1 + \frac{1}{b}\left(\frac{z(I^{n}(\lambda, l)f(z))'}{I^{n}(\lambda, l)f(z)} - 1\right)\right\} > 0, \quad z \in \mathbb{U}.$$

Since

(2.3)
$$1 + \frac{1}{b} \left(\frac{z(I^n(\lambda, l)f(z))'}{I^n(\lambda, l)f(z)} - 1 \right) = 1 + \frac{1}{b} \left(\frac{I^n(\lambda, l)(zf'(z))}{I^n(\lambda, l)f(z)} - 1 \right) \\ = \frac{\varphi_{\lambda,l}^n(z) * ((b-1)f(z) + zf'(z))}{\varphi_{\lambda,l}^n(z) * bf(z)},$$

putting $\phi(z)=\varphi_{\lambda,l}^n(z),\,g(z)=bf(z)$ and

$$F(z) = 1 + \frac{1}{b} \left(\frac{zf'(z)}{f(z)} - 1 \right)$$

in Lemma 1.1, we see that

$$\operatorname{Re}\left\{1+\frac{1}{b}\left(\frac{z(I^{n}(\lambda,l)f(z))'}{I^{n}(\lambda,l)f(z)}-1\right)\right\}>0,$$

which completes the proof of Theorem 2.1.

308

Putting l = 0 in Theorem 2.1, we get

Corollary 2.1. Let $f(z) \in S_0^*(b)$ and

$$D^n_{\lambda} \left(\frac{1+\varrho\sigma z}{1-\sigma z}\right) bf(z) \neq 0.$$

Then

$$D^n_\lambda f(z) \in S^*_0(b)$$

for every σ $(|\sigma| = 1)$ and ϱ $(|\varrho| = 1)$.

Putting l = 0 and $\lambda = 1$ in Theorem 2.1, we get

Corollary 2.2. Let $f(z) \in S_0^*(b)$ and

$$D^n\left(\frac{1+\varrho\sigma z}{1-\sigma z}\right)bf(z)\neq 0.$$

Then

$$D^n f(z) \in S_0^*(b)$$

for every σ ($|\sigma| = 1$) and ϱ ($|\varrho| = 1$).

Putting $\lambda = 1$ in Theorem 2.1, we get

Corollary 2.3. Let $f(z) \in S_0^*(b)$ and

$$I_l^n \left(\frac{1+\varrho\sigma z}{1-\sigma z}\right) bf(z) \neq 0.$$

Then

 $I_l^n f(z) \in S_0^*(b)$

for every σ $(|\sigma| = 1)$ and ϱ $(|\varrho| = 1)$.

Putting $l = \lambda = 1$ in Theorem 2.1, we get

Corollary 2.4. Let $f(z) \in S_0^*(b)$ and

$$I_n\left(\frac{1+\varrho\sigma z}{1-\sigma z}\right)bf(z)\neq 0.$$

Then

$$I_n f(z) \in S_0^*(b)$$

for every σ ($|\sigma| = 1$) and ϱ ($|\varrho| = 1$).

Corollary 2.5. Let $\varphi_{\lambda,l}^n(z)$ be convex and let $f(z) \in S_1^*(b)$, |b| < 1, where $\varphi_{\lambda,l}^n(z)$ is given by (1.13). Then $I^n(\lambda, l)f(z) \in S_0^*(b)$.

Proof. From the hypothesis, we have

$$f(z) \in S_1^*(b) \subset S^*(0) = S^*, \quad |b| < 1,$$

where S^* denotes the class of all functions in \mathcal{A} which are starlike (with respect to the origin) in \mathbb{U} . By applying Lemma 1.2 and in view of Theorem 2.1, we have the desired result immediately.

Theorem 2.2. Let $f(z) \in K_0(b)$ and

$$I^{n}(\lambda, l) \Big(\frac{1 + \varrho \sigma z}{1 - \sigma z} \Big) bz f'(z) \neq 0.$$

Then

$$I^n(\lambda, l)f(z) \in K_0(b)$$

for every σ ($|\sigma| = 1$) and ϱ ($|\varrho| = 1$).

Proof. Applying (1.6) and Theorem 2.1, we observe that

$$\begin{split} f(z) \in K_0(b) \Leftrightarrow zf'(z) \in S_0^*(b) \Rightarrow I^n(\lambda, l)zf'(z) \in S_0^*(b) \Rightarrow z(I^n(\lambda, l)f(z))' \in S_0^*(b) \\ \Leftrightarrow I^n(\lambda, l)f(z) \in K_0(b), \end{split}$$

which evidently proves Theorem 2.2.

Taking l = 0 in Theorem 2.2, we get

Corollary 2.6. Let $f(z) \in K_0(b)$ and

$$D^n_\lambda \Big(\frac{1+\varrho\sigma z}{1-\sigma z}\Big)bzf'(z) \neq 0.$$

Then

$$D_{\lambda}^{n}f(z) \in K_{0}(b)$$

for every σ ($|\sigma| = 1$) and ϱ ($|\varrho| = 1$).

Taking l = 0 and $\lambda = 1$ in Theorem 2.2, we get

Corollary 2.7. Let $f(z) \in K_0(b)$ and

$$D^n \left(\frac{1+\varrho\sigma z}{1-\sigma z}\right) bz f'(z) \neq 0.$$

Then

$$D^n f(z) \in K_0(b)$$

for every σ $(|\sigma| = 1)$ and ϱ $(|\varrho| = 1)$.

Taking $\lambda = 1$ in Theorem 2.2, we get

Corollary 2.8. Let $f(z) \in K_0(b)$ and

$$I_l^n\Big(\frac{1+\varrho\sigma z}{1-\sigma z}\Big)bzf'(z)\neq 0.$$

Then

$$I_l^n f(z) \in K_0(b)$$

for every σ ($|\sigma| = 1$) and ϱ ($|\varrho| = 1$).

Taking $l = \lambda = 1$ in Theorem 2.2, we get

Corollary 2.9. Let $f(z) \in K_0(b)$ and

$$I_n\left(\frac{1+\varrho\sigma z}{1-\sigma z}\right)bzf'(z) \neq 0.$$

Then

$$I_n f(z) \in K_0(b)$$

for every σ ($|\sigma| = 1$) and ϱ ($|\varrho| = 1$).

Corollary 2.10. Let $\varphi_{\lambda,l}^n(z)$ be convex and let $f(z) \in K_1(b)$, |b| < 1, where $\varphi_{\lambda,l}^n(z)$ is given by (1.13). Then $I^n(\lambda, l)f(z) \in K_0(b)$.

Theorem 2.3. Let $f(z) \in C_0(b, b)$ and

$$\varphi_{\lambda,l}^n(z) * \left(\frac{1+\varrho\sigma z}{1-\sigma z}\right)bh(z) \neq 0.$$

Then

$$I^n(\lambda, l)f(z) \in C_0(b, b)$$

for every σ ($|\sigma| = 1$) and ϱ ($|\varrho| = 1$).

Proof. By Theorem 2.1, we have that if $h(z) \in S_0^*(b)$, then $I^n(\lambda, l)h(z) \in S_0^*(b)$. It is sufficient to show that

$$\operatorname{Re}\left\{1+\frac{1}{b}\left(\frac{z(I^n(\lambda,l)f(z))'}{I^n(\lambda,l)h(z)}-1\right)\right\}>0, \quad z\in\mathbb{U}.$$

Since

$$1 + \frac{1}{b} \left(\frac{z(I^{n}(\lambda, l)f(z))'}{I^{n}(\lambda, l)h(z)} - 1 \right) = 1 + \frac{1}{b} \left(\frac{I^{n}(\lambda, l)(zf'(z))}{I^{n}(\lambda, l)h(z)} - 1 \right) \\ = \frac{\varphi_{\lambda,l}^{n}(z) * ((b-1)h(z) + zf'(z))}{\varphi_{\lambda,l}^{n}(z) * bh(z)},$$

9	1	1
э	Т	T

putting $\phi(z)=\varphi_{\lambda,l}^n(z),\,g(z)=bh(z)$ and

$$F(z) = 1 + \frac{1}{b} \left(\frac{zf'(z)}{h(z)} - 1 \right)$$

in Lemma 1.1, we see that

$$\operatorname{Re}\left\{1+\frac{1}{b}\left(\frac{z(I^{n}(\lambda,l)f(z))'}{I^{n}(\lambda,l)h(z)}-1\right)\right\}>0,$$

which completes the proof of Theorem 2.3.

Taking l = 0 in Theorem 2.3, we get

Corollary 2.11. Let $f(z) \in C_0(b, b)$ and

$$D^n_{\lambda} \left(\frac{1+\varrho\sigma z}{1-\sigma z}\right) bh(z) \neq 0$$

Then

$$D^n_\lambda f(z) \in C_0(b,b)$$

for every σ ($|\sigma| = 1$) and ϱ ($|\varrho| = 1$).

Taking l = 0 and $\lambda = 1$ in Theorem 2.3, we get

Corollary 2.12. Let $f(z) \in C_0(b, b)$ and

$$D^n \left(\frac{1+\varrho\sigma z}{1-\sigma z}\right) bh(z) \neq 0.$$

Then

$$D^n f(z) \in C_0(b,b)$$

for every σ $(|\sigma| = 1)$ and ϱ $(|\varrho| = 1)$.

Taking $\lambda = 1$ in Theorem 2.3, we get

Corollary 2.13. Let $f(z) \in C_0(b, b)$ and

$$I_l^n \left(\frac{1+\varrho\sigma z}{1-\sigma z}\right) bh(z) \neq 0.$$

Then

$$I_l^n f(z) \in C_0(b,b)$$

for every σ ($|\sigma| = 1$) and ϱ ($|\varrho| = 1$).

L			
L			
-	-	-	

Taking $l = \lambda = 1$ in Theorem 2.3, we get

Corollary 2.14. Let $f(z) \in C_0(b, b)$ and

$$I_n\left(\frac{1+\varrho\sigma z}{1-\sigma z}\right)bh(z)\neq 0.$$

Then

$$I_n f(z) \in C_0(b,b)$$

for every σ ($|\sigma| = 1$) and ϱ ($|\varrho| = 1$).

A c k n o w l e d g m e n t s. We would like to thank the referee for his/her suggestions given to improve the content of the article.

References

- H. S. Al-Amiri, T. S. Fernando: On close-to-convex functions of complex order. Int. J. Math. Math. Sci. 13 (1990), 321–330.
- [2] F. M. Al-Oboudi: On univalent functions defined by a generalized Sălăgean operator. Int.
 J. Math. Sci. 2004 (2004), 1429–1436.
- [3] *M. K. Aouf*: On a class of *p*-valent close-to-convex functions of order β and type α . Int. J. Math. Math. Sci. 11 (1988), 259–266. **zbl** MR do
- [4] A. Cătaş, G. I. Oros, G. Oros: Differential subordinations associated with multiplier transformations. Abstr. Appl. Anal. 2008 (2008), Article ID 845724, 11 pages.
 Zbl MR doi
- [5] N. E. Cho, H. M. Srivastava: Argument estimates of certain analytic functions defined by a class of multiplier transformations. Math. Comput. Modelling 37 (2003), 39–49. zbl MR doi
- [6] J. H. Choi: Starlike and convex functions of complex order involving a certain fractional integral operator. RIMS Kokyuroku 1012 (1997), 1–13.
- [7] M. A. Nasr, M. K. Aouf: On convex functions of complex order. Mansoura Sci. Bull. Egypt 9 (1982), 565–582.
- [8] M. A. Nasr, M. K. Aouf: Starlike function of complex order. J. Nat. Sci. Math. 25 (1985), 1–12.
- [9] M. I. S. Robertson: On the theory of univalent functions. Ann. Math. (2) 37 (1936), 374–408.
 zbl MR doi
- [10] S. Ruscheweyh, T. Sheil-Small: Hadamard products of Schlicht functions and Polya-Schoenberg conjecture. Comment Math. Helv. 48 (1973), 119–135.
 Zbl MR doi
- [11] G. Ş. Sălăgean: Subclasses of univalent functions. Complex Analysis: Fifth Romanian-Finnish Seminar, Part 1. Lecture Notes in Mathematics 1013. Springer, Berlin, 1983, pp. 362–372.
- B. A. Uralegaddi, C. Somanatha: Certain classes of univalent functions. Current Topics in Analytic Function Theory. World Scientific, Singapore, 1992, pp. 371–374.
 Zbl MR doi
- [13] P. Wiatrowski: On the coefficients of some family of regular functions. Zesz. Nauk. Uniw. Lodz., Ser. II, Nauki Mat.-Przyrodn. 39 (1970), 75–85. (In Polish.)

Authors' addresses: Adela Osman Mostafa, Mohamed Kamal Aouf, Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt, e-mail: adelaeg254@yahoo.com, mkaouf127@yahoo.com; Fatma Z. El-Emam, Delta Higher Institute for Engineering & Technology, Talkha Sherbeen St, Talkha City, Talkha, Dakahlia Governorate, Egypt, e-mail: fatma_elemam@yahoo.com.

zbl MR

zbl MR doi