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Abstract. We consider properties of state filters of state residuated lattices and prove
that for every state filter F of a state residuated lattice X:

(1) F is obstinate ⇔ L/F ∼= {0, 1};
(2) F is primary ⇔ L/F is a state local residuated lattice;

and that every g-state residuated lattice X is a subdirect product of {X/Pλ}, where Pλ is
a prime state filter of X.

Moreover, we show that the quotient MTL-algebra X/P of a state residuated lattice X
by a state prime filter P is not always totally ordered, although the quotient MTL-algebra
by a prime filter is totally ordered.
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1. Introduction

The research on the theory of residuated lattices started in [24] and is progressing

in many directions after finding the relation between fuzzy logics. For example, the

class of MTL-algebras (BL-algebras, MV-algebras and so on), axiomatic extensions

of residuated lattices, are proved to be an algebraic semantics for the monoidal t-

norm logic (MTL) (the basic logic (BL), multiple valued logic (MV), respectively).

From the result that every MTL-algebra is a subdirect product of totally ordered

MTL-algebras, to show a formula A is provable in the MTL logic, it is enough to

show that the formula A is valid on any totally ordered MTL-algebra. The situation
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corresponds to the fact that a formula in classical propositional logic is provable in

CPL if it is valid in the Boolean algebra {0, 1}.

As another direction, a measure (called state) which corresponds to the measure-

ment problem in the quantum logic is defined on MV-algebras. The notion of state,

coming from the theory of quantum mechanics, was firstly applied to MV-algebras

by Kôpka and Chovanec in [21] and then extended to non-commutative MV-algebras

in [4], [22]. Since then, the theory of states on algebras has been applied to other

algebras such as (pseudo) BL-algebras (see [10]), (non-commutative) Rℓ-monoids

(see [6], [5]), (non-commutative) residuated lattices (see [17]) and now is becoming a

hot research field in the theory of fuzzy logics and algebras. In [10], it is proved that

the notion of Bosbach states is the same as that of Riečan states for good possibly

bounded non-commutative Rℓ-monoids. On the other hand, it is proved in [1] that

there is a Riečan state which is not a Bosbach state on a certain (non-commutative)

residuated lattice.

A logic (called a quantum logic) which follows quantum mechanics has a mathe-

matical model of the set C(H) of all closed subspaces of a Hilbert space H . The set

C(H) is not a distributive lattice but an orthomodular lattice. On the other hand,

since MV-algebras are distributive lattices, the notion of state does not fully reflect

properties of states in the quantum logic. Therefore we need to extend the notion of

state to non-distributive lattices.

Recently, another approach to MV-algebras, state operators, has been started by

Flaminio and Montagna in [8]. A state operator is a mapping from MV-algebra X

to itself satisfying some conditions representing properties of states on MV-algebras.

They extend the language of MV-algebras by adding a new unary operator, a state

operator, and consider the MV-algebra X with the state operator σ as a state MV-

algebra (X, σ). They showed some fundamental results about state MV-algebras.

After that, state operators are generalized and applied to more general algebras

such as (pseudo) BL-algebras (see [3], [2]), (non-commutative) Rℓ-monoids (see [7])

and (non-commutative) residuated lattices (see [15]). In particular, state residuated

lattices are defined and their basic properties are proved in [15], in which it is claimed

that the class of all state residuated lattices does not form a variety. However, this

is not true, as will be proved in this paper.

Owing to a shift from an external notion of state to an internal notion of state

operators, logics with operators are considered as one kind of modal logics. Con-

cretely speaking, state residuated lattices are an algebraic semantics of the following

CRL-logic (commutative residuated lattices-based logic) (see [20]) with axioms cor-

responding to residuated lattices and

(1) M(⊥) → ⊥,

(2) M(ϕ→ ψ) → (Mϕ→Mψ),
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(3) M(ϕ→ ψ) ↔ (Mϕ→M(ϕ ∧ ψ)),

(4) M(ϕ⊙ ψ) ↔Mϕ⊙M(ϕ→ ϕ⊙ ψ),

(5) M(Mϕ⊙Mψ) ↔ (Mϕ⊙Mψ),

(6) M(Mϕ ∨Mψ) ↔ (Mϕ ∨Mψ),

(7) M(Mϕ ∧Mψ) ↔ (Mϕ ∧Mψ).

The rules of inference are Modus Ponens and Necessitation: from ϕ deduce Mϕ.

Therefore, the logic above can be considered as the CRL-logic with a “modality” M

(see [20]).

On the other hand, we have another important tool, filters, to develop residuated

lattices. We define a state filter (simply called σ-filter) of a state residuated lattice

(X, σ), where σ is a state operator, and also define some kind of σ-filters such as

prime, primary, and obstinate.

We show the following results. For every state filter F of a state residuated

lattice X :

(1) F is obstinate ⇔ L/F ∼= {0, 1};

(2) F is primary ⇔ L/F is a state local residuated lattice;

and every state residuated lattice X is a subdirect product of {X/Pλ}, where Pλ is

a prime state filter of X .

Moreover, we show that the quotient state MTL-algebra X/P of a state MTL-

algebra (X, σ) by a state prime filter P is not always totally ordered, although the

quotient MTL-algebra by a prime filter is totally ordered.

2. Residuated lattice and state operator

We recall a definition of bounded integral commutative residuated lattices (see [9]).

An algebraic structure (X,∧,∨,⊙,→,0,1) is called a bounded integral commutative

residuated lattice (simply called residuated lattice here) if

(1) (X,∧,∨,0,1) is a bounded lattice;

(2) (X,⊙,1) is a commutative monoid with unit element 1;

(3) For all x, y, z ∈ X , x⊙ y 6 z if and only if x 6 y → z.

For all x ∈ X , by x′, we mean x′ = x → 0, which is a negation in a sense. A

residuated lattice X is called an Rℓ-monoid if it satisfies the divisibility condition

(div) x ∧ y = (x→ y)⊙ x.

Moreover, if an Rℓ-monoid X satisfies the pre-linearity condition

(p-lin) (x→ y) ∨ (y → x) = 1,

then it is called a BL-algebra.

We have the following basic properties of residuated lattices (see [11], [12],

[22], [24]).
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Proposition 1. Let X be a residuated lattice. For all x, y, z ∈ X , we have

(1) 0
′ = 1, 1′ = 0,

(2) x⊙ x′ = 0,

(3) x 6 y ⇔ x→ y = 1,

(4) x⊙ (x→ y) 6 y,

(5) x 6 y ⇒ x⊙ z 6 y ⊙ z, z → x 6 z → y, y → z 6 x→ z,

(6) 1 → x = x,

(7) (x ∨ y)⊙ z = (x⊙ z) ∨ (y ⊙ z),

(8) (x ∨ y)′ = x′ ∧ y′,

(9) (x ∨ y)m+n 6 xm ∨ yn for m,n ∈ N.

X is a residuated lattice in the rest of the paper. According to [15], [18], we define

a state operator σ. A map σ : X → X is called a state operator of X if it satisfies

the conditions:

(L1) σ(0) = 0,

(L2) σ(x→ y) 6 σ(x) → σ(y),

(L3) σ(x→ y) = σ(x) → σ(x ∧ y),

(L4) σ(x⊙ y) = σ(x) ⊙ σ(x→ x⊙ y),

(L5) σ(σ(x) ⊙ σ(y)) = σ(x) ⊙ σ(y),

(L6) σ(σ(x) → σ(y)) = σ(x) → σ(y),

(L7) σ(σ(x) ∨ σ(y)) = σ(x) ∨ σ(y),

(L8) σ(σ(x) ∧ σ(y)) = σ(x) ∧ σ(y).

We note that, in [15], a state σ is defined by (L1), (L3)–(L8) and

(L2)∗ x 6 y ⇒ σ(x) 6 σ(y).

It is easy to show that (L2) is equivalent to (L2)∗ under the condition (L3).

Therefore our definition of state operators is the same as that defined in [15].

We have basic results about state operators.

Proposition 2. Let (X, σ) be a state residuated lattice. Then we have

(1) σ(1) = 1,

(2) x 6 y ⇒ σ(x) 6 σ(y),

(3) σ(x′) = (σ(x))′,

(4) σ(σ(x)) = σ(x),

(5) σ(X) = Fix(σ) = {x ∈ X : σ(x) = x},

(6) σ(X) is a subalgebra of X .
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3. Filters and state filters

We define filters of residuated lattices according to [12], [13], [16], [22]. A nonempty

subset F ⊆ X is called a filter of X if

(F1) x, y ∈ F ⇒ x⊙ y ∈ F ;

(F2) x ∈ F and x 6 y ⇒ y ∈ F .

It is proved (see [23]) that, for a nonempty subset F of X , F is a filter if and only

if it satisfies the conditions 1 ∈ F and

(DS) x ∈ F and x→ y ∈ F ⇒ y ∈ F .

Moreover a filter F is called a state filter (or simply σ-filter) if it satisfies the

condition

⊲ x ∈ F ⇒ σ(x) ∈ F for all x ∈ X .

By F(X) (or Fσ(X)), we mean the set of all filters (or σ-filters) of (X, σ). For a

nonempty subset S ⊆ X , by [S) (or [S)σ) we mean the filter (or σ-filter, respectively)

generated by S. We have following results about the filter [S) (see [9], [14], [12], [13])

and [S)σ (see [16]) generated by S.

Proposition 3. For a nonempty subset S ⊆ X and F a filter of X , we have

(1) [S) = {x : ∃ si ∈ S ; s1 ⊙ . . .⊙ sn 6 x};

(2) a ∈ X ⇒ [F ∪ {a}) = {x : ∃u ∈ F, ∃n ; u⊙ an 6 x};

(3) [S)σ = [S ∪ σS).

It is trivial that F(X) is a partially ordered set with respect to the set inclusion ⊆.

Moreover, it is easy to show the following result (see [9]).

Proposition 4. (F(X),∧,∨,→, {1}, X) is a complete Heyting algebra, where for

all F,G ∈ F(X),

F ∧G = F ∩G, F ∨G = [F ∪G), F → G = {x ∈ X : F ∩ [x) ⊆ G}.

Hence we have F ∧
∨

λ

Gλ =
∨

λ

(F ∧Gλ).

Proposition 5. We have

(1) F1, F2 ∈ F(X), F1 ∨ F2 = {x ∈ X : ∃ fi ∈ Fi ; f1 ⊙ f2 6 x};

(2) [x) ∨ [y) = [x⊙ y) = [x ∧ y) and [x) ∧ [y) = [x ∨ y).
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Moreover, a similar argument implies that the class of all state filters of (X, σ) is

also a complete Heyting algebra.

Proposition 6 ([16]). (Fσ(X),∧,∨,→, {1}, X) is a complete Heyting algebra,

but not subalgebra of (F(X),∧,∨,→, {1}, X), where for all F,G ∈ Fσ(X),

F ∧G = F ∩G, F ∨G = [F ∪G)σ, F → G = {x ∈ X : F ∩ [x)σ ⊆ G}.

We define some types of state filters of a state residuated lattice (X, σ). For a

state filter F ∈ Fσ(X), F is called

prime state filter: if (x⊙ σ(x)) ∨ (y ⊙ σ(y)) ∈ F then x ∈ F or y ∈ F ;

primary state filte: if (x⊙y)′ ∈ F then there exists n ∈ N such that ((σ(x))n)′ ∈ F

or ((σ(y))n)′ ∈ F ;

Boolean state filter: (x ⊙ σ(x)) ∨ (x′ ⊙ σ(x′)) ∈ F ;

obstinate state filter: if x /∈ F then there exists n ∈ N such that (σ(x))′n ∈ F .

Moreover, a state filter is called maximal if there is no state filter containing it

properly. We have a basic result about maximal state filters.

Proposition 7. Let F ∈ Fσ(X). Then F is maximal if and only if for x /∈ F

there exists n ∈ N such that ((σ(x))n)′ ∈ F .

P r o o f. We only show that if x /∈ F then there exists n ∈ N such that

((σ(x))n)′ ∈ F when F is maximal. Let F be a maximal state filter and x /∈ F .

Since [F ∪ {x})σ = X , there exist f ∈ F and m ∈ N such that f ⊙ (x⊙ σ(x))m = 0

and thus f 6 ((x⊙ σ(x))m)′. This implies ((x⊙ σ(x))m)′ ∈ F . Moreover, since F is

a state filter, we get σ((x ⊙ σ(x))m)′ ∈ F . From

σ((x ⊙ σ(x))m)′ = (σ((x ⊙ σ(x)) ⊙ . . .⊙ (x⊙ σ(x))))′

6 ((σ(x) ⊙ σσ(x)) ⊙ . . .⊙ (σ(x) ⊙ σσ(x)))′

= ((σ(x) ⊙ σ(x)) ⊙ . . .⊙ (σ(x) ⊙ σ(x)))′

= ((σ(x))2m)′,

we get that ((σ(x))2m)′ ∈ F , that is, there exists n ∈ N such that ((σ(x))n)′ ∈ F . �

Corollary 1. For every state filter F , if F is obstinate then it is maximal.

Moreover, similar to the case of distributive lattices, we show that if F is a maximal

state filter then it is a prime state filter.

Proposition 8. Let F ∈ Fσ(X). If F is maximal then it is prime.
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P r o o f. Suppose that a maximal state filter F is not prime. We have (a⊙σa)∨

(b ⊙ σb) ∈ F for some a, b /∈ F . Since F is maximal, we get ((σa)m)′, ((σb)n)′ ∈ F

and ((σa)m)′ ⊙ ((σb)n)′ ∈ F , therefore ((σa)m)′ ⊙ ((σb)n)′ 6 ((σa)m)′ ∧ ((σb)n)′ =

(((σa)m) ∨ ((σb)n))′ ∈ F .

On the other hand, from (a⊙σa)∨(b⊙σb) ∈ F , we get σ ((a⊙ σa) ∨ (b⊙ σb)) ∈ F .

Since σ ((a⊙ σa) ∨ (b ⊙ σb)) 6 σ(σa ∨ σb) = σa ∨ σb, we have σa ∨ σb ∈ F and

thus (σa ∨ σb)m+n ∈ F . The fact that (σa ∨ σb)m+n 6 (σa)m ∨ (σb)n implies

(σa)m ∨ (σb)n ∈ F . However, this is a contradiction. �

Theorem 1. For every state filter F , F is obstinate if and only if it is prime and

Boolean.

P r o o f. Suppose that a state filter F is obstinate. It is enough to show that F

is Boolean. Let x ∈ X . If x ∈ F , since σx ∈ F , then we have x⊙ σx ∈ F and hence

(x ⊙ σx) ∨ (x′ ⊙ σx′) ∈ F . If x /∈ F , since F is obstinate, we get (σx)′ = σx′ ∈ F .

If x′ /∈ F then (σx′)′ ∈ F and (σx′)′ ⊙ (σx′) = 0 ∈ F . This is a contradiction. This

means that x′ ∈ F . It follows from x′ ⊙ σx′ ∈ F that (x ⊙ σx) ∨ (x′ ⊙ σx′) ∈ F .

Namely, F is Boolean.

Conversely, we assume that F is a prime and Boolean state filter. For any x ∈ X ,

since F is Boolean, we have (x ⊙ σx) ∨ (x′ ⊙ σx′) ∈ F . Moreover, F is prime,

we get that x ∈ F or x′ ∈ F . This means that if x /∈ F then x′ ∈ F and hence

σx′ = (σx)′ ∈ F for any x ∈ X , namely, F is obstinate. �

For every F ∈ Fσ(X), we define a relation θF on X as follows:

(x, y) ∈ θF if and only if x→ y, y → x ∈ F.

Then it is easy to show:

Proposition 9. θF is a congruence on a state residuated lattice (X, σ) and thus

the quotient structureX/F = (X/F,∧,∨,⊙,→, σX/F , 0/F, 1/F ) is a state residuated

lattice, where σX/F (x/F ) = σx/F for all x/F ∈ X/F .

In the case of a state filter F being obstinate, the quotient structure has a simple

structure.

Theorem 2. Let F be a state filter of X . Then F is obstinate if and only if

X/F ∼= {0, 1}. Therefore, the following conditions are equivalent to each other:

For ever state filter F ,

(1) F is obstinate;

(2) F is maximal and Boolean;
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(3) F is prime and Boolean;

(4) X/F ∼= {0, 1}.

Next, we consider the case of F being Boolean.

Proposition 10. Let F be a state filter of a state residuated lattice X . If F is

Boolean, then X/F is a state Boolean algebra.

P r o o f. For any x ∈ X , since (x ⊙ σx) ∨ (x′ ⊙ σx′) ∈ F , (x ⊙ σx) 6 x and

x′ ⊙ σx′ 6 x′, we have x ∨ x′ ∈ F . This implies that x/F ∨ (x/F )′ = 1/F in

X/F and hence that each element x/F in X/F is a complemented element, that is,

x/F ∈ B(X/F ) and thus X/F = B(X/F ). This means that X/F is a Boolean state

algebra. �

Now we have a natural question whether the converse holds, that is,

⊲ Is F a Boolean state filter when X/F is a Boolean state algebra?

Unfortunately, this does not hold, as the following example shows. Let =

{0, a, b, 1} with 0 < a, b < 1 and σa = σ1 = 1, σb = σ0 = 0. It is obvious

that (X, σ) is a state Boolean algebra. Let F = {1}. It is easy to show that F

is a state filter and that X/F = X/{1} ∼= X is the state Boolean algebra. But

(a⊙ σa)∨ (a′ ⊙ σa′) = (a⊙ 1)∨ (b⊙ 0) = a /∈ {1} = F . Namely, the state filter F is

not Boolean.

4. Generalized state operators

At first we recall a definition of a state operator on an Rℓ-monoid according to [7],

where a state operator is defined on a pseudo Rℓ-monoid, that is, an operator ⊙ is

not commutative. However, for the sake of simplicity, we treat it on a commutative

Rℓ-monoid. In [7], a state operator µ : A → A on an Rℓ-monoid A is defined as

follows:

For all x, y ∈ A, it satisfies

(m1) µ(0) = 0,

(m2) µ(x→ y) = µ(x) → µ(x ∧ y),

(m3) µ(x⊙ y) = µ(x)⊙ µ(x→ x⊙ y),

(m4) µ(µ(x)⊙ µ(y)) = µ(x)⊙ µ(y),

(m5) µ(µ(x) → µ(y)) = µ(x) → µ(y),

(m6) µ(µ(x) ∨ µ(y)) = µ(x) ∨ µ(y).

For the case of a state operator on a BL algebra A, since the join operation ∨

can be represented by two other operations ∧ and → as x ∨ y = ((x → y) → y) ∧

((y → x) → x), the last condition (m6) above can be removed.

382



Proposition 11. Let A be an Rℓ-monoid and µ : A → A be a map satisfying

(m2). Then the condition (m3): µ(x⊙ y) = µ(x)⊙µ(x→ x⊙ y) is equivalent to the

condition

(∗) µ(x)⊙ µ(x→ y) 6 µ(y).

P r o o f. (⇒) Suppose that µ satisfies the condition (m3). At first, we note

that µ is order-preserving. Indeed, if x 6 y, then we have µ(x) = µ(x ∧ y) =

µ(y⊙ (y → x)) = µ(y)⊙µ(y → (y⊙ (y → x))) 6 µ(y) and thus µ(x) 6 µ(y). Now it

follows from (m2) that µ(x)⊙µ(x → y) = µ(x)⊙(µ(x) → µ(x∧y)) 6 µ(x∧y) 6 µ(y).

(⇐) Conversely, we assume the condition (∗) for all x, y ∈ A. It is easy to show

that µ(1) = 1 by (m2). We note that µ is also order-preserving in this case. Suppose

that x 6 y. Since µ(1) = 1, we have µ(x) = µ(x) ⊙ 1 = µ(x) ⊙ µ(x → y) 6 µ(y).

It follows from divisibility and (m2) that µ(x) ⊙ µ(x → x ⊙ y) = µ(x) ⊙ (µ(x) →

µ(x ∧ (x⊙ y))) = µ(x) ⊙ (µ(x) → µ(x ⊙ y)) = µ(x) ∧ µ(x⊙ y) = µ(x⊙ y). �

In [15], a state operator on a residuated lattice is defined as follows. A map

τ : L → L is called a state operator on a residuated lattice L if it satisfies the

following conditions:

For any x, y ∈ L,

(L1) τ(0) = 0,

(L2) x→ y = 1 implies τ(x) → τ(y) = 1,

(L3) τ(x→ y) = τ(x) → τ(x ∧ y),

(L4) τ(x ⊙ y) = τ(x) ⊙ τ(x→ x⊙ y),

(L5) τ(τ(x) ⊙ τ(y)) = τ(x) ⊙ τ(y),

(L6) τ(τ(x) → τ(y)) = τ(x) → τ(y),

(L7) τ(τ(x) ∨ τ(y)) = τ(x) ∨ τ(y),

(L8) τ(τ(x) ∧ τ(y)) = τ(x) ∧ τ(y).

We also have a similar result about (L2).

Proposition 12. Let L be a residuated lattice and τ : L → L be a map satisfy-

ing (L3). Then the condition (L2) is equivalent to the condition

(∗∗) τ(x) ⊙ τ(x→ y) 6 τ(y).

P r o o f. (⇒) Suppose that τ satisfies (L2), that is, τ is order preserving. Then it

follows from (L3) that τ(x)⊙τ(x → y) = τ(x)⊙(τ(x) → τ(x∧y)) 6 τ(x∧y) 6 τ(y).

(⇐) We get τ(1) = τ(0 → 0) = τ(0) → τ(0∧0) = τ(0) → τ(0) = 1. If x→ y = 1

then we have τ(x) = τ(x) ⊙ 1 = τ(x) ⊙ τ(1) = τ(x) ⊙ τ(x → y) 6 τ(y), that is,

τ(x) → τ(y) = 1. �
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Moreover, we note that the condition (L6) can be proved by use of other conditions.

Indeed, since τ(τ(x)) = τ(τ(x)⊙1) = τ(τ(x)⊙τ(1)) = τ(x)⊙τ(1) = τ(x)⊙1 = τ(x)

by (L5), we have τ(τ(x) → τ(y)) = τ(τ(x)) → τ(τ(x) ∧ τ(y)) = τ(x) → (τ(x) ∧

τ(y)) = (τ(x) → τ(x)) ∧ (τ(x) → τ(y)) = τ(x) → τ(y). Hence the condition (L6) is

redundant to define a state operator τ .

The results above mean that a state operator τ on a residuated lattice can be

defined by the following conditions: (L1), (∗∗), (L3)–(L5), (L7) and (L8).

R em a r k 1. It was described in [15] that the class of all state residuated lattices

was only a quasivariety and not a variety. However, this is not true, because, as we

proved before, state operators in [15] are defined by (L1), (∗∗), (L3)–(L5), (L7)

and (L8). This implies that the class of all state residuated lattices forms a variety.

Taking into the results above, we define a generalized state operator on a residu-

ated lattice X as follows. A map σ : X → X satisfying the following conditions:

(gs1) σ(0) = 0,

(gs2) σ(x→ y) 6 σ(x) → σ(y),

(gs3) σ(x→ y) = σ(x) → σ(x ∧ y),

(gs4) σ(σ(x) ⊙ σ(y)) = σ(x) ⊙ σ(y),

(gs5) σ(σ(x) ∨ σ(y)) = σ(x) ∨ σ(y),

(gs6) σ(σ(x) ∧ σ(y)) = σ(x) ∧ σ(y)

is called a generalized state operator (or simply g-state operator) and (X, σ) is called

a g-state residuated lattice. It is trivial that the class of all g-state residuated lattices

(X, σ) forms a variety.

It is easy to show the following results.

Proposition 13. Let σ be a g-state operator on a residuated lattice X . Then we

have

(1) σ(1) = 1;

(2) σ(σ(x)) = σ(x);

(3) σ(σ(x) → σ(y)) = σ(x) → σ(y);

(4) σ(x′) = (σ(x))′;

(5) σ(x) ⊙ σ(y) 6 σ(x ⊙ y);

(6) ker(σ) is a filter, where ker(σ) = {x ∈ X : σ(x) = 1};

(7) σ(X) is a {∧,∨,⊙,→}-reduct subalgebra of X . Hence σ(X) is a residuated

lattice;

(8) a ∈ σ(A) if and only if σ(a) = a;

(9) If σ is faithful, that is, kerσ = {1}, then x < y implies σ(x) < σ(y).

384



We also show that a condition σ(x ⊙ y) = σ(x) ⊙ σ(x → x ⊙ y) in the definition

of state operators on Rℓ-monoids (see [7]) and on BL-algebras (see [2]) is redundant,

because it holds in any residuated lattice with divisibility x ∧ y = x⊙ (x→ y).

Proposition 14. Let σ be a g-state operator on a residuated lattice X with

divisibility x ∧ y = x ⊙ (x → y) for all x, y ∈ X . Then we have σ(x ⊙ y) =

σ(x) ⊙ σ(x→ x⊙ y) for all x, y ∈ X .

P r o o f. Since x ⊙ y 6 x, it follows from (gs3) that σ(x) ⊙ σ(x → x ⊙ y) =

σ(x)⊙(σ(x) → σ(x∧(x⊙y))) = σ(x)⊙(σ(x) → σ(x⊙y)) = σ(x)∧σ(x⊙y) = σ(x⊙y).

�

The above implies that:

Corollary 2. All state MV-algebras (state BL-algebras, state Rℓ-monoids, state

residuated lattices) are g-state residuated lattices.

Let (X, σ) be a g-state residuated lattice. A nonempty set F of X is called a

σ-filter if F is a filter of X and x ∈ F implies σ(x) ∈ F . We denote Fσ(X) the class

of all σ-filters of (X, σ). We give a characterization theorem of σ-filters below.

Proposition 15 (Characterization of σ-filters). For a nonempty subset S ⊆ X of

a g-state residuated lattice (X, σ), the σ-filter [S)σ generated by S is

[S)σ = [S) ∨ [σ(S)).

P r o o f. Let Γ = [S) ∨ [σ(S)). It is sufficient to show that Γ is the least σ-filter

including S. It is obvious that S ⊆ Γ and Γ is a filter of X . Suppose that x ∈ Γ.

There exist si, ti ∈ S such that (s1 ⊙ σ(t1))⊙ . . .⊙ (sk ⊙ σ(tk)) 6 x and hence that

σ((s1 ⊙ σ(t1))⊙ . . .⊙ (sk ⊙ σ(tk))) 6 σ(x). Since

σ((s1 ⊙ σ(t1))⊙ . . .⊙ (sk ⊙ σ(tk)))

> σ(s1 ⊙ σ(t1))⊙ . . .⊙ σ(sk ⊙ σ(tk))

> (σ(s1)⊙ σ(σ(t1)))⊙ . . .⊙ (σ(sk)⊙ σ(σ(tk)))

= (σ(s1)⊙ σ(t1))⊙ . . .⊙ (σ(sk)⊙ σ(tk))

> ((s1 ⊙ σ(s1))⊙ (t1 ⊙ σ(t1))) ⊙ . . .⊙ ((sk ⊙ σ(sk))⊙ (tk ⊙ σ(tk))),

we have σ(x) ∈ Γ, that is, Γ is a σ-filter. For any σ-filter G including S, it is

clear that Γ ⊆ G. This means that Γ is the least σ-filter including S, namely,

[S)σ = [S) ∨ [σ(S)). �
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Corollary 3. We have

(1) F ∈ F(X) ⇒ [F )σ = F ∨ [σ(F ));

(2) [x)σ = [x) ∨ [σ(x)) = [x⊙ σ(x)) = [x ∧ σ(x));

(3) F ∈ Fσ(X) ⇒ [F ∪ {x})σ = F ∨ [x)σ = F ∨ [x⊙ σ(x)).

The next result is proved for BL-algebras in [2]; however, it can be proved without

difficulty in all residuated lattices.

Proposition 16. Let P be a proper σ-filter of (X, σ). Then the following condi-

tions are equivalent to each other.

(1) If P1, P2 ∈ Fσ(X) and P1 ∩ P2 = P , then P = P1 or P = P2;

(2) If P1, P2 ∈ Fσ(X) and P1 ∩ P2 ⊆ P , then P1 ⊆ P or P2 ⊆ P ;

(3) If x, y ∈ X such that (x⊙ σ(x)) ∨ (y ⊙ σ(y)) ∈ P then x ∈ P or y ∈ P .

A proper σ-filter P of (X, σ) is called a prime σ-filter if it satisfies one of the

conditions above. We denote by Specσ(X) the class of all prime σ-filters of (X, σ).

For F,G ∈ Fσ(X), we define F
∨

σ
G = sup

Fσ(X)

{F,G} and F
∧

σ
G = inf

Fσ(X)
{F,G}.

Then we have

Proposition 17. For F,G ∈ Fσ(X),

(1) F
∨

σ
G = F ∨G,

(2) F
∧

σ
G = F ∧G.

Hence Fσ(X) is a sublattice of F(X).

P r o o f. It is sufficient to show that both F ∨ G and F ∧ G are σ-filters for

all F,G ∈ Fσ(X). Suppose x ∈ F ∨ G. There exist f ∈ F and g ∈ G such that

f⊙g 6 x. Since σ(x) > σ(f⊙g) > σ(f)⊙σ(g) and F,G ∈ Fσ(X), we have σ(f) ∈ F

and σ(g) ∈ G. This implies σ(x) ∈ F ∨ G, that is, F ∨G is also a σ-filter and thus

sup
Fσ(X)

{F,G} = F ∨G. The other case can be proved similarly. �

R em a r k 2. The result above means that the class Fσ(X) of all σ-filters is a

sublattice of F(X) and thus Fσ(X) is a distributive lattice. In the following, we

show that Fσ(X) is also a Heyting algebra but that it is not a subalgebra of F(X).

We prove the following result without difficulty, so we omit its proof.

Proposition 18. For every σ-filter F , a σ-filter F is maximal if and only if a /∈ F

implies ((σ(a))n)′ ∈ F for some n > 1.
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Proposition 19. For all elements x, y ∈ X , we have

(1) [x)σ ∧ [y)σ = [x⊙ σ(x)) ∧ [y ⊙ σ(y)) = [(x⊙ σ(x)) ∨ (y ⊙ σ(y))),

(2) [x)σ ∨ [y)σ = [x ∧ y)σ = [x⊙ y)σ.

P r o o f. We only show the case of (2). The other case can be directly proved

from (2) in Corollary 3. Since x, y > x ∧ y, we have x, y ∈ [x ∧ y)σ and [x)σ, [y)σ ⊆

[x ∧ y)σ. For any σ-filter F such that [x)σ, [y)σ ⊆ F , it follows from x, y ∈ F that

x ∧ y ∈ F and hence that [x ∧ y)σ ⊆ F . This means that [x)σ ∨ [y)σ = [x ∧ y)σ.

Similarly, we have [x)σ ∨ [y)σ = [x⊙ y)σ. �

Now we have a natural question whether the equation [x)σ ∧ [y)σ = [x∨ y)σ holds

or not. It follows from the example below that [x)σ ∧ [y)σ = [x ∨ y)σ does not hold

in general. This example is provided as an Example 3.22 in [15].

E x am p l e 1. Let X = {0, a, b, c, d,1} be a set with 0 < a < c < 1, 0 < b < c,

d < 1 and

⊙ 0 a b c d 1

0 0 0 0 0 0 0

a 0 a 0 a 0 a
b 0 0 0 0 b b
c 0 a 0 a b c
d 0 0 b b d d
1 0 a b c d 1

→ 0 a b c d 1

0 1 1 1 1 1 1

a d 1 d 1 d 1

b c c 1 1 1 1

c b c d 1 d 1

d a a c c 1 1

1 0 a b c d 1

We define a map σ on X as follows:

σ(x) =

{

0, x = 0, b, d,

1, x = a, c,1.

Then we have [a)σ = [a), [b)σ = [0) = X and thus [a)σ ∧ [b)σ = [a) but [a ∨ b)σ =

[c)σ = [c) 6= [a), therefore, [a)σ ∧ [b)σ 6= [a ∨ b)σ.

We define an operation →σ in Fσ(X) by

F →σ G = {x ∈ X : F ∩ [x)σ ⊆ G}, F,G ∈ Fσ(X).

Then we have

Proposition 20. For all F,G,H ∈ Fσ(X), we have

(1) F →σ G ∈ Fσ(X);

(2) F ∩ G ⊆ H if and only if F ⊆ G →σ H . Thus, (Fσ(X),∧,∨,→σ, {1}, X) is a

complete Heyting algebra.
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We show the prime filter theorem for σ-filters. A nonempty set I ⊆ X is called a

∨-closed system if x ∨ y ∈ I for x, y ∈ I.

Lemma 1 (Prime filter theorem, see [19]). Let F ∈ Fσ(X) and I be a ∨-closed

system. If F ∩ I = ∅ then there is a prime σ-filter P such that F ⊆ P and P ∩ I = ∅.

P r o o f. Let Γ = {G : G ∈ Fσ(X), F ⊆ G, G ∩ I = ∅}. It is easy to prove that

there is a maximal element P in Γ by Zorn’s lemma. We only show that P is prime.

Otherwise, there exist a, b ∈ X such that (a ⊙ σ(a)) ∨ (b ⊙ σ(b)) ∈ P but a, b /∈ P .

By maximality of P , we have (P ∨ [a)σ) ∩ I 6= ∅ and (P ∨ [b)σ) ∩ I 6= ∅. There are

elements x, y ∈ I such that x ∈ P ∨ [a)σ and y ∈ P ∨ [b)σ. It follows that x ∨ y ∈ I

because I is ∨-closed. On the other hand, x, y 6 x ∨ y implies x ∨ y ∈ P ∨ [a)σ and

x ∨ y ∈ P ∨ [b)σ and hence x ∨ y ∈ (P ∨ [a)σ) ∩ (P ∨ [b)σ) = P ∨ ([a)σ ∧ [b)σ) =

P ∨ [(a⊙ σ(a)) ∨ (b ⊙ σ(b))) = P . Hence x ∨ y ∈ P ∩ I, but this is a contradiction.

This means that P is a prime σ-filter. �

Corollary 4. If a /∈ F for a σ-filter F , then there exists a prime σ-filter P such

that F ⊆ P but a /∈ P . Therefore, every σ-filter F is an intersection of prime

σ-filters P such that F ⊆ P , that is,

F =
⋂

{P ∈ Specσ : F ⊆ P}.

Corollary 5. If a 6= 1, then there exists a prime σ-filter P such that a /∈ P .

Corollary 6.
⋂

Specσ(X) = {1}.

This implies that:

Theorem 3 ([19]). Every g-state residuated lattice X is a subdirect product of

{X/Pλ}, where Pλ is a prime state filter of X .

We may ask whether [P )σ is a prime σ-filter if P is a prime filter. The answer to

that question is no. In fact, if we consider the residuated lattice X in the example

above, then [d) = {d,1} is a prime filter but [d)σ = X is not a proper filter. Thus

[d)σ is not a prime σ-filter even if [d) is a prime filter.

Now we consider pre-linearity in a g-state residuated lattice (X, σ). As is well

known, for a residuated lattice X satisfying the pre-linearity condition (x → y) ∨

(y → x) = 1 for all x, y ∈ X , if P is a prime filter then the quotient algebra X/P is

a linearly ordered residuated lattice. Now we have the following natural questions:

(Q1) Is X/P linearly ordered if X satisfies the pre-linearity condition and P is a

prime σ-filter?
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(Q2) Under what condition in a g-state residuated lattice is the quotient structure

X/P by prime σ-filter P linearly ordered?

For the first question Q1, we have a negative answer, as the following example

in [3] shows.

E x am p l e 2. Let X = {0, a, b, c, d,1} with the order 0 < a < b, d < 1 and

0 < c < d < 1. We define ⊙ and → by the tables

⊙ 0 a b c d 1

0 0 0 0 0 0 0

a 0 0 a 0 0 a
b 0 a b 0 a b
c 0 0 0 c c c
d 0 0 a c c d
1 0 a b c d 1

→ 0 a b c d 1

0 1 1 1 1 1 1

a d 1 1 d 1 1

b c d 1 c d 1

c b b b 1 1 1

d a b b d 1 1

1 0 a b c d 1

It is easy to show that X is a BL-algebra. We define a map σ on X as follows:

σ(x) =

{

0, x = 0, a, b,

1, x = c, d,1.

Then it is clear that (X, σ) is a g-state residuated lattice. In this example, {1} is

not a prime filter, because b∨d = 1 ∈ {1} and b, d 6= 1. But it is obvious that {1} is

a prime σ-filter. However, the quotient algebra X/{1} ∼= X is not a linearly ordered

residuated lattice.

This example proves the following.

Theorem 4. The quotient residuated lattice X/P by a prime σ-filter P is not

necessary linearly ordered even if X satisfies the pre-linearity condition (x → y) ∨

(y → x) = 1 for all x, y ∈ X .

Therefore, the quotient algebras X/P of state Rℓ-monoids (state BL-algebras) X

by prime σ-filter are not necessary linearly ordered.

As to the second question Q2, we define a new condition in the case of g-state resid-

uated lattices (called a σ-pre-linearity here), which corresponds to the pre-linearity

condition in the case of residuated lattices

σ-pre-linearity : ((x→ y)⊙ σ(x→ y)) ∨ ((y → x)⊙ σ(y → x)) = 1.

Then it is easy to show

Theorem 5. Let (X, σ) be a g-residuated lattice with the σ-pre-linearity condi-

tion and P be a prime σ-filter. Then the quotient structure X/P is linearly ordered.
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It is obvious that if X satisfies σ-pre-linearity then it satisfies pre-linearity. How-

ever, the converse does not hold in general. In fact, we have a counter-example

in a Boolean algebra: Let X = {0, a, b,1} with 0 < a, b < 1. We define σ by

σ(a) = σ(1) = 1 and σ(b) = σ(0) = 0. Then we have (x → y) ∨ (y → x) = 1 for

all x, y ∈ X , that is, the pre-linearity condition holds. But ((a → b) ⊙ σ(a → b)) ∨

((b → a) ⊙ (b → a)) = (b ⊙ σ(b)) ∨ (a ⊙ σ(a)) = 0 ∨ a = a 6= 1. Consequently, the

σ-pre-linearity condition does not hold.

5. Extended filters

Extended filters in Rℓ-monoids were introduced in [14]. After that, extended filters

are considered in pseudo-BL algebras in [1], [3]. For a subset B ⊆ X and a filter

F ∈ F(X),

EF (B) = {x ∈ X : x ∨ b ∈ F for all b ∈ B}

is called an extended filter associated with B.

In [16], extended filters in F(X) are characterized in the case of a residuated

lattice X . The notion of extended filter is generalized to the case of pseudo state BL-

algebras in [2] and to the case of state residuated lattices in [15], where extended state

filters are called co-annihilators. According to the definitions of these papers [1], [15],

we define an extended σ-filter as follows.

Let (X, σ) be a g-state residuated lattice and B a subset B ⊆ X and F a σ-filter

of (X, σ). We put

Eσ
F (B) = {x ∈ X : (x ⊙ σ(x)) ∨ (b⊙ σ(b)) ∈ F for all b ∈ B},

which is called an extended σ-filter associated with B.

Here we give a simple characterization theorem of extended σ-filters for a g-state

residuated lattice (X, σ).

Theorem 6 (Characterization of extended σ-filters). Let F be a σ-filter and B a

subset of X . Then we have

Eσ
F (B) = [B)σ →σ F

in the Heyting algebra (Fσ(X),∧,∨,→σ, {1}, X).

P r o o f. Let x ∈ Eσ
F (B). For all u ∈ [B)σ ∩ [x)σ, there are bi ∈ B and n > 1

such that (b1⊙σ(b1))⊙ . . .⊙ (bk⊙σ(bk)) 6 u and (x⊙σ(x))n 6 u. Since x ∈ Eσ
F (B)

and bi ∈ B, we have (x ⊙ σ(x)) ∨ (bi ⊙ σ(bi)) ∈ F . This implies ((x ⊙ σ(x)) ∨

390



(b1⊙σ(b1)))⊙. . .⊙((x⊙σ(x))∨(bk⊙σ(bk))) ∈ F and ((x⊙σ(x))∨(b1⊙σ(b1)))⊙. . .⊙

((x⊙σ(x))∨(bk⊙σ(bk))) 6 (x⊙σ(x))∨((b1⊙σ(b1))⊙. . .⊙(bk⊙σ(bk))) 6 (x⊙σ(x))∨u,

thus (x⊙σ(x))∨u ∈ F . We note that ((x⊙σ(x))∨u)n+1 ∈ F and ((x⊙σ(x))∨u)n+1 6

(x ⊙ σ(x))n ∨ u = u. This means that if u ∈ [B)σ ∩ [x)σ then u ∈ F , namely,

[B)σ ∩ [x)σ ⊆ F . Hence we have x ∈ [B)σ →σ F and E
σ
F (B) ⊆ [B)σ →σ F .

Conversely, suppose that x ∈ [B)σ →σ F . For every b ∈ B, since b ⊙ σ(b) 6

(x ⊙ σ(x)) ∨ (b ⊙ σ(b)) and x ⊙ σ(x) 6 (x ⊙ σ(x)) ∨ (b ⊙ σ(b)), we get (x ⊙ σ(x)) ∨

(b⊙ σ(b)) ∈ [B)σ, (x⊙ σ(x)) ∨ (b⊙ σ(b)) ∈ [x)σ and hence (x⊙ σ(x)) ∨ (b⊙ σ(b)) ∈

[B)σ ∩ [x)σ ⊆ F . This means that (x⊙σ(x))∨ (b⊙ σ(b)) ∈ F for all b ∈ B. Thus we

have x ∈ Eσ
F (B) and [B)σ →σ F ⊆ Eσ

F (B).

Therefore, we get that Eσ
F (B) = [B)σ →σ F in the Heyting algebra Fσ(X) for the

g-state residuated lattice X . �

We recall a definition of state on a residuated lattice X . A map s : X → [0, 1] is

called a Bosbach state on a residuated lattice X if it satisfies

(BS1) s(x) + s(x→ y) = s(y) + s(y → x),

(BS2) s(0) = 0 and s(1) = 1, where “+” is an usual sum in [0,1].

Taking x by x ∧ y and y by x, we have s(x) + s(x→ y) = 1 + s(x ∧ y).

We also give a definition of another type of state, Riečan state. A map s : X →

[0, 1] is called a Riečan state on X if it satisfies

(RS1) If x⊥y then s(x⊕y) = s(x)+s(y), where x⊕y = (x′⊙y′)′ and x⊥y is defined

by x′′ 6 y′, that is, x⊙ y = 0;

(RS2) s(0) = 0 and s(1) = 1.

As the name of g-state operators shows, g-state operators induce new states on

residuated lattices.

Proposition 21. Let σ be a g-state operator and s : X → [0, 1] be a (Bosbach,

Riečan) state on σ(X). Then sσ : σ(X) → [0, 1], defined by sσ(x) = s(σ(x)) for all

x ∈ X , is a (Bosbach, Riečan) state on X .

P r o o f. At first, we consider the case of Riečan state. Let s be a Riečan

state on σ(X). It is obvious that sσ(1) = s(σ(1)) = s(1) = 1. For all x, y ∈ X

such that x⊥y, since x ⊙ y = 0, we have 0 = σ(0) = σ(x ⊙ y) > σ(x) ⊙ σ(y).

This means that σ(x)⊥σ(y) in σ(X). Since s is the Riečan state on σ(X), we get

sσ(x) + sσ(y) = s(σ(x)) + s(σ(y)) = s(σ(x)⊕ σ(y)). On the other hand, σ(x⊕ y) =

σ((x′ ⊙ y′)′) = σ(x′ → y′′) = σ(x′) → σ(x′ ∧ y′′). It follows from x′′ 6 y′ that

y′′ 6 x′′′ = x′ and x′∧y′′ = y′′. Hence we have σ(x⊕y) = σ(x′) → σ(y′′) = (σ(x))′ →

(σ(y))′′ = ((σ(x))′ ⊙ (σ(y))′)′ = σ(x)⊕ σ(y) and s(σ(x⊕ y)) = s(σ(x)⊕ σ(y)). This

implies sσ(x ⊕ y) = sσ(x) + sσ(y) and thus sσ is a Riečan state.
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For the case of Bosbach state s, sσ is proved to be a Bosbach state as follows:

sσ(x→ y) + sσ(x) = s(σ(x→ y)) + s(σ(x))

= s(σ(x) → σ(x ∧ y)) + s(σ(x))

= s(σ(x ∧ y)) + s(σ(x ∧ y) → σ(x))

= 1 + s(σ(x ∧ y))

= 1 + sσ(x ∧ y).

Thus sσ is also a Bosbach state. �

R em a r k 3. In [15], the result above is proved as Theorem 3.10 under the ad-

ditional condition that σ(x → y) = σ(x) → σ(y) for all x, y ∈ X . However, this

condition is redundant as our proof shows.

We consider a relation between Fσ(X) and F(σ(X)).

Proposition 22. For every F ∈ Fσ(X) and G ∈ F(σ(X)), we have

(1) F ∈ Fσ(X) ⇒ σ(F ) ∈ F(σ(X)),

(2) G ∈ F(σ(X)) ⇒ σ−1(G) ∈ Fσ(X).

P r o o f. (1) Let F ∈ Fσ(X). It is clear that 1 = σ(1) ∈ σ(F ). If σ(x), σ(y) ∈

σ(F ) (x, y ∈ F ), since σ(F ) ⊆ F , then σ(x), σ(y) ∈ F and σ(x) ⊙ σ(y) ∈ F . This

implies σ(x) ⊙ σ(y) = σ(σ(x) ⊙ σ(y)) ∈ σ(F ). At last, if σ(x) ∈ σ(F ) (x ∈ F ) and

σ(x) 6 σ(y), then we have σ(x) ∈ F and σ(y) ∈ F . Thus σ(y) = σ(σ(y)) ∈ σ(F ).

Hence σ(F ) ∈ F(σ(X)).

(2) It is trivial that 1 ∈ σ−1(G). Suppose that x, y ∈ σ−1(G). It follows from

σ(x), σ(y) ∈ G that σ(x)⊙σ(y) ∈ G and σ(x)⊙σ(y) 6 σ(x⊙y), hence σ(x⊙y) ∈ G.

This means that x⊙ y ∈ σ−1(G). If x ∈ σ−1(G) and x 6 y, then we get σ(x) 6 σ(y)

and σ(y) ∈ G, that is, y ∈ σ−1(G). Moreover, for x ∈ σ−1(G), since σ(σ(x)) =

σ(x) ∈ G, we have σ(x) ∈ σ−1(G) and hence σ−1(G) ∈ Fσ(X). �

We also have similar results about maximal filters. We denote by Maxσ(X) (or

Max(σ(X))) the class of all maximal σ-filters of (X, σ) (or maximal filter of σ(X),

respectively).

Corollary 7. For every M ∈ Fσ(X) and N ∈ F(σ(X)), we have

(1) M ∈ Maxσ(X) ⇒ σ(M) ∈ Max(σ(X)),

(2) N ∈ Max(σ(X)) ⇒ σ−1(N) ∈ Maxσ(X).
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P r o o f. (1) Suppose that σ(x) /∈ σ(M). Since x /∈ M and M is a maximal

σ-filter, there is n > 1 such that ((σ(x))n)′ ∈ M and σ(((σ(x))n)′) ∈ σ(M). Now,

it follows from σ((σ(x))n) = σ(σ(x) ⊙ . . . ⊙ σ(x)) > σ(σ(x)) ⊙ . . . ⊙ σ(σ(x)) =

σ(x) ⊙ . . . ⊙ σ(x) = (σ(x))n that σ(((σ(x))n)′) = (σ((σ(x))n))′ 6 ((σ(x))n)′ and

thus ((σ(x))n)′ ∈ M . This implies that σ(M) is a maximal filter of σ(X), that is,

σ(M) ∈ Max(σ(X)).

(2) If x /∈ σ−1(N), since N is a maximal filter and σ(x) /∈ N , then there ex-

ists n > 1 such that ((σ(x))n)′ ∈ N ⊆ σ(X). This implies σ(((σ(x))n)′) =

((σ(x))n)′ ∈ N and ((σ(x))n)′ ∈ σ−1(N). Namely, σ−1(N) is the maximal σ-filter

of (X, σ) and thus σ−1(N) ∈ Maxσ(X). �

6. Quotient structures of g-state residuated lattices

Let (X, σ) be a g-state residuated lattice. For a σ-filter F , we define a rela-

tion ≡F by

x ≡F y ⇔ x→ y, y → x ∈ F.

It is easy to prove that ≡F is a congruence relation on X , and thus we consider a

quotient structure X/F by the congruence relation ≡F . We denote the congruence

structure X/F = {x/F : x ∈ X} and x/F = {y ∈ X : x ≡F y}. We define an oper-

ator σ/F : X/F → X/F on the residuated lattice X/F by (σ/F )(x/F ) = σ(x)/F .

It is obvious that the quotient structure X/F is a residuated lattice. We note that

σ/F is well-defined. Indeed, if x/F = y/F , since x → y, y → x ∈ F and F is the

σ-filter, then we have σ(x → y), σ(y → x) ∈ F and σ(x → y) 6 σ(x) → σ(y),

σ(y → x) 6 σ(y) → σ(x). This yields that σ(x) → σ(y), σ(y) → σ(x) ∈ F and hence

σ(x)/F = σ(y)/F . Moreover, it is clear that σ/F is a g-state operator on X/F .

Hence we get

Theorem 7. For a σ-filter F , the structure (X/F, σ/F ) is a g-state residuated

lattice.

Corollary 8. (σ/F )(X/F ) is a subalgebra of X/F .

Lemma 2. For a σ-filter F , we have F ∩ σ(X) = σ(F ).

P r o o f. It is clear from σ(F ) ⊆ F that σ(F ) ⊆ F ∩ σ(X). Conversely, suppose

that a ∈ F ∩ σ(X). There exists x ∈ X such that a = σ(x) ∈ F . It follows that

a = σ(x) = σ(σ(x)) = σ(a) ∈ σ(F ) and hence F ∩ σ(X) = σ(F ). �
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Since we know that σ(X) is a {∧,∨,⊙,→}-reduct subalgebra of X and σ(F ) is a

filter of σ(X), a quotient structure σ(X)/σ(F ) is a residuated lattice. Therefore, we

ask about a relation between (σ/F )(X/F ) and σ(X)/σ(F ).

Theorem 8. Let (X, σ) be a g-state residuated lattice and F be a σ-filter of X .

Then

(σ/F )(X/F ) ∼= σ(X)/σ(F ).

P r o o f. Let ξ : σ(X) → (σ/F )(X/F ) defined by ξ(σ(x)) = (σ/F )(x/F ) =

σ(x)/F . It is clear that ξ is well-defined and surjective. Moreover, it is easy to show

that ξ is a homomorphism between residuated lattices σ(X) and (σ/F )(X/F ). It

follows from the homomorphism theorem that σ(X)/ ker(ξ) ∼= (σ/F )(X/F ). For the

kernel ker(ξ) of ξ, we get

σ(x) ∈ ker(ξ) ⇔ ξ(σ(x)) = 1/F and σ(x) ∈ σ(X)

⇔ σ(x)/F = 1/F and σ(x) ∈ σ(X)

⇔ σ(x) ∈ F and σ(x) ∈ σ(X)

⇔ σ(x) ∈ F ∩ σ(X)

⇔ σ(x) ∈ σ(F ).

Hence we have

(σ/F )(X/F ) ∼= σ(X)/σ(F ).

�

References

[1] L.C. Ciungu: Bosbach and Riečan states on residuated lattices. J. Appl. Funct. Anal. 3
(2008), 175–188. zbl MR

[2] N.M.Constantinescu: On pseudo BL-algebras with internal state. Soft Comput. 16
(2012), 1915–1922. zbl doi

[3] N.M.Constantinescu: State filters on fuzzy structures with internal states. Soft Comput.
18 (2014), 1841–1852. zbl doi

[4] A.Dvurečenskij: States on pseudo MV-algebras. Stud. Log. 68 (2001), 301–327. zbl MR doi
[5] A.Dvurečenskij, J.Rach̊unek: On Riečan and Bosbach states for bounded non-

commutative Rℓ-monoids. Math. Slovaca 56 (2006), 487–500. zbl MR
[6] A.Dvurečenskij, J.Rach̊unek: Probabilistic averaging in bounded Rℓ-monoids. Semi-

group Forum 72 (2006), 190–206. zbl MR doi
[7] A.Dvurečenskij, J. Rach̊unek, D. Šalounová: State operators on generalizations of fuzzy

structures. Fuzzy Sets Syst. 187 (2012), 58–76. zbl MR doi
[8] T.Flaminio, F.Montagna: MV-algebras with internal states and probabilistic fuzzy log-

ics. Int. J. Approx. Reasoning 50 (2009), 138–152. zbl MR doi

394

https://zbmath.org/?q=an:1170.03030
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2369429
https://zbmath.org/?q=an:1291.03116
http://dx.doi.org/10.1007/s00500-012-0864-y
https://zbmath.org/?q=an:1331.03043
http://dx.doi.org/10.1007/s00500-014-1277-x
https://zbmath.org/?q=an:0999.06011
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1865858
http://dx.doi.org/10.1023/A:1012490620450
https://zbmath.org/?q=an:1141.06005
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2293582
https://zbmath.org/?q=an:1105.06010
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2216089
http://dx.doi.org/10.1007/s00233-005-0545-6
https://zbmath.org/?q=an:1266.03071
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2851996
http://dx.doi.org/10.1016/j.fss.2011.05.023
https://zbmath.org/?q=an:1185.06007
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2519034
http://dx.doi.org/10.1016/j.ijar.2008.07.006


[9] N.Galatos, P. Jipsen, T.Kowalski, H.Ono: Residuated Lattices: An Algebraic Glimpse
at Substructural Logics. Studies in Logic and the Foundations of Mathematics 151.
Elsevier, Amsterdam, 2007. zbl MR doi

[10] G.Georgescu: Bosbach states on fuzzy structures. Soft Comput. 8 (2004), 217–230. zbl doi
[11] P.Hájek: Metamathematics of Fuzzy Logic. Trends in Logic–Studia Logica Library 4.

Kluwer, Dordrecht, 1998. zbl MR doi
[12] J.B.Hart, L. Rafter, C.Tsinakis: The structure of commutative residuated lattices. Int.

J. Algebra Comput. 12 (2002), 509–524. zbl MR doi
[13] M.Haveshki, A. Borumand Saeid, E.Eslami: Some types of filters in BL algebras. Soft

Comput. 10 (2006), 657–664. zbl doi
[14] M.Haveshki, M.Mohamadhasani: Extended filters in bounded commutative Rℓ-

monoids. Soft Comput. 16 (2012), 2165–2173. zbl doi
[15] P.He, X.Xin, Y.Yang: On state residuated lattices. Soft Comput. 19 (2015), 2083–2094. zbl doi
[16] M.Kondo: Characterization of extended filters in residuated lattices. Soft Comput. 18

(2014), 427–432. zbl doi
[17] M.Kondo: States on bounded commutative residuated lattices. Math. Slovaca 64 (2014),

1093–1104. zbl MR doi
[18] M.Kondo: Generalized state operators on residuated lattices. Soft Comput. 21 (2017),

6063–6071. zbl doi
[19] M.Kondo, M. F.Kawaguchi: Some properties of generalized state operators on resid-

uated lattices. Proceedings of the 46th IEEE International Symposium on Multiple-
Valued Logic. IEEE Computer Society, Los Alamitos, 2016, pp. 162–166. MR doi

[20] M.Kondo, O.Watari, M.F.Kawaguchi, M.Miyakoshi: A Logic Determined by Commu-
tative Residuated Lattices. New Dimensions in Fuzzy Logic and Related Technologies.
Proceedings of the 5th EUSFLAT Conference, Volume 2. Universitas Ostraviensis, Os-
trava, 2007, pp. 45–48.

[21] F.Kôpka, F. Chovanec: D-posets. Math. Slovaca 44 (1994), 21–34. zbl MR
[22] J.Rach̊unek, D. Šalounová: State operators on GMV-algebras. Soft Comput. 15 (2011),

327–334. zbl doi
[23] E.Turunen: Boolean deductive systems of BL-algebras. Arch. Math. Logic 40 (2001),

467–473. zbl MR doi
[24] M.Ward, R. P.Dilworth: Residuated lattices. Trans. Am. Math. Soc. 45 (1939), 335–354. zbl MR doi

Author’s address: Michiro Kondo, School of Information Environment, Tokyo
Denki University, 5 Senjuasahicho, Adachi City, Tokyo 120-8551, Japan, e-mail: mkondo
@mail.dendai.ac.jp.

395

https://zbmath.org/?q=an:1171.03001
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2531579
http://dx.doi.org/10.1016/S0049-237X(07)80005-X
https://zbmath.org/?q=an:1081.06012
http://dx.doi.org/10.1007/s00500-003-0266-2
https://zbmath.org/?q=an:0937.03030
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1900263
http://dx.doi.org/10.1007/978-94-011-5300-3
https://zbmath.org/?q=an:1011.06006
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1919685
http://dx.doi.org/10.1142/S0218196702001048
https://zbmath.org/?q=an:1103.03062
http://dx.doi.org/10.1007/s00500-005-0534-4
https://zbmath.org/?q=an:1288.03043
http://dx.doi.org/10.1007/s00500-012-0884-7
https://zbmath.org/?q=an:1364.06003
http://dx.doi.org/10.1007/s00500-015-1620-x
https://zbmath.org/?q=an:1386.03073
http://dx.doi.org/10.1007/s00500-013-1100-0
https://zbmath.org/?q=an:1342.06009
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3277839
http://dx.doi.org/10.2478/s12175-014-0261-3
https://zbmath.org/?q=an:1384.03119
http://dx.doi.org/10.1007/s00500-016-2324-6
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3570629
http://dx.doi.org/10.1109/ISMVL.2016.29
https://zbmath.org/?q=an:0789.03048
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1290269
https://zbmath.org/?q=an:1260.06014
http://dx.doi.org/10.1007/s00500-010-0568-0
https://zbmath.org/?q=an:1030.03048
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1854896
http://dx.doi.org/10.1007/s001530100088
https://zbmath.org/?q=an:0021.10801
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1501995
http://dx.doi.org/10.1090/S0002-9947-1939-1501995-3
mailto:mkondo@mail.dendai.ac.jp
mailto:mkondo@mail.dendai.ac.jp

