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order involving generalized multiplier transformations by means of the Hadamard product.
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1. Introduction

Let A denote the class of functions of the form:

(1.1) f(z) = z +

∞
∑

k=2

akz
k,

which are analytic in U = {z ∈ C : |z| < 1}. A function f ∈ A is said to be starlike

of complex order b (b ∈ C
∗ = C \ {0}) if z−1f(z) 6= 0 and

(1.2) Re
{

1 +
1

b

(zf ′(z)

f(z)
− 1

)}

> 0,

and is said to be convex of complex order b (b ∈ C
∗) if f ′(z) 6= 0 (z ∈ U) and

(1.3) Re
{

1 +
1

b

zf ′′(z)

f ′(z)

}

> 0.
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We denote by S∗

0
(b) and K0(b) the subclass of A consisting of functions which are

starlike of complex order b and the subclass ofA consisting of functions which are con-

vex of complex order b, respectively. Furthermore, let S∗

1
(b) and K1(b) denote the

classes of functions f ∈ A satisfying

(1.4)
∣

∣

∣

zf ′(z)

f(z)
− 1

∣

∣

∣
< |b|, b ∈ C

∗,

and

(1.5)
∣

∣

∣

zf ′′(z)

f ′(z)

∣

∣

∣
< |b|, b ∈ C

∗,

respectively.

We note that S∗

1
(b) ⊂ S∗

0
(b) and K1(b) ⊂ K0(b) (see [6]),

(1.6) f ∈ K0(b) ⇔ zf ′ ∈ S∗

0
(b), b ∈ C

∗

and

(1.7) f ∈ K1(b) ⇔ zf ′ ∈ S∗

1
(b), b ∈ C

∗.

The class S∗

0
(b) was introduced and studied by Nasr and Aouf (see [7] and [8]),

the class K0(b) was introduced by Wiatrowski (see [13]) and the classes S
∗

1
(b) and

K1(b) were introduced by Choi (see [6]).

R em a r k 1.1. Putting b = 1 − α, 0 6 α < 1, we have the known class

S∗

0
(1− α) = S∗(α) (K0(1−α) = K(α)), where S∗(α) (K(α)) denotes the usual class

of starlike (convex) functions of order α (see [9]).

In [6], Choi introduced the class C0(b, d) of complex order b (b ∈ C
∗) and complex

type d (d ∈ C
∗) defined as follows.

A function f ∈ A is said to be in the class C0(b, d) (b, d ∈ C
∗) if there exists a

function h(z) ∈ S∗

0
(d) (d ∈ C

∗) satisfying the condition

(1.8) Re
{

1 +
1

b

(zf ′(z)

h(z)
− 1

)}

> 0, z ∈ U.

R em a r k 1.2. We note that C0(b, 1) = C(b) is the class of close-to-convex func-

tions of complex order b (b ∈ C
∗) which was introduced by Al-Amiri and Fernando

(see [1]), C0(1 − α, 1 − β) = C(α, β) (0 6 α, β < 1) the class of close-to-convex

functions of order α and type β studied by Aouf (see [3]), and C0(1, 1) = C the class

of close-to-convex functions.
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For functions f ∈ A given by (1.1) and g ∈ A given by

(1.9) g(z) = z +

∞
∑

k=2

bkz
k,

we define the Hadamard product (or convolution) of f and g by

(1.10) (f ∗ g)(z) = z +

∞
∑

k=2

akbkz
k = (g ∗ f)(z).

Cătaş et al. (see [4]) motivated the multiplier transformation by the operator

In(λ, l) : A → A (n ∈ N0 = N∪{0} = {0, 1, 2, . . .}, λ > 0, l > 0) of the infinite series

(1.11) In(λ, l)f(z) = z +

∞
∑

k=2

(1 + l + λ(k − 1)

1 + l

)n

akz
k.

It follows from (1.11) that I0(λ, l)f(z) = f(z),

In1(λ, l)(In2(λ, l)f(z)) = In2(λ, l)(In1(λ, l)f(z))

for all integers n1 and n2.

For different values of l, n and λ, the operator In(λ, l) generalizes many others,

see cf. [2], [5], [11] and [12].

If f is given by (1.1), then we have

(1.12) In(λ, l)f(z) = (ϕn
λ,l ∗ f)(z),

where

(1.13) ϕn
λ,l(z) = z +

∞
∑

k=2

(1 + l + λ(k − 1)

1 + l

)n

zk.

In this paper, we investigate the starlike, convex and close-to-convex functions

of complex order involving generalized multiplier transformations by means of the

Hadamard product.

To prove our main results, we need the following lemmas.

Lemma 1.1 ([10]). Let φ(z) and g(z) be analytic in U with φ(0) = g(0) = 0,

φ′(0) 6= 0 and g′(0) 6= 0. Further, let for every σ (|σ| = 1) and ̺ (|̺| = 1)

φ(z) ∗
(1 + ̺σz

1− σz

)

g(z) 6= 0, z ∈ U
∗ = U \ {0}.

Then for each function F (z) analytic in U and satisfying the inequalityRe{F (z)} > 0,

z ∈ U, we get

Re
{ (φ ∗ Fg)(z)

(φ ∗ g)(z)

}

> 0, z ∈ U.
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Lemma 1.2 ([10]). If φ(z) is convex and g(z) is starlike in U then for every

function F (z) analytic in the unit disc U and satisfying the inequality Re{F (z)} > 0,

z ∈ U, we get

Re
{ (φ ∗ Fg)(z)

(φ ∗ g)(z)

}

> 0, z ∈ U.

2. Main results

We assume in the reminder of this paper that b ∈ C
∗, n ∈ N0, λ > 0, l > 0, z ∈ U

∗,

h(z) ∈ S∗

0
(b) andf(z) is defined by (1.1).

Theorem 2.1. Let f(z) ∈ S∗

0
(b) and let

(2.1) ϕn
λ,l(z) ∗

(1 + ̺σz

1− σz

)

bf(z) 6= 0.

Then

In(λ, l)f(z) ∈ S∗

0
(b)

for every σ (|σ| = 1) and ̺ (|̺| = 1).

P r o o f. It is sufficient to show that for every σ (|σ| = 1) and ̺ (|̺| = 1),

(2.2) Re
{

1 +
1

b

(z(In(λ, l)f(z))′

In(λ, l)f(z)
− 1

)}

> 0, z ∈ U.

Since

(2.3) 1 +
1

b

(z(In(λ, l)f(z))′

In(λ, l)f(z)
− 1

)

= 1 +
1

b

(In(λ, l)(zf ′(z))

In(λ, l)f(z)
− 1

)

=
ϕn
λ,l(z) ∗ ((b− 1)f(z) + zf ′(z))

ϕn
λ,l(z) ∗ bf(z)

,

putting φ(z) = ϕn
λ,l(z), g(z) = bf(z) and

F (z) = 1 +
1

b

(zf ′(z)

f(z)
− 1

)

in Lemma 1.1, we see that

Re
{

1 +
1

b

(z(In(λ, l)f(z))′

In(λ, l)f(z)
− 1

)}

> 0,

which completes the proof of Theorem 2.1. �
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Putting l = 0 in Theorem 2.1, we get

Corollary 2.1. Let f(z) ∈ S∗

0
(b) and

Dn
λ

(1 + ̺σz

1− σz

)

bf(z) 6= 0.

Then

Dn
λf(z) ∈ S∗

0
(b)

for every σ (|σ| = 1) and ̺ (|̺| = 1).

Putting l = 0 and λ = 1 in Theorem 2.1, we get

Corollary 2.2. Let f(z) ∈ S∗

0
(b) and

Dn
(1 + ̺σz

1− σz

)

bf(z) 6= 0.

Then

Dnf(z) ∈ S∗

0
(b)

for every σ (|σ| = 1) and ̺ (|̺| = 1).

Putting λ = 1 in Theorem 2.1, we get

Corollary 2.3. Let f(z) ∈ S∗

0
(b) and

Inl

(1 + ̺σz

1− σz

)

bf(z) 6= 0.

Then

Inl f(z) ∈ S∗

0
(b)

for every σ (|σ| = 1) and ̺ (|̺| = 1).

Putting l = λ = 1 in Theorem 2.1, we get

Corollary 2.4. Let f(z) ∈ S∗

0
(b) and

In

(1 + ̺σz

1− σz

)

bf(z) 6= 0.

Then

Inf(z) ∈ S∗

0
(b)

for every σ (|σ| = 1) and ̺ (|̺| = 1).
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Corollary 2.5. Let ϕn
λ,l(z) be convex and let f(z) ∈ S∗

1
(b), |b| < 1, where ϕn

λ,l(z)

is given by (1.13). Then In(λ, l)f(z) ∈ S∗

0
(b).

P r o o f. From the hypothesis, we have

f(z) ∈ S∗

1
(b) ⊂ S∗(0) = S∗, |b| < 1,

where S∗ denotes the class of all functions in A which are starlike (with respect to

the origin) in U. By applying Lemma 1.2 and in view of Theorem 2.1, we have the

desired result immediately. �

Theorem 2.2. Let f(z) ∈ K0(b) and

In(λ, l)
(1 + ̺σz

1− σz

)

bzf ′(z) 6= 0.

Then

In(λ, l)f(z) ∈ K0(b)

for every σ (|σ| = 1) and ̺ (|̺| = 1).

P r o o f. Applying (1.6) and Theorem 2.1, we observe that

f(z) ∈ K0(b) ⇔ zf ′(z) ∈ S∗

0
(b) ⇒ In(λ, l)zf ′(z) ∈ S∗

0
(b) ⇒ z(In(λ, l)f(z))′ ∈ S∗

0
(b)

⇔ In(λ, l)f(z) ∈ K0(b),

which evidently proves Theorem 2.2. �

Taking l = 0 in Theorem 2.2, we get

Corollary 2.6. Let f(z) ∈ K0(b) and

Dn
λ

(1 + ̺σz

1− σz

)

bzf ′(z) 6= 0.

Then

Dn
λf(z) ∈ K0(b)

for every σ (|σ| = 1) and ̺ (|̺| = 1).

Taking l = 0 and λ = 1 in Theorem 2.2, we get

Corollary 2.7. Let f(z) ∈ K0(b) and

Dn
(1 + ̺σz

1− σz

)

bzf ′(z) 6= 0.

Then

Dnf(z) ∈ K0(b)

for every σ (|σ| = 1) and ̺ (|̺| = 1).
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Taking λ = 1 in Theorem 2.2, we get

Corollary 2.8. Let f(z) ∈ K0(b) and

Inl

(1 + ̺σz

1− σz

)

bzf ′(z) 6= 0.

Then

Inl f(z) ∈ K0(b)

for every σ (|σ| = 1) and ̺ (|̺| = 1).

Taking l = λ = 1 in Theorem 2.2, we get

Corollary 2.9. Let f(z) ∈ K0(b) and

In

(1 + ̺σz

1− σz

)

bzf ′(z) 6= 0.

Then

Inf(z) ∈ K0(b)

for every σ (|σ| = 1) and ̺ (|̺| = 1).

Corollary 2.10. Let ϕn
λ,l(z) be convex and let f(z) ∈ K1(b), |b| < 1, where

ϕn
λ,l(z) is given by (1.13). Then In(λ, l)f(z) ∈ K0(b).

Theorem 2.3. Let f(z) ∈ C0(b, b) and

ϕn
λ,l(z) ∗

(1 + ̺σz

1− σz

)

bh(z) 6= 0.

Then

In(λ, l)f(z) ∈ C0(b, b)

for every σ (|σ| = 1) and ̺ (|̺| = 1).

P r o o f. By Theorem 2.1, we have that if h(z) ∈ S∗

0
(b), then In(λ, l)h(z) ∈ S∗

0
(b).

It is sufficient to show that

Re
{

1 +
1

b

(z(In(λ, l)f(z))′

In(λ, l)h(z)
− 1

)}

> 0, z ∈ U.

Since

1 +
1

b

(z(In(λ, l)f(z))′

In(λ, l)h(z)
− 1

)

= 1 +
1

b

(In(λ, l)(zf ′(z))

In(λ, l)h(z)
− 1

)

=
ϕn
λ,l(z) ∗ ((b− 1)h(z) + zf ′(z))

ϕn
λ,l(z) ∗ bh(z)

,
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putting φ(z) = ϕn
λ,l(z), g(z) = bh(z) and

F (z) = 1 +
1

b

(zf ′(z)

h(z)
− 1

)

in Lemma 1.1, we see that

Re
{

1 +
1

b

(z(In(λ, l)f(z))′

In(λ, l)h(z)
− 1

)}

> 0,

which completes the proof of Theorem 2.3. �

Taking l = 0 in Theorem 2.3, we get

Corollary 2.11. Let f(z) ∈ C0(b, b) and

Dn
λ

(1 + ̺σz

1− σz

)

bh(z) 6= 0.

Then

Dn
λf(z) ∈ C0(b, b)

for every σ (|σ| = 1) and ̺ (|̺| = 1).

Taking l = 0 and λ = 1 in Theorem 2.3, we get

Corollary 2.12. Let f(z) ∈ C0(b, b) and

Dn
(1 + ̺σz

1− σz

)

bh(z) 6= 0.

Then

Dnf(z) ∈ C0(b, b)

for every σ (|σ| = 1) and ̺ (|̺| = 1).

Taking λ = 1 in Theorem 2.3, we get

Corollary 2.13. Let f(z) ∈ C0(b, b) and

Inl

(1 + ̺σz

1− σz

)

bh(z) 6= 0.

Then

Inl f(z) ∈ C0(b, b)

for every σ (|σ| = 1) and ̺ (|̺| = 1).
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Taking l = λ = 1 in Theorem 2.3, we get

Corollary 2.14. Let f(z) ∈ C0(b, b) and

In

(1 + ̺σz

1− σz

)

bh(z) 6= 0.

Then

Inf(z) ∈ C0(b, b)

for every σ (|σ| = 1) and ̺ (|̺| = 1).

A c k n ow l e d gm e n t s. We would like to thank the referee for his/her sugges-

tions given to improve the content of the article.
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