FUZZY DIFFERENTIAL SUBORDINATIONS CONNECTED WITH THE LINEAR OPERATOR

Sheza M. El-Deeb, New Damietta, Georgia I. Oros, Oradea

Received November 15, 2019. Published online November 2, 2020.
Communicated by Dagmar Medková

Abstract. We obtain several fuzzy differential subordinations by using a linear operator $\mathcal{I}_{m, \gamma}^{n, \alpha} f(z)=z+\sum_{k=2}^{\infty}(1+\gamma(k-1))^{n} m^{\alpha}(m+k)^{-\alpha} a_{k} z^{k}$. Using the linear operator $\mathcal{I}_{m, \gamma}^{n, \alpha}$, we also introduce a class of univalent analytic functions for which we give some properties.

Keywords: fuzzy differential subordination; fuzzy best dominant; linear operator MSC 2020: 30C45

1. Introduction

Let $\mathcal{D} \subset \mathbb{C}, \mathcal{H}(\mathcal{D})$ be the class of holomorphic functions on \mathcal{D} and denote by $\mathcal{H}_{n}(\mathcal{D})$ the class of holomorphic and univalent functions on \mathcal{D}. In this paper, we denote by $\mathcal{H}(\mathbb{U})$ the class of holomorphic functions in the open unit disk $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$ with $\partial \mathbb{U}=\{z \in \mathbb{C}:|z|=1\}$ the boundary of the unit disc. For $a \in \mathbb{C}$ and $k \in \mathbb{N}$, we denote

$$
\begin{aligned}
\mathcal{H}[a, k] & =\left\{f \in \mathcal{H}(\mathbb{U}): f(z)=a+a_{k} z^{k}+a_{k+1} z^{k+1}+\ldots, z \in \mathbb{U}\right\} \\
\mathcal{A}_{k} & =\left\{f \in \mathcal{H}(\mathbb{U}): f(z)=z+a_{k+1} z^{k+1}+\ldots, z \in \mathbb{U}\right\} \text { with } \mathcal{A}_{1}=\mathcal{A},
\end{aligned}
$$

and

$$
\mathcal{S}=\{f \in \mathcal{A}: f \text { is a univalent function in } \mathbb{U}\} .
$$

Denote by

$$
\mathcal{K}=\left\{f \in \mathcal{A}: \Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>0, z \in \mathbb{U}\right\}
$$

the class of convex functions in \mathbb{U}.

Definition 1.1 ([7] and [13]). Let f and g be analytic functions in \mathbb{U}. We say that f is subordinate to g, written $f \prec g$, if there exists a Schwarz function w, which is analytic in \mathbb{U} with $w(0)=0$ and $|w(z)|<1$ for all $z \in \mathbb{U}$, such that $f(z)=g(w(z))$. Furthermore, if the function g is univalent in \mathbb{U}, then we have the following equivalence:

$$
f(z) \prec g(z) \Leftrightarrow f(0)=g(0) \text { and } f(\mathbb{U}) \subset g(\mathbb{U}) .
$$

In order to introduce the notion of fuzzy differential subordination, we use the following definitions and propositions:

Definition 1.2 ([10]). Assume that \mathcal{Y} be a nonempty set. An application \mathcal{F} : $\mathcal{Y} \rightarrow[0,1]$ is called fuzzy subset. A pair $\left(\mathcal{B}, \mathcal{F}_{\mathcal{B}}\right)$, where $\mathcal{F}_{\mathcal{B}}: \mathcal{Y} \rightarrow[0,1]$ and

$$
\begin{equation*}
\mathcal{B}=\left\{x \in \mathcal{Y}: 0<\mathcal{F}_{\mathcal{B}}(x) \leqslant 1\right\}=\sup \left(\mathcal{B}, \mathcal{F}_{\mathcal{B}}\right) \tag{1.1}
\end{equation*}
$$

is called fuzzy set. The function $\mathcal{F}_{\mathcal{B}}$ is called membership function of the fuzzy set $\left(\mathcal{B}, \mathcal{F}_{\mathcal{B}}\right)$.

Proposition 1.1 ([14]).
(i) If $\left(\mathcal{B}, \mathcal{F}_{\mathcal{B}}\right)=\left(\mathcal{U}, \mathcal{F}_{\mathcal{U}}\right)$, then we have $\mathcal{B}=\mathcal{U}$, where $\mathcal{B}=\sup \left(\mathcal{B}, \mathcal{F}_{\mathcal{B}}\right)$ and $\mathcal{U}=$ $\sup \left(\mathcal{U}, \mathcal{F}_{\mathcal{U}}\right)$.
(ii) If $\left(\mathcal{B}, \mathcal{F}_{\mathcal{B}}\right) \subseteq\left(\mathcal{U}, \mathcal{F}_{\mathcal{U}}\right)$, then we have $\mathcal{B} \subseteq \mathcal{U}$, where $\mathcal{B}=\sup \left(\mathcal{B}, \mathcal{F}_{\mathcal{B}}\right)$ and $\mathcal{U}=$ $\sup \left(\mathcal{U}, \mathcal{F}_{\mathcal{U}}\right)$.

Let $f, g \in \mathcal{H}(\mathcal{D})$. We denote

$$
\begin{equation*}
f(\mathcal{D})=\left\{f(z): 0<\mathcal{F}_{f(\mathcal{D})} f(z) \leqslant 1, z \in \mathcal{D}\right\}=\sup \left(f(\mathcal{D}), \mathcal{F}_{f(\mathcal{D})}\right) \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
g(\mathcal{D})=\left\{g(z): 0<\mathcal{F}_{g(\mathcal{D})} g(z) \leqslant 1, z \in \mathcal{D}\right\}=\sup \left(g(\mathcal{D}), \mathcal{F}_{g(\mathcal{D})}\right) \tag{1.3}
\end{equation*}
$$

Definition 1.3 ([14]). Let $z_{0} \in \mathcal{D}$ and $f, g \in \mathcal{H}(\mathcal{D})$. The function f is said to be fuzzy subordinate to g, written $f \prec_{\mathcal{F}} g$ or $f(z) \prec_{\mathcal{F}} g(z)$, when following conditions are satisfied:
(i) $f\left(z_{0}\right)=g\left(z_{0}\right)$,
(ii) $\mathcal{F}_{f(\mathcal{D})} f(z) \leqslant \mathcal{F}_{g(\mathcal{D})} g(z), z \in \mathcal{D}$.

Proposition 1.2 ([14]). Assume that $z_{0} \in \mathcal{D}$ and $f, g \in \mathcal{H}(\mathcal{D})$. If $f(z) \prec_{\mathcal{F}} g(z)$, $z \in \mathcal{D}$, then
(i) $f\left(z_{0}\right)=g\left(z_{0}\right)$,
(ii) $f(\mathcal{D}) \subseteq g(\mathcal{D}), \mathcal{F}_{f(\mathcal{D})} f(z) \leqslant \mathcal{F}_{g(\mathcal{D})} g(z), z \in \mathcal{D}$, where $f(\mathcal{D})$ and $g(\mathcal{D})$ are defined by (1.2) and (1.3), respectively.

Definition 1.4 ([16]). Assume that $\Phi: \mathbb{C}^{3} \times \mathbb{U} \rightarrow \mathbb{C}$ and $h \in \mathcal{S}$ with $\Phi(a, 0,0 ; 0)=$ $h(0)=a$. If p is analytic in \mathbb{U} with $p(0)=a$ and satisfies the second order fuzzy differential subordination

$$
\begin{align*}
\mathcal{F}_{\Phi\left(\mathbb{C}^{3} \times \mathbb{U}\right)} \Phi\left(p(z), z p^{\prime}(z), z^{2} p^{\prime \prime}(z) ; z\right) & \leqslant \mathcal{F}_{h(\mathbb{U})} h(z), \tag{1.4}\\
\text { i.e. } \Phi\left(p(z), z p^{\prime}(z), z^{2} p^{\prime \prime}(z) ; z\right) & \prec_{\mathcal{F}} h(z), \quad z \in \mathbb{U}
\end{align*}
$$

then p is called a fuzzy solution of the fuzzy differential subordination. The univalent function q is called a fuzzy dominant of the fuzzy solutions for the fuzzy differential subordination if

$$
\mathcal{F}_{p(\mathbb{U})} p(z) \leqslant \mathcal{F}_{q(\mathbb{U})} q(z), \text { i.e. } p(z) \prec_{\mathcal{F}} q(z), z \in \mathbb{U}
$$

for all p satisfying (1.4). A fuzzy dominant \tilde{q} that satisfies

$$
\mathcal{F}_{\tilde{q}(\cup)} \tilde{q}(z) \leqslant \mathcal{F}_{q(\cup)} q(z), \quad \text { i.e. } \tilde{q}(z) \prec_{\mathcal{F}} q(z), z \in \mathbb{U}
$$

for all fuzzy dominants q of (1.4) is said to be the fuzzy best dominant of (1.4).
The integral operator $\mathcal{K}_{m}^{\alpha}: \mathcal{A} \rightarrow \mathcal{A}$ is defined for $\alpha>0$ and $m>-1$ as follows (see Komatu [12] with $p=1$):

$$
\mathcal{K}_{m}^{0} f(z)=f(z)=z+\sum_{k=1}^{\infty} a_{k+1} z^{k+1}
$$

and

$$
\begin{equation*}
\mathcal{K}_{m}^{\alpha} f(z)=\frac{(m+1)^{\alpha}}{\Gamma(\alpha) z^{m}} \int_{0}^{z} t^{m-1}\left(\log \frac{z}{t}\right)^{\alpha-1} f(t) \mathrm{d} t \tag{1.5}
\end{equation*}
$$

It can be easily verified that

$$
\begin{equation*}
\mathcal{K}_{m}^{\alpha} f(z)=z+\sum_{k=1}^{\infty}\left(\frac{m+1}{m+k+1}\right)^{\alpha} a_{k+1} z^{k+1} \tag{1.6}
\end{equation*}
$$

El-Ashwah et al. (see [9] with $p=1$) introduced the linear multiplier operator $\mathcal{I}_{m, \gamma}^{n, \alpha}$: $\mathcal{A} \rightarrow \mathcal{A}$ given as:

$$
\begin{aligned}
\mathcal{I}_{m, \gamma}^{0,0} f(z) & =f(z) \\
\mathcal{I}_{m, \gamma}^{1, \alpha} f(z) & =\mathcal{I}_{m, \gamma}^{\alpha} f(z)=(1-\gamma) \mathcal{K}_{m}^{\alpha} f(z)+\gamma z\left(\mathcal{K}_{m}^{\alpha} f(z)\right)^{\prime} \\
& =z+\sum_{k=1}^{\infty}(1+\gamma k)\left(\frac{m+1}{m+k+1}\right)^{\alpha} a_{k+1} z^{k+1} \\
\mathcal{I}_{m, \gamma}^{2, \alpha} f(z) & =\mathcal{I}_{m, \gamma}^{\alpha}\left(\mathcal{I}_{m, \gamma}^{1, \alpha} f(z)\right) \\
& =z+\sum_{k=1}^{\infty}(1+\gamma k)^{2}\left(\frac{m+1}{m+k+1}\right)^{\alpha} a_{k+1} z^{k+1}
\end{aligned}
$$

in general,
(1.7) $\mathcal{I}_{m, \gamma}^{n, \alpha} f(z)=\mathcal{I}_{m, \gamma}^{\alpha}\left(\mathcal{I}_{m, \gamma}^{n-1, \alpha} f(z)\right)=z+\sum_{k=1}^{\infty}(1+\gamma k)^{n}\left(\frac{m+1}{m+k+1}\right)^{\alpha} a_{k+1} z^{k+1}$,

$$
\alpha \geqslant 0, m>-1, \gamma \geqslant 0, n \in \mathbb{N}_{0} .
$$

It is easily verified from (1.7) that

$$
\begin{equation*}
z\left(\mathcal{I}_{m, \gamma}^{n, \alpha} f(z)\right)^{\prime}=(m+1) \mathcal{I}_{m, \gamma}^{n, \alpha-1} f(z)-m \mathcal{I}_{m, \gamma}^{n, \alpha} f(z) \tag{1.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\gamma z\left(\mathcal{I}_{m, \gamma}^{n, \alpha} f(z)\right)^{\prime}=\mathcal{I}_{m, \gamma}^{n+1, \alpha} f(z)-(1-\gamma) \mathcal{I}_{m, \gamma}^{n, \alpha} f(z) \tag{1.9}
\end{equation*}
$$

By specializing the parameters m, γ, α and n, we obtain the following operators:

$$
\begin{aligned}
\mathcal{I}_{c, \gamma}^{0, \delta} f(z) & =\mathcal{K}_{c, 1}^{\delta} f(z) & & (\text { see }[11]) ; \\
\mathcal{I}_{a-1, \gamma}^{0, \alpha} f(z) & =L_{a}^{\alpha} f(z) & & (\text { see [4] and [5]); } \\
\mathcal{I}_{c, 0}^{1, \alpha} f(z) & =\mathcal{P}_{c}^{\alpha} f(z) & & (\text { see [12] and [17]); } \\
\mathcal{I}_{c, 0}^{1,1} f(z) & =\mathcal{L}_{c} f(z) & & (\text { see }[6]) ; \\
\mathcal{I}_{1,0}^{1, \alpha} f(z) & =\mathcal{I}^{\alpha} f(z) & & (\text { see }[8]) ; \\
\mathcal{I}_{m, \gamma}^{n, 0} f(z) & =\mathcal{D}_{\gamma}^{n} f(z) & & (\text { see }[1]) ; \\
\mathcal{I}_{m, 1}^{n, 0} f(z) & =\mathcal{D}^{n} f(z) & & (\text { see }[18]) .
\end{aligned}
$$

Also, we note that

$$
\begin{equation*}
\mathcal{I}_{m, \gamma}^{-n, \alpha} f(z)=z+\sum_{k=1}^{\infty}\left(\frac{1}{1+\gamma k}\right)^{n}\left(\frac{m+1}{m+k+1}\right)^{\alpha} a_{k+1} z^{k+1} \tag{1.10}
\end{equation*}
$$

From (1.7) and (1.10) we observe that the operator $\mathcal{I}_{m, \gamma}^{n, \alpha} f(z)$ is well defined from $n \in \mathbb{Z}=\{0, \pm 1, \pm 2, \ldots\}$.

By using the linear operator $\mathcal{I}_{m, \gamma}^{n, \alpha} f(z)$ defined by (1.7), we will derive several fuzzy diferential subordintions for this class.

Definition 1.5. A function $f \in \mathcal{A}$ belongs to the class $\mathcal{M}_{m, \gamma}^{F}(n, \alpha, \eta)$ for all $\eta \in[0,1), n \in \mathbb{N}_{0}, m>-1, \gamma \geqslant 0$ and $\alpha \geqslant 0$ if it satisfies the inequality

$$
F_{\left(\mathcal{I}_{m, \gamma}^{n, \alpha} f\right)^{\prime}(\mathbb{U})}\left(\mathcal{I}_{m, \gamma}^{n, \alpha} f(z)\right)^{\prime}>\eta, \quad z \in \mathbb{U} .
$$

2. Preliminary

To prove our results, we need the following lemmas.
Lemma 2.1 ([13]). Let $\psi \in \mathcal{A}$ and $\mathcal{G}(z)=z^{-1} \int_{0}^{z} \psi(t) \mathrm{d} t, z \in \mathbb{U}$. If

$$
\Re\left(1+z \psi^{\prime \prime}(z) / \psi^{\prime}(z)\right)>-\frac{1}{2}, \quad z \in \mathbb{U}
$$

then $\mathcal{G} \in \mathcal{K}$.
Lemma 2.2 ([15], Theorem 2.6). Assume that h is a convex function with $h(0)=a$ and $\nu \in \mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$ with $\Re(\nu) \geqslant 0$. If $p \in \mathcal{H}[a, n]$ with $p(0)=a$, $\Phi: \mathbb{C}^{2} \times \mathbb{U} \rightarrow \mathbb{C}, \Phi\left(p(z), z p^{\prime}(z) ; z\right)=p(z)+\nu^{-1} z p^{\prime}(z)$ is analytic function in \mathbb{U} and

$$
\mathcal{F}_{\Phi\left(\mathbb{C}^{2} \times \mathbb{U}\right)}\left(p(z)+\frac{1}{\nu} z p^{\prime}(z)\right) \leqslant \mathcal{F}_{h(\mathbb{U})} h(z), \text { i.e. } p(z)+\frac{1}{\nu} z p^{\prime}(z) \prec_{\mathcal{F}} h(z), z \in \mathbb{U},
$$

then

$$
\mathcal{F}_{p(\mathrm{U})} p(z) \leqslant \mathcal{F}_{q(\cup)} q(z) \leqslant \mathcal{F}_{h(\mathbb{U})} h(z), \quad \text { i.e. } p(z) \prec_{\mathcal{F}} q(z), z \in \mathbb{U},
$$

where

$$
q(z)=\frac{\nu}{n z^{\nu / n}} \int_{0}^{z} h(t) t^{-1+\nu / n} \mathrm{~d} t, \quad z \in \mathbb{U} .
$$

The function q is convex and it is the fuzzy best dominant.
Lemma 2.3 ([15], Theorem 2.7). Let g be a convex function in \mathbb{U} and let $\psi(z)=$ $g(z)+n \gamma z g^{\prime}(z)$, where $z \in \mathbb{U}, n \in \mathbb{N}$ and $\gamma>0$. If

$$
p(z)=g(0)+p_{n} z^{n}+p_{n+1} z^{n+1}+\ldots
$$

is holomorphic in \mathbb{U} and

$$
\mathcal{F}_{p(\mathbb{U})}\left(p(z)+\gamma z p^{\prime}(z)\right) \leqslant \mathcal{F}_{\psi(\mathbb{U})} \psi(z), \quad \text { i.e. } p(z)+\gamma z p^{\prime}(z) \prec_{\mathcal{F}} \psi(z), z \in \mathbb{U},
$$

then

$$
\mathcal{F}_{p(\cup)}(p(z)) \leqslant \mathcal{F}_{g(\cup)} g(z), \quad \text { i.e. } p(z) \prec_{\mathcal{F}} g(z), z \in \mathbb{U} ;
$$

this result is sharp.
For the general theory of fuzzy differential subordination and its applications, we refer the reader to [2], [12]-[14], [16].

The objective of the present section is to obtain several fuzzy differential subordinations associated with the integral operator $\mathcal{I}_{m, \gamma}^{n, \alpha}$ by using the method of fuzzy differential subordination.

3. Main Results

Assume that $\eta \in[0,1), n \in \mathbb{N}_{0}, m>0, \alpha, \gamma \geqslant 0$ and $z \in \mathbb{U}$ are mentioned through this paper:

Theorem 3.1. Let k be a convex function in \mathbb{U} and suppose that $h(z)=k(z)+$ $z k^{\prime}(z) /(\lambda+2)$. If $f \in \mathcal{M}_{m, \gamma}^{F}(n, \alpha, \eta)$ and

$$
\begin{equation*}
G(z)=I^{\lambda} f(z)=\frac{\lambda+2}{z^{\lambda+1}} \int_{0}^{z} t^{\lambda} f(t) \mathrm{d} t, \tag{3.1}
\end{equation*}
$$

then

$$
\begin{equation*}
F_{\left(\mathcal{I}_{m, \gamma}^{n, \alpha} f\right)^{\prime}(\cup)}\left(\mathcal{I}_{m, \gamma}^{n, \alpha} f(z)\right)^{\prime} \leqslant F_{h(U)} h(z), \quad \text { i.e. }\left(\mathcal{I}_{m, \gamma}^{n, \alpha} f(z)\right)^{\prime} \prec_{\mathcal{F}} h(z), \tag{3.2}
\end{equation*}
$$

implies that

$$
F_{\left(\mathcal{I}_{m, \gamma}^{n, \alpha} G\right)^{\prime}(\mathrm{U})}\left(\mathcal{I}_{m, \gamma}^{n, \alpha} G(z)\right)^{\prime} \leqslant F_{k(\mathrm{U})} k(z), \quad \text { i.e. }\left(\mathcal{I}_{m, \gamma}^{n, \alpha} G(z)\right)^{\prime} \prec_{\mathcal{F}} k(z) ;
$$

this result is sharp.
Proof. Since

$$
z^{\lambda+1} G(z)=(\lambda+2) \int_{0}^{z} t^{\lambda} f(t) \mathrm{d} t
$$

by differentiating, we obtain

$$
(\lambda+1) G(z)+z G^{\prime}(z)=(\lambda+2) f(z)
$$

and

$$
\begin{equation*}
(\lambda+1) \mathcal{I}_{m, \gamma}^{n, \alpha} G(z)+z\left(\mathcal{I}_{m, \gamma}^{n, \alpha} G(z)\right)^{\prime}=(\lambda+2) \mathcal{I}_{m, \gamma}^{n, \alpha} f(z), \tag{3.3}
\end{equation*}
$$

and also by differentiating (3.3) we obtain

$$
\begin{equation*}
\left(\mathcal{I}_{m, \gamma}^{n, \alpha} G(z)\right)^{\prime}+\frac{1}{(\lambda+2)} z\left(\mathcal{I}_{m, \gamma}^{n, \alpha} G(z)\right)^{\prime \prime}=\left(\mathcal{I}_{m, \gamma}^{n, \alpha} f(z)\right)^{\prime} \tag{3.4}
\end{equation*}
$$

By using (3.4), the fuzzy differential subordination (3.2) becomes

$$
\begin{align*}
& F_{\left(\mathcal{I}_{m, \gamma}^{n, \alpha} f\right)^{\prime}(\cup)}\left(\left(\mathcal{I}_{m, \gamma}^{n, \alpha} G(z)\right)^{\prime}+\frac{1}{(\lambda+2)} z\left(\mathcal{I}_{m, \gamma}^{n, \alpha} G(z)\right)^{\prime \prime}\right) \tag{3.5}\\
& \leqslant F_{h(\cup)}\left(k(z)+\frac{1}{(\lambda+2)} z k^{\prime}(z)\right) .
\end{align*}
$$

We denote

$$
\begin{equation*}
q(z)=\left(\mathcal{I}_{m, \gamma}^{n, \alpha} G(z)\right)^{\prime} \rightarrow q \in \mathcal{H}[1, n] . \tag{3.6}
\end{equation*}
$$

From (3.6) in (3.5) we have

$$
\begin{equation*}
F_{\left(\mathcal{I}_{m, \gamma}^{n, \alpha} f\right)^{\prime}(\mathrm{U})}\left(q(z)+\frac{1}{(\lambda+2)} z q^{\prime}(z)\right) \leqslant F_{h(\mathrm{U})}\left(k(z)+\frac{1}{(\lambda+2)} z k^{\prime}(z)\right), \tag{3.7}
\end{equation*}
$$

by applying Lemma 2.3, we have

$$
F_{q(U)} q(z) \leqslant F_{k(U)} k(z), \quad \text { i.e. } F_{\left(\mathcal{I}_{m, \gamma}^{n, \alpha} G(z)\right)^{\prime}(U)}\left(\mathcal{I}_{m, \gamma}^{n, \alpha} G(z)\right)^{\prime} \leqslant F_{k(U)} k(z),
$$

then $\left(\mathcal{I}_{m, \gamma}^{n, \alpha} G(z)\right)^{\prime} \prec_{\mathcal{F}} k(z), k$ is the fuzzy best dominant.
Theorem 3.2. Consider $h(z)=(1+(2 \eta-1) z) /(1+z), \eta \in[0,1), \lambda>0$ and I^{λ} is given by (3.1). Then

$$
\begin{equation*}
I^{\lambda}\left(\mathcal{M}_{m, \gamma}^{F}(n, \alpha, \eta)\right) \subset \mathcal{M}_{m, \gamma}^{F}(n, \alpha, \zeta), \tag{3.8}
\end{equation*}
$$

where

$$
\begin{equation*}
\zeta=2 \eta-1+(\lambda+2)(2-2 \eta) \int_{0}^{1} \frac{t^{\lambda+2}}{t+1} \mathrm{~d} t \tag{3.9}
\end{equation*}
$$

Proof. The function h is convex and using the same technique as in the proof of Theorem 3.1, we obtain from the hypothesis of Theorem 3.2 that

$$
F_{q(\cup)}\left(q(z)+\frac{1}{(\lambda+2)} z q^{\prime}(z)\right) \leqslant F_{h(\cup)} h(z),
$$

where $q(z)$ is defined in (3.6). By using Lemma 2.2, we obtain that

$$
F_{q(U)} q(z) \leqslant F_{k(\cup)} k(z) \leqslant F_{h(U)} h(z)
$$

implies that

$$
F_{\left(\mathcal{I}_{m, \gamma}^{n, \alpha} G\right)^{\prime}(\mathrm{U})}\left(\mathcal{I}_{m, \gamma}^{n, \alpha} G(z)\right)^{\prime} \leqslant F_{k(U)} k(z) \leqslant F_{h(\mathrm{U})} h(z),
$$

where

$$
k(z)=\frac{\lambda+2}{z^{\lambda+2}} \int_{0}^{z} t^{\lambda+1} \frac{1+(2 \eta-1) t}{1+t} \mathrm{~d} t=(2 \eta-1)+\frac{(\lambda+2)(2-2 \eta)}{z^{\lambda+2}} \int_{0}^{z} \frac{t^{\lambda+1}}{1+t} \mathrm{~d} t
$$

Since k is convex and $k(\mathbb{U})$ is symmetric with respect to the real axis, we conclude

$$
\begin{equation*}
F_{\left(\mathcal{I}_{m, \gamma}^{n, \alpha} G\right)^{\prime}(\mathrm{U})}\left(\mathcal{I}_{m, \gamma}^{n, \alpha} G(z)\right)^{\prime} \geqslant \min _{|z|=1} F_{k(\mathrm{U})} k(z)=F_{k(\mathrm{U})} k(1), \tag{3.10}
\end{equation*}
$$

and $\zeta=k(1)=2 \eta-1+(\lambda+2)(2-2 \eta) \int_{0}^{1} t^{\lambda+2} /(t+1) \mathrm{d} t$. From (3.10), we conclude that we have the inclusion in relation (3.8) and hence the proof of the theorem is complete.

Theorem 3.3. Assume that k is a convex function in $\mathbb{U}, k(0)=1$, and let $h(z)=$ $k(z)+z k^{\prime}(z)$. If $f \in \mathcal{A}$ and satisfies the fuzzy differential subordination

$$
\begin{equation*}
F_{\left(\mathcal{I}_{m, \gamma}^{n, \alpha} f\right)^{\prime}(\cup)}\left(\mathcal{I}_{m, \gamma}^{n, \alpha} f(z)\right)^{\prime} \leqslant F_{h(U)} h(z), \quad \text { i.e. }\left(\mathcal{I}_{m, \gamma}^{n, \alpha} f(z)\right)^{\prime} \prec_{\mathcal{F}} h(z), \tag{3.11}
\end{equation*}
$$

then

$$
\begin{equation*}
F_{\mathcal{I}_{m, \gamma}^{n, \alpha} f(\cup)} \frac{\mathcal{I}_{m, \gamma}^{n, \alpha} f(z)}{z} \leqslant F_{k(\cup)} k(z), \quad \text { i.e. } \frac{\mathcal{I}_{m, \gamma}^{n, \alpha} f(z)}{z} \prec_{\mathcal{F}} k(z), \tag{3.12}
\end{equation*}
$$

and this result is sharp.
Proof. By denoting

$$
\begin{aligned}
q(z) & =\frac{1}{z} \mathcal{I}_{m, \gamma}^{n, \alpha} f(z)=\frac{1}{z}\left(z+\sum_{k=2}^{\infty}(1+\gamma(k-1))^{n}\left(\frac{m}{m+k}\right)^{\alpha} a_{k} z^{k}\right) \\
& =1+\sum_{k=2}^{\infty}(1+\gamma(k-1))^{n}\left(\frac{m}{m+k}\right)^{\alpha} a_{k} z^{k-1},
\end{aligned}
$$

we obtain that $q(z)+z q^{\prime}(z)=\left(\mathcal{I}_{m, \gamma}^{n, \alpha} f(z)\right)^{\prime}$. Then

$$
\begin{aligned}
F_{\left(\mathcal{I}_{m, \gamma}^{n, \alpha} f\right)^{\prime}(U)}\left(\mathcal{I}_{m, \gamma}^{n, \alpha} f(z)\right)^{\prime} & \leqslant F_{h(U)} h(z) \\
& \rightarrow F_{q(\cup)}\left(q(z)+z q^{\prime}(z)\right) \leqslant F_{h(\cup)} h(z)=F_{k(U)}\left(k(z)+z k^{\prime}(z)\right)
\end{aligned}
$$

Applying Lemma 2.3, we have

$$
F_{q(\cup)} q(z) \leqslant F_{k(\mathrm{U})} k(z) \rightarrow F_{\mathcal{I}_{m, \gamma}^{n, \alpha} f(\mathrm{U})} \frac{\mathcal{I}_{m, \gamma}^{n, \alpha} f(z)}{z} \leqslant F_{k(\mathrm{U})} k(z),
$$

we get

$$
\frac{\mathcal{I}_{m, \gamma}^{n, \alpha} f(z)}{z} \prec_{\mathcal{F}} k(z)
$$

and this result is sharp.
Theorem 3.4. For $h \in \mathcal{H}(\mathbb{U}), h(0)=1$, which satisfies $\Re\left(1+z h^{\prime \prime}(z) / h^{\prime}(z)\right)>-\frac{1}{2}$, if $f \in \mathcal{A}$ and verifies the fuzzy differential subordination

$$
\begin{equation*}
F_{\left(\mathcal{I}_{m, \gamma}^{n, \alpha} f\right)^{\prime}(\cup)}\left(\mathcal{I}_{m, \gamma}^{n, \alpha} f(z)\right)^{\prime} \leqslant F_{h(U)} h(z), \quad \text { i.e. }\left(\mathcal{I}_{m, \gamma}^{n, \alpha} f(z)\right)^{\prime} \prec_{\mathcal{F}} h(z), \tag{3.13}
\end{equation*}
$$

then

$$
\begin{equation*}
F_{\mathcal{I}_{m, \gamma}^{n, \alpha} f(\mathrm{U})} \frac{\mathcal{I}_{m, \gamma}^{n, \alpha} f(z)}{z} \leqslant F_{k(\cup)} k(z), \quad \text { i.e. } \frac{\mathcal{I}_{m, \gamma}^{n, \alpha} f(z)}{z} \prec_{\mathcal{F}} k(z), \tag{3.14}
\end{equation*}
$$

where

$$
k(z)=\frac{1}{z} \int_{0}^{z} h(t) \mathrm{d} t
$$

The function k is convex and it is the fuzzy best dominant.

Proof. Let

$$
q(z)=\frac{\mathcal{I}_{m, \gamma}^{n, \alpha} f(z)}{z}=1+\sum_{k=2}^{\infty}(1+\gamma(k-1))^{n}\left(\frac{m}{m+k}\right)^{\alpha} a_{k} z^{k-1}, \quad q \in \mathcal{H}[1,1]
$$

where $\Re\left(1+z h^{\prime \prime}(z) / h^{\prime}(z)\right)>-\frac{1}{2}$. From Lemma 2.1, we have that

$$
k(z)=\frac{1}{z} \int_{0}^{z} h(t) \mathrm{d} t
$$

is a convex function which satisfies the fuzzy differential subordination (3.13). Since

$$
k(z)+z k^{\prime}(z)=h(z)
$$

is the fuzzy best dominant, we have $q(z)+z q^{\prime}(z)=\left(\mathcal{I}_{m, \gamma}^{n, \alpha} f(z)\right)^{\prime}$, then (3.13) becomes

$$
F_{q(\cup)}\left(q(z)+z q^{\prime}(z)\right) \leqslant F_{h(U)} h(z) .
$$

By applying Lemma 2.3, we have

$$
F_{q(\cup)} q(z) \leqslant F_{k(\mathbb{U})} k(z) \rightarrow F_{\mathcal{I}_{m, \gamma}^{n, \alpha} f(\mathbb{U})} \frac{\mathcal{I}_{m, \gamma}^{n, \alpha} f(z)}{z} \leqslant F_{k(U)} k(z),
$$

and we obtain that

$$
\frac{\mathcal{I}_{m, \gamma}^{n, \alpha} f(z)}{z} \prec_{\mathcal{F}} k(z) .
$$

Putting $h(z)=(1+(2 \beta-1) z) /(1+z)$ in Theorem 3.4, we obtain the following corollary:

Corollary 3.1. Let $h=(1+(2 \beta-1) z) /(1+z)$ be a convex function in \mathbb{U} with $h(0)=1,0 \leqslant \beta<1$. If $f \in \mathcal{A}$ and verifies the fuzzy differential subordination

$$
F_{\left(\mathcal{I}_{m, \gamma}^{n, \alpha} f\right)^{\prime}(\cup)}\left(\mathcal{I}_{m, \gamma}^{n, \alpha} f(z)\right)^{\prime} \leqslant F_{h(U)} h(z), \quad \text { i.e. }\left(\mathcal{I}_{m, \gamma}^{n, \alpha} f(z)\right)^{\prime} \prec_{\mathcal{F}} h(z),
$$

then

$$
k(z)=2 \beta-1+\frac{2(1-\beta)}{z} \ln (1+z),
$$

and the function k is convex and it is the fuzzy best dominant.

4. Conclusion

All the above results give us information about fuzzy differential subordinations for a linear operator $\mathcal{I}_{m, \gamma}^{n, \alpha}$. We give some properties for the class $\mathcal{M}_{m, \gamma}^{F}(n, \alpha, \eta)$ of univalent analytic functions.

References

[1] F. M. Al-Oboudi: On univalent functions defined by a generalized Sălăgean operator. Int. J. Math. Math. Sci. 25-27 (2004), 1429-1436.
zbl MR doi
[2] A. Alb Lupaş: On special fuzzy differerential subordinations using convolution product of Sălăgean operator and Ruscheweyh derivative. J. Comput. Anal. Appl. 15 (2013), 1484-1489.
[3] A. Alb Lupaş, G. Oros: On special fuzzy differerential subordinations using Sălăgean and Ruscheweyh operators. Appl. Math. Comput. 261 (2015), 119-127.
zbl MR

4] M. K. Aouf: Some inclusion relationships associated with the Komatu integral operator. Math. Comput. Modelling 50 (2009), 1360-1366.
[5] M. K. Aouf: The Komatu integral operator and strongly close-to-convex functions. Bull. Math. Anal. Appl. 3 (2011), 209-219.
zbl MR doi
zbl MR doi
b] S. D. Bernardi: Convex and starlike univalent functions. Trans. Am. Math. Soc. 135 (1969), 429-446.
[7] T. Bulboacă: Differential Subordinations and Superordinations: Recent Results. House of Scientic Book Publ., Cluj-Napoca, 2005.
[8] A. Ebadian, S. Najafzadeh: Uniformly starlike and convex univalent functions by using certain integral operators. Acta Univ. Apulensis, Math. Inform. 20 (2009), 17-23.
zbl MR
[9] R. M. El-Ashwah, M. K. Aouf, S. M.El-Deeb: Differential subordination for certain subclasses of p-valent functions associated with generalized linear operator. J. Math. 2013 (2013), Article ID 692045, 8 pages.
zbl MR doi
[10] S. G. Gal, A. I. Ban: Elemente de Matematica Fuzzy. University of Oradea, Oradea, 1996. (In Romanian.)
[11] S. M. Khairnar, M. More: On a subclass of multivalent β-uniformly starlike and convex functions defined by a linear operator. IAENG, Int. J. Appl. Math. 39 (2009), 175-183.
zbl MR doi

12] Y. Komatu: On analytic prolongation of a family of integral operators. Math., Rev. Anal. Numér. Théor. Approximation, Math. 32(55) (1990), 141-145.
zbl MR
[13] S. S. Miller, P. T. Mocanu: Differential Subordination: Theory and Applications. Pure and Applied Mathematics, Marcel Dekker 225. Marcel Dekker, New York, 2000.
zbl MR doi
[14] G. I. Oros, G. Oros: The notation of subordination in fuzzy sets theory. Gen. Math. 19 (2011), 97-103.
zbl MR
[15] G. I. Oros, G. Oros: Dominants and best dominants in fuzzy differential subordinations. Stud. Univ. Babeş-Bolyai, Math. 57 (2012), 239-248.
zbl MR
[16] G. I. Oros, G. Oros: Fuzzy differential subordination. Acta Univ. Apulensis, Math. Inform. 30 (2012), 55-64.
zbl MR
[17] R. K. Raina, I. B. Bapna: On the starlikeness and convexity of a certain integral operator. Southeast Asian Bull. Math. 33 (2009), 101-108.
[18] G.S.Sălăgean: Subclasses of univalent functions. Complex Analysis - Fifth Roma-nian-Finnish Seminar. Lecture Notes in Mathematics 1013. Springer, Berlin, 1983, pp. 362-372.

Authors' addresses: Sheza Mohammed El-Deeb, Department of Mathematics, Faculty of Science, Damietta University, New Damietta 34517, Egypt and Department of Mathematics, College of Science and Arts in Badaya, Qassim University, Buraidah 51452, Saudi Arabia, e-mail: shezaeldeeb@yahoo.com; Georgia Irina Oros, Department of Mathematics, University of Oradea, Str. Universitatii, No. 1, 410087 Oradea, Romania, e-mail: georgia_oros_ro @yahoo.co.uk.

