ON UNIT GROUP OF FINITE SEMISIMPLE GROUP ALGEBRAS OF NON-METABELIAN GROUPS UP TO ORDER 72

Gaurav Mittal, Roorkee, Rajendra Kumar Sharma, New Delhi

Received August 8, 2019. Published online January 18, 2021.
Communicated by Simion Breaz

Abstract

We characterize the unit group of semisimple group algebras $\mathbb{F}_{q} G$ of some non-metabelian groups, where F_{q} is a field with $q=p^{k}$ elements for p prime and a positive integer k. In particular, we consider all 6 non-metabelian groups of order 48, the only non-metabelian group $\left(\left(C_{3} \times C_{3}\right) \rtimes C_{3}\right) \rtimes C_{2}$ of order 54, and 7 non-metabelian groups of order 72 . This completes the study of unit groups of semisimple group algebras for groups upto order 72 .

Keywords: unit group; finite field; Wedderburn decomposition
MSC 2020: 16U60, 20C05

1. Introduction

Let \mathbb{F}_{q} denote a finite field with $q=p^{k}$ elements for an odd prime p, G a finite group and let $\mathbb{F}_{q} G$ be the group algebra. We refer to [18] for elementary definitions and results related to the group algebras and [2], [17] for the abelian group algebras. One of the most important research problems in the theory of group algebras is the determination of their unit groups, which are very important from the application point of view; for instance, in the exploration of Lie properties of group algebras, the isomorphism problem etc., see [1]. Hurley in [7] suggested the construction of convolutional codes from units in group algebra as an important application of units.

Considering some of the existing literature, we refer to [3], [6], [13], [15] for the unit group $U(\mathbb{F} G)$ of dihedral groups G and [5], [6], [9], [12], [14], [15], [19]-[21] for some non abelian groups other than the dihedral groups. The unit group of finite semisimple group algebras of metabelian groups (groups in which there exists a normal subgroup N of G such that both N and G / N are abelian) has been well studied. From [16], it can be seen that all groups up to order 23 are metabelian.

The only non-metabelian groups of order 24 are S_{4} and $S L(2,3)$, and their unit group algebras have been discussed in [9], [12]. Further, [16] also implies that there are non-metabelian groups of order $48,54,60$ and 72 . It can be verified that A_{5} is the only non-metabelian group of order 60 and the unit group of its group algebra, i.e. $U\left(\mathbb{F}_{q} A_{5}\right)$ can be easily deduced from [14] for $p \geqslant 5$.

The main motive of this paper is to characterize the unit groups of $\mathbb{F}_{q} G$, where first we consider G to be a non-metabelian group of order 48. There are 6 such groups up to isomorphism. After that we consider the only non-metabelian group of order 54. Finally, we consider all the non-metabelian groups of order 72. In all, we cover the unit groups of 14 semisimple group algebras of non-metabelian groups. The rest of the paper is organized in the following manner: we recall all the basic definitions and results to be used later on in Section 2. Our main results for the characterization of the unit groups are presented in the third, fourth and fifth sections. Some remarks are discussed in the last section.

2. Preliminaries

Let e denote the exponent of G, ζ be a primitive e th root of unity and \mathbb{F} be an arbitrary finite field. On the lines of [4], we define

$$
I_{\mathbb{F}}=\left\{n: \zeta \mapsto \zeta^{n} \text { is an automorphism of } \mathbb{F}(\zeta) \text { over } \mathbb{F}\right\} .
$$

Since, the Galois group $\operatorname{Gal}(\mathbb{F}(\zeta), \mathbb{F})$ is a cyclic group and for any $\tau \in \operatorname{Gal}(\mathbb{F}(\zeta), \mathbb{F})$, there exists a positive integer s which is invertible modulo e such that $\tau(\zeta)=\zeta^{s}$. In other words, $I_{\mathbb{F}}$ is a subgroup of the multiplicative group \mathbb{Z}_{e}^{*}. For any p-regular element $g \in G$, i.e. an element whose order is not divisible by p, let the sum of all conjugates of g be denoted by γ_{g}, and the cyclotomic \mathbb{F}-class of γ_{g} be denoted by $S\left(\gamma_{g}\right)=\left\{\gamma_{g^{n}}: n \in I_{\mathbb{F}}\right\}$. The cardinality of $S\left(\gamma_{g}\right)$ and the number of cyclotomic \mathbb{F}-classes will be incorporated later on for the characterization of the unit groups. Now, we recall the following two results related to the cyclotomic \mathbb{F}-classes.

Theorem 2.1 ([4]). The number of simple components of $\mathbb{F} G / J(\mathbb{F} G)$ and the number of cyclotomic \mathbb{F}-classes in G are equal.

Theorem 2.2 ([4]). Let j be the number of cyclotomic \mathbb{F}-classes in G. If K_{i}, $1 \leqslant i \leqslant j$, are the simple components of center of $\mathbb{F} G / J(\mathbb{F} G)$ and $S_{i}, 1 \leqslant i \leqslant j$, are the cyclotomic \mathbb{F}-classes in G, then $\left|S_{i}\right|=\left[K_{i}: \mathbb{F}\right]$ for each i after suitable ordering of the indices.

For determining the structure of the unit group $U(\mathbb{F} G)$, we need Wedderburn decomposition of the group algebra $\mathbb{F} G$. In other words, we want to determine the simple components of $\mathbb{F} G$. Based on the existing literature, we can always claim that \mathbb{F} is one of the simple components in the decomposition of $\mathbb{F} G / J(\mathbb{F} G)$. The simple proof is given here for completeness.

Lemma 2.1. Let A_{1} and A_{2} denote the finite dimensional algebras over \mathbb{F}. Further, let A_{2} be semisimple and g be an onto map between A_{1} and A_{2}, then we must have $A_{1} / J\left(A_{1}\right) \cong A_{3}+A_{2}$, where A_{3} is some semisimple \mathbb{F}-algebra.

Proof. From [8], we have $J\left(A_{1}\right) \subseteq \operatorname{Ker}(g)$. This means there exists an \mathbb{F}-algebra homomorphism g_{1} from $A_{1} / J\left(A_{1}\right)$ to A_{2} which is also onto. In other words, we have $g_{1}: A_{1} / J\left(A_{1}\right) \mapsto A_{2}$ defined by $g_{1}\left(a+J\left(A_{1}\right)\right)=g(a), a \in A_{1}$. As $A_{1} / J\left(A_{1}\right)$ is semisimple, there exists an ideal I of $A_{1} / J\left(A_{1}\right)$ such that $A_{1} / J\left(A_{1}\right)=\operatorname{ker}\left(g_{1}\right) \oplus I$. Our claim is that $I \cong A_{2}$. To prove this, note that any element $a \in A_{1} / J\left(A_{1}\right)$ can be uniquely written as $a=a_{1}+a_{2}$, where $a_{1} \in \operatorname{ker}\left(g_{1}\right)$, $a_{2} \in I$. So, define $g_{2}: A_{1} / J\left(A_{1}\right) \mapsto \operatorname{ker}\left(g_{1}\right) \oplus A_{2}$ by $g_{2}(a)=\left(a_{1}, g_{1}\left(a_{2}\right)\right)$. Since $\operatorname{ker}\left(g_{1}\right)$ is a semisimple algebra over \mathbb{F}, the result holds.

The above lemma concludes that \mathbb{F} is one of the simple components of $\mathbb{F} G$, provided $J(\mathbb{F} G)=0$. Now we characterize the set $I_{\mathbb{F}}$ defined in the beginning of this section.

Theorem 2.3 ([11]). Let \mathbb{F} be a finite field with prime power order q. If e is such that $\operatorname{gcd}(e, q)=1, \zeta$ is the primitive eth root of unity and $|q|$ is the order of q modulo e, then $I_{\mathbb{F}}=\left\{1, q, q^{2}, \ldots, q^{|q|-1}\right\}$.

The next two results are Propositions 3.6.11 and 3.6.7, respectively, from [18] and are quite useful in our work.

Theorem 2.4. If $R G$ is a semisimple group algebra, then $R G \cong R\left(G / G^{\prime}\right) \oplus$ $\Delta\left(G, G^{\prime}\right)$, where G^{\prime} is the commutator subgroup of $G, R\left(G / G^{\prime}\right)$ is the sum of all commutative simple components of $R G$, and $\Delta\left(G, G^{\prime}\right)$ is the sum of all others.

Theorem 2.5. Let $R G$ be a semisimple group algebra and H be a normal subgroup of G. Then $R G \cong R(G / H) \oplus \Delta(G, H)$, where $\Delta(G, H)$ is the left ideal of $R G$ generated by the set $\{h-1: h \in H\}$.

3. Unit group of $\mathbb{F}_{q} G$ FOR NON-METABELIAN GROUPS OF ORDER 48

The main objective of this section is to characterize the unit groups of $\mathbb{F}_{q} G$, where G is a non-metabelian group of order 48. Up to isomorphism, there are 6 nonmetabelian groups of order 48 , namely $G_{1}=C_{2} \cdot S_{4}, G_{2}=G L(2,3), G_{3}=A_{4} \rtimes C_{4}$, $G_{4}=C_{2} \times S L(2,3), G_{5}=\left(\left(C_{4} \times C_{2}\right) \rtimes C_{2}\right) \rtimes C_{3}$ and $G_{6}=C_{2} \times S_{4}$. Here $C_{2} \cdot S_{4}$ represents the non-split extension of S_{4} by C_{2}. We consider each of these groups one by one and discuss the unit groups of their respective group algebras along with the WD's in the subsequent subsections (here WD means Wedderburn decomposition and from now onwards we use this notation).
3.1. The group $G_{1}=C_{2} \cdot S_{4}$. Group G_{1} has the following presentation:

$$
\begin{aligned}
\langle x, y, z, w, t| x^{2} t^{-1}, & z^{-1} x^{-1} z x t^{-1} w^{-1} z^{-1}, y^{-1} x^{-1} y x y^{-1}, w^{-1} x^{-1} w x t^{-1} w^{-1} z^{-1} \\
& y^{3}, t^{-1} x^{-1} t x, t^{2}, z^{-1} y^{-1} z y w^{-1} z^{-1}, w^{-1} y^{-1} w y t^{-1} z^{-1} \\
& \left.t^{-1} y^{-1} t y, w^{-1} z^{-1} w z t^{-1}, z^{2} t^{-1}, t^{-1} z^{-1} t z, t^{-1} w^{-1} t w, w^{2} t^{-1}\right\rangle .
\end{aligned}
$$

Also G_{1} has 8 conjugacy classes as shown in the table below.

rep	1	x	y	z	t	$x z$	$y w$	$x y z$
order of rep	1	4	3	4	2	8	6	8

where rep means representative of conjugacy class. From the above discussion, clearly the exponent of G_{1} is 24 . Also $G_{1}^{\prime} \cong S L(2,3)$. Next, we give the unit group of $\mathbb{F}_{q} G_{1}$ when $p>3$.

Theorem 3.1. The unit group of $\mathbb{F}_{q} G_{1}$, for $q=p^{k}, p>3$ where \mathbb{F}_{q} is a finite field having $q=p^{k}$ elements is as follows:
(1) for k even or $p^{k} \in\{1,7,17,23\} \bmod 24$ with k odd

$$
U\left(\mathbb{F}_{q} G_{1}\right) \cong\left(\mathbb{F}_{q}^{*}\right)^{2} \oplus G L_{2}\left(\mathbb{F}_{q}\right)^{3} \oplus G L_{3}\left(\mathbb{F}_{q}\right)^{2} \oplus G L_{4}\left(\mathbb{F}_{q}\right)
$$

(2) for $p^{k} \in\{5,11,13,19\} \bmod 24$ with k odd

$$
U\left(\mathbb{F}_{q} G_{1}\right) \cong\left(\mathbb{F}_{q}^{*}\right)^{2} \oplus G L_{2}\left(\mathbb{F}_{q}\right) \oplus G L_{3}\left(\mathbb{F}_{q}\right)^{2} \oplus G L_{4}\left(\mathbb{F}_{q}\right) \oplus G L_{2}\left(\mathbb{F}_{q^{2}}\right) .
$$

Proof. Since $\mathbb{F}_{q} G_{1}$ is semisimple, we have

$$
\begin{equation*}
\mathbb{F}_{q} G_{1} \cong \mathbb{F}_{q} \bigoplus_{r=1}^{t-1} M_{n_{r}}\left(\mathbb{F}_{r}\right) \tag{3.1}
\end{equation*}
$$

First assume that k is even which means for any prime $p>3$, we have $p^{k} \equiv 1 \bmod 24$. This means $\left|S\left(\gamma_{g}\right)\right|=1$ for each $g \in G_{1}$ as $I_{\mathbb{F}}=\{1\}$. Hence, (3.1), Theorems 2.1 and 2.2 imply that

$$
\begin{equation*}
\mathbb{F}_{q} G_{1} \cong \mathbb{F}_{q} \bigoplus_{r=1}^{7} M_{n_{r}}\left(\mathbb{F}_{q}\right) \tag{3.2}
\end{equation*}
$$

Using Theorem 2.4 with $G_{1}^{\prime} \cong S L(2,3)$ in (3.2), we reach

$$
\begin{equation*}
\mathbb{F}_{q} G_{1} \cong \mathbb{F}_{q}^{2} \bigoplus_{r=1}^{6} M_{n_{r}}\left(\mathbb{F}_{q}\right), \quad \text { where } n_{r} \geqslant 2 \text { with } 46=\sum_{r=1}^{6} n_{r}^{2} \tag{3.3}
\end{equation*}
$$

The above gives the only possibility $(2,2,2,3,3,4)$ for the possible values of n_{r} 's and therefore, (3.3) implies that

$$
\begin{equation*}
\mathbb{F}_{q} G_{1} \cong \mathbb{F}_{q}^{2} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{3} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{2} \oplus M_{4}\left(\mathbb{F}_{q}\right) \tag{3.4}
\end{equation*}
$$

It is straight-forward to deduce the unit group from WD. Now we consider that k is odd. We shall discuss this case in two parts:
(1) $p^{k} \in\{1,7,17,23\} \bmod 24$,
(2) $p^{k} \in\{5,11,13,19\} \bmod 24$.

Case (1): For $p^{k} \in\{1,7,17,23\} \bmod 24$, it can be verified that $\left|S\left(\gamma_{g}\right)\right|=1$ for each $g \in G_{1}$. This means WD is given by (3.4).

Case (2): For $p^{k} \in\{5,11,13,19\} \bmod 24$, we can verify that $S\left(\gamma_{g}\right)=\left\{\gamma_{g}\right\}$ for each representative of the conjugacy classes except $x z$, for which $S\left(\gamma_{x z}\right)=$ $\left\{S\left(\gamma_{x z}\right), S\left(\gamma_{x y z}\right)\right\}$. Therefore, (3.1) and Theorems 2.1 and 2.2 imply that $\mathbb{F}_{q} G_{1} \cong$ $\mathbb{F}_{q} \bigoplus_{r=1}^{5} M_{n_{r}}\left(\mathbb{F}_{q}\right) \oplus M_{n_{6}}\left(\mathbb{F}_{q^{2}}\right)$. Using Theorem 2.4 in this to obtain (after suitable rearrangement of indexes)

$$
\begin{equation*}
\mathbb{F}_{q} G_{1} \cong \mathbb{F}_{q}^{2} \bigoplus_{r=1}^{4} M_{n_{r}}\left(\mathbb{F}_{q}\right) \oplus M_{n_{5}}\left(\mathbb{F}_{q^{2}}\right), \quad n_{r} \geqslant 2 \text { with } 46=\sum_{r=1}^{4} n_{r}^{2}+2 n_{5}^{2} \tag{3.5}
\end{equation*}
$$

The above gives us two possibilities, namely $(2,2,2,4,3)$ and $(2,3,3,4,2)$ for the possible values of n_{r} 's. However, we need to discard one of these possibilities. For
that, consider the normal subgroup $H_{1}=\langle t\rangle \cong C_{2}$ of G_{1} with $G_{1} / H_{1} \cong S_{4}$. From [9], we know that

$$
\begin{equation*}
\mathbb{F}_{q} S_{4} \cong \mathbb{F}_{q}^{2} \oplus M_{2}\left(\mathbb{F}_{q}\right) \oplus M_{3}\left(\mathbb{F}_{q}\right)^{2} \tag{3.6}
\end{equation*}
$$

Therefore, $(3.5),(3.6)$ and Theorem 2.5 imply that $(2,3,3,4,2)$ is the only possibility for n_{r} 's.
3.2. The group $G_{2}=G L(2,3)$. Group G_{2} has the following presentation:

$$
\begin{aligned}
\langle x, y, z, w, t| x^{2}, & z^{-1} x^{-1} z x t^{-1} w^{-1} z^{-1}, y^{-1} x^{-1} y x y^{-1}, w^{-1} x^{-1} w x w^{-1} z^{-1}, y^{3} \\
& t^{-1} x^{-1} t x, t^{-1} z^{-1} t z, z^{-1} y^{-1} z y w^{-1} z^{-1}, w^{-1} y^{-1} w y t^{-1} z^{-1} \\
& \left.t^{-1} y^{-1} t y, w^{-1} z^{-1} w z t^{-1}, w^{2} t^{-1}, t^{-1} w^{-1} t w, w^{2} t^{-1}, t^{2}\right\rangle
\end{aligned}
$$

Further, G_{2} has 8 conjugacy classes, as shown in the table below.

rep	1	x	y	z	t	$x z$	$y w$	$x y z$
order of rep	1	2	3	4	2	8	6	8

From the above discussion, clearly the exponent of G_{2} is 24 . Also $G_{2}^{\prime} \cong S L(2,3)$.
Theorem 3.2. The unit group of $\mathbb{F}_{q} G_{2}$, for $q=p^{k}, p>3$ where \mathbb{F}_{q} is a finite field having $q=p^{k}$ elements is as follows:
(1) for k even or $p^{k} \in\{1,11,17,19\} \bmod 24$ with k odd

$$
U\left(\mathbb{F}_{q} G_{2}\right) \cong\left(\mathbb{F}_{q}^{*}\right)^{2} \oplus G L_{2}\left(\mathbb{F}_{q}\right)^{3} \oplus G L_{3}\left(\mathbb{F}_{q}\right)^{2} \oplus G L_{4}\left(\mathbb{F}_{q}\right)
$$

(2) for $p^{k} \in\{5,7,13,23\} \bmod 24$ with k odd

$$
U\left(\mathbb{F}_{q} G_{2}\right) \cong\left(\mathbb{F}_{q}^{*}\right)^{2} \oplus G L_{2}\left(\mathbb{F}_{q}\right) \oplus G L_{3}\left(\mathbb{F}_{q}\right)^{2} \oplus G L_{4}\left(\mathbb{F}_{q}\right) \oplus G L_{2}\left(\mathbb{F}_{q^{2}}\right)
$$

Proof. See Theorem 3.2 in [10].
3.3. The group $G_{3}=A_{4} \rtimes C_{4}$. Group G_{3} has the following presentation:

$$
\begin{aligned}
\langle x, y, z, w, t| x^{2} y^{-1}, & z^{-1} x^{-1} z x z^{-1}, y^{-1} x^{-1} y x, w^{-1} x^{-1} w x t^{-1} w^{-1}, y^{2} \\
& t^{-1} x^{-1} t x t^{-1} w^{-1}, z^{-1} y^{-1} z y, w^{-1} y^{-1} w y, t^{-1} y^{-1} t y, z^{3} \\
& \left.w^{-1} z^{-1} w z t^{-1} w^{-1}, t^{-1} z^{-1} t z w^{-1}, w^{2}, t^{-1} w^{-1} t w, t^{2}\right\rangle
\end{aligned}
$$

Further, G_{3} has 10 conjugacy classes, as shown in the table below.

rep	1	x	y	z	w	$x y$	$x w$	$y z$	$y w$	$x y w$
order of rep	1	4	2	3	2	4	4	6	2	4

From the above discussion, clearly the exponent of G_{3} is 12 . Also $G_{3}^{\prime} \cong A_{4}$ and $G_{3} / G_{3}^{\prime} \cong C_{4}$.

Theorem 3.3. The unit group $U\left(\mathbb{F}_{q} G_{3}\right)$ of $\mathbb{F}_{q} G_{3}$, for $q=p^{k}, p>3$ where \mathbb{F}_{q} is a finite field having $q=p^{k}$ elements is as follows:
(1) for any p and k even or $p^{k} \in\{1,5\} \bmod 12$ with k odd

$$
U\left(\mathbb{F}_{q} G_{3}\right) \cong\left(\mathbb{F}_{q}^{*}\right)^{4} \oplus G L_{2}\left(\mathbb{F}_{q}\right)^{2} \oplus G L_{3}\left(\mathbb{F}_{q}\right)^{4}
$$

(2) for $p^{k} \in\{7,11\} \bmod 12$ with k odd

$$
U\left(\mathbb{F}_{q} G_{3}\right) \cong\left(\mathbb{F}_{q}^{*}\right)^{2} \oplus \mathbb{F}_{q^{2}}^{*} \oplus G L_{2}\left(\mathbb{F}_{q}\right)^{2} \oplus G L_{3}\left(\mathbb{F}_{q}\right)^{2} \oplus G L_{3}\left(\mathbb{F}_{q^{2}}\right)
$$

Proof. Since $\mathbb{F}_{q} G_{3}$ is semisimple, we have

$$
\begin{equation*}
\mathbb{F}_{q} G_{3} \cong \mathbb{F}_{q} \bigoplus_{r=1}^{t-1} M_{n_{r}}\left(\mathbb{F}_{r}\right) \tag{3.7}
\end{equation*}
$$

First assume that k is even, which means that for any prime $p>3$, we have $p^{k} \equiv$ $1 \bmod 12$. This means $\left|S\left(\gamma_{g}\right)\right|=1$ for each $g \in G_{3}$ as $I_{\mathbb{F}}=\{1\}$. Hence, (3.7), Theorems 2.1 and 2.2 imply that

$$
\begin{equation*}
\mathbb{F}_{q} G_{3} \cong \mathbb{F}_{q} \bigoplus_{r=1}^{9} M_{n_{r}}\left(\mathbb{F}_{q}\right) \tag{3.8}
\end{equation*}
$$

Using Theorem 2.4 with $G_{3}^{\prime} \cong A_{4}$ and $G_{3} / G_{3}^{\prime} \cong C_{4}$ in (3.8), we reach

$$
\begin{equation*}
\mathbb{F}_{q} G_{3} \cong \mathbb{F}_{q}^{4} \bigoplus_{r=1}^{6} M_{n_{r}}\left(\mathbb{F}_{q}\right), \quad \text { where } n_{r} \geqslant 2 \text { with } 44=\sum_{r=1}^{6} n_{r}^{2} . \tag{3.9}
\end{equation*}
$$

The above gives us the only possibility $(2,2,3,3,3,3)$ for the possible values of n_{r} 's. Therefore, we have

$$
\begin{equation*}
\mathbb{F}_{q} G_{3} \cong \mathbb{F}_{q}^{4} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{2} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{4} . \tag{3.10}
\end{equation*}
$$

Now we consider that k is odd. We shall discuss this case into three parts:
(1) $p^{k} \equiv 1 \bmod 12$.
(2) $p^{k} \equiv \pm 1 \bmod 3$ and $p^{k} \equiv-1 \bmod 4$.
(3) $p^{k} \equiv-1 \bmod 3$ and $p^{k} \equiv 1 \bmod 4$.

Case (1): $p^{k} \equiv 1 \bmod 12$. In this case WD is given by (3.10).
Case (2): $p^{k} \equiv \pm 1 \bmod 3$ and $p^{k} \equiv-1 \bmod 4$ which means $p^{k} \in\{7,11\} \bmod 12$. This means $I_{\mathbb{F}}=\{1,7\}$ or $\{1,11\}$ and accordingly we can verify that for both the cases, $\left|S\left(\gamma_{g}\right)\right|=1$ for each representative g of conjugacy classes except the one's having order 4. For representatives of order 4, we have $S\left(\gamma_{x}\right)=\left\{\gamma_{x}, \gamma_{x y}\right\}, S\left(\gamma_{x w}\right)=$ $\left\{\gamma_{x w}, \gamma_{x y w}\right\}$. Therefore, (3.7) and Theorems 2.1, 2.2 imply that

$$
\begin{equation*}
\mathbb{F}_{q} G_{3} \cong \mathbb{F}_{q} \bigoplus_{r=1}^{5} M_{n_{r}}\left(\mathbb{F}_{q}\right) \bigoplus_{r=6}^{7} M_{n_{r}}\left(\mathbb{F}_{q^{2}}\right) \tag{3.11}
\end{equation*}
$$

Since $G_{3}^{\prime} \cong A_{4}$ with $G_{3} / G_{3}^{\prime} \cong C_{4}$, we have $\mathbb{F}_{q} C_{4} \cong \mathbb{F}_{q} \oplus \mathbb{F}_{q} \oplus \mathbb{F}_{q^{2}}$. This with (3.11) and Theorem 2.5 implies that $\mathbb{F}_{q} G_{3} \cong \mathbb{F}_{q}^{2} \oplus \mathbb{F}_{q^{2}} \bigoplus_{r=1}^{4} M_{n_{r}}\left(\mathbb{F}_{q}\right) \oplus M_{n_{5}}\left(\mathbb{F}_{q^{2}}\right), n_{r} \geqslant 2$ with $44=\sum_{r=1}^{4} n_{r}^{2}+2 n_{5}^{2}$, which further implies that the possible choices of n_{r} 's are $(3,3,3,3,2),(2,2,3,3,3)$. For uniqueness, consider the normal subgroup $H_{3}=\langle y\rangle$ of G_{3} having order 2 with $G_{3} / H_{3} \cong S_{4}$. Using (3.6) and Theorem 2.5, we conclude that $(2,2,3,3,3)$ is the required choice.

Case (3): $p^{k} \equiv-1 \bmod 3$ and $p^{k} \equiv 1 \bmod 4$ which means $p^{k} \equiv 5 \bmod 12$. This means $I_{\mathbb{F}}=\{1,5\}$ and accordingly we can verify that WD in this case is given by (3.10).
3.4. The group $G_{4}=C_{2} \times S L(2,3)$. Group G_{4} has the following presentation:

$$
\begin{aligned}
\langle x, y, z, w, t| x^{2}, & z^{-1} x^{-1} z x, y^{-1} x^{-1} y x, w^{-1} x^{-1} w x, t^{-1} x^{-1} t x, \\
& z^{-1} y^{-1} z y t^{-1} w^{-1} z^{-1}, y^{3}, w^{-1} y^{-1} w y t^{-1} z^{-1}, t^{-1} y^{-1} t y, \\
& \left.z^{2} t^{-1}, w^{-1} z^{-1} w z t^{-1}, t^{-1} z^{-1} t z, w^{2} t^{-1}, t^{-1} w^{-1} t w, t^{2}\right\rangle .
\end{aligned}
$$

Further, G_{4} has 14 conjugacy classes, as shown in the table below.

rep	1	x	y	z	t	$x y$	$x z$	$x t$	y^{2}	$y t$	$x y^{2}$	$x y t$	$y^{2} z$	$x y^{2} z$
order of rep	1	2	3	4	2	6	4	2	3	6	6	6	6	6

From the above discussion, clearly the exponent of G_{4} is 12 . Also $G_{4}^{\prime} \cong Q_{8}$ and $G_{4} / G_{4}^{\prime} \cong C_{6}$.

Theorem 3.4. The unit group $U\left(\mathbb{F}_{q} G_{4}\right)$ of $\mathbb{F}_{q} G_{4}$, for $q=p^{k}$, $p>3$ where \mathbb{F}_{q} is a finite field having $q=p^{k}$ elements is as follows:
(1) for any p and k even or $p^{k} \in\{1,7\} \bmod 12$ with k odd

$$
U\left(\mathbb{F}_{q} G_{4}\right) \cong\left(\mathbb{F}_{q}^{*}\right)^{6} \oplus G L_{2}\left(\mathbb{F}_{q}\right)^{6} \oplus G L_{3}\left(\mathbb{F}_{q}\right)^{2}
$$

(2) for $p^{k} \in\{5,11\} \bmod 12$ with k odd

$$
U\left(\mathbb{F}_{q} G_{4}\right) \cong\left(\mathbb{F}_{q}^{*}\right)^{2} \oplus\left(\mathbb{F}_{q^{2}}^{*}\right)^{2} \oplus G L_{2}\left(\mathbb{F}_{q}\right)^{4} \oplus G L_{2}\left(\mathbb{F}_{q^{2}}\right) \oplus G L_{3}\left(\mathbb{F}_{q^{2}}\right)
$$

Proof. Since $\mathbb{F}_{q} G_{4}$ is semisimple, we have

$$
\begin{equation*}
\mathbb{F}_{q} G_{4} \cong \mathbb{F}_{q} \bigoplus_{r=1}^{t-1} M_{n_{r}}\left(\mathbb{F}_{r}\right) \tag{3.12}
\end{equation*}
$$

First assume that k is even, which means for any prime $p>3$, we have $p^{k} \equiv 1 \bmod 12$. This means $\left|S\left(\gamma_{g}\right)\right|=1$ for each $g \in G_{4}$. Hence, (3.12), Theorems 2.1 and 2.2 imply that

$$
\begin{equation*}
\mathbb{F}_{q} G_{4} \cong \mathbb{F}_{q} \bigoplus_{r=1}^{13} M_{n_{r}}\left(\mathbb{F}_{q}\right) \tag{3.13}
\end{equation*}
$$

Using Theorem 2.4 with $G_{4}^{\prime} \cong Q_{8}$ and $G_{4} / G_{4}^{\prime} \cong C_{6}$ in (3.13), we reach to $\mathbb{F}_{q} G_{4} \cong$ $\mathbb{F}_{q}^{6} \bigoplus_{r=1}^{8} M_{n_{r}}\left(\mathbb{F}_{q}\right)$, where $n_{r} \geqslant 2$, with $42=\sum_{r=1}^{8} n_{r}^{2}$. This gives the only possibility $(2,2,2,2,2,2,3,3)$ for the possible values of n_{r} 's. Therefore, we have

$$
\begin{equation*}
\mathbb{F}_{q} G_{4} \cong \mathbb{F}_{q}^{6} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{6} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{2} . \tag{3.14}
\end{equation*}
$$

Now we consider that k is odd.
Case (1): $p^{k} \equiv 1 \bmod 3$ and $p^{k} \equiv 1 \bmod 4$ or $p^{k} \equiv 1 \bmod 3$ and $p^{k} \equiv-1 \bmod 4$ which means $p^{k} \equiv 1,7 \bmod 12$. It can be seen that for these possibilities, $\left|S\left(\gamma_{g}\right)\right|=1$ for each $g \in G_{4}$. Therefore, WD is given by (3.14).

Case (2): $p^{k} \equiv-1 \bmod 3$ and $p^{k} \equiv \pm 1 \bmod 4$ which means $p^{k} \in\{5,11\} \bmod 12$. This means that $I_{\mathbb{F}}=\{1,5\}$ or $\{1,11\}$ and accordingly we can verify that for both the cases

$$
\begin{aligned}
S\left(\gamma_{y}\right) & =\left\{\gamma_{y}, \gamma_{y^{2}}\right\}, & S\left(\gamma_{x y}\right) & =\left\{\gamma_{x y}, \gamma_{x y^{2}}\right\}, \\
S\left(\gamma_{y t}\right) & =\left\{\gamma_{y t}, \gamma_{y^{2} z}\right\}, & S\left(\gamma_{x y t}\right) & =\left\{\gamma_{x y t}, \gamma_{x y^{2} z}\right\},
\end{aligned}
$$

and $S\left(\gamma_{g}\right)=\left\{\gamma_{g}\right\}$ for the remaining representatives g of the conjugacy classes. Therefore, (3.12) and Theorems 2.1, 2.2 imply that

$$
\begin{equation*}
\mathbb{F}_{q} G_{4} \cong \mathbb{F}_{q} \bigoplus_{r=1}^{5} M_{n_{r}}\left(\mathbb{F}_{q}\right) \bigoplus_{r=6}^{9} M_{n_{r}}\left(\mathbb{F}_{q^{2}}\right) . \tag{3.15}
\end{equation*}
$$

Since $G_{4}^{\prime} \cong Q_{8}$ with $G_{4} / G_{4}^{\prime} \cong C_{6}$, we have $\mathbb{F}_{q} C_{6} \cong \mathbb{F}_{q} \oplus \mathbb{F}_{q} \oplus \mathbb{F}_{q^{2}}^{2}$. This with (3.15) and Theorem 2.5 leads to $\mathbb{F}_{q} G_{4} \cong \mathbb{F}_{q}^{2} \oplus \mathbb{F}_{q^{2}}^{2} \bigoplus_{r=1}^{4} M_{n_{r}}\left(\mathbb{F}_{q}\right) \bigoplus_{r=5}^{6} M_{n_{r}}\left(\mathbb{F}_{q^{2}}\right), n_{r} \geqslant 2$ with $42=\sum_{r=1}^{4} n_{r}^{2}+2 \sum_{r=5}^{6} n_{r}^{2}$, which further implies that the possible choices of n_{r} 's are $(2,2,3,3,2,2),(2,2,2,2,2,3)$. For uniqueness, consider the normal subgroup $H_{4}=\langle x t\rangle$ of G_{4} having order 2 with $G_{4} / H_{4} \cong S L(2,3)$. Using Theorem 3.1 from [12] and Theorem 2.5, we conclude that $(2,2,2,2,2,3)$ is the required choice.
3.5. The group $G_{5}=\left(\left(C_{4} \times C_{2}\right) \rtimes C_{2}\right) \rtimes C_{3}$. Group G_{5} has the following presentation:

$$
\begin{aligned}
\langle x, y, z, w, t| x^{2} t^{-1}, & z^{-1} x^{-1} z x, y^{-1} x^{-1} y x, w^{-1} x^{-1} w x, t^{-1} x^{-1} t x, \\
& z^{-1} y^{-1} z y t^{-1} w^{-1} z^{-1}, y^{3}, w^{-1} y^{-1} w y t^{-1} z^{-1}, t^{-1} y^{-1} t y, \\
& \left.z^{2} t^{-1}, w^{-1} z^{-1} w z t^{-1}, t^{-1} z^{-1} t z, w^{2} t^{-1}, t^{-1} w^{-1} t w, t^{2}\right\rangle .
\end{aligned}
$$

Further, G_{5} has 14 conjugacy classes, as shown in the table below.

rep	1	x	y	z	t	$x y$	$x z$	$x t$	y^{2}	$y t$	$x y^{2}$	$x y t$	$y^{2} z$	$x y^{2} z$
order of rep	1	4	3	4	2	12	2	4	3	6	12	12	6	12

From the above discussion, clearly the exponent of G_{5} is 12 . Also, $G_{5}^{\prime} \cong Q_{8}$ and $G_{5} / G_{5}^{\prime} \cong C_{6}$.

Theorem 3.5. The unit group $U\left(\mathbb{F}_{q} G_{5}\right)$ of $\mathbb{F}_{q} G_{5}$, for $q=p^{k}, p>3$ where \mathbb{F}_{q} is a finite field having $q=p^{k}$ elements is as follows:
(1) for any p and k even or $p^{k} \equiv 1 \bmod 12$ with k odd

$$
U\left(\mathbb{F}_{q} G_{5}\right) \cong\left(\mathbb{F}_{q}^{*}\right)^{6} \oplus G L_{2}\left(\mathbb{F}_{q}\right)^{6} \oplus G L_{3}\left(\mathbb{F}_{q}\right)^{2},
$$

(2) for $p^{k} \equiv 7 \bmod 12$ with k odd

$$
U\left(\mathbb{F}_{q} G_{5}\right) \cong\left(\mathbb{F}_{q}^{*}\right)^{6} \oplus G L_{3}\left(\mathbb{F}_{q}\right)^{2} \oplus G L_{2}\left(\mathbb{F}_{q^{2}}\right)^{3},
$$

(3) for $p^{k} \equiv 5 \bmod 12$ with k odd

$$
U\left(\mathbb{F}_{q} G_{5}\right) \cong\left(\mathbb{F}_{q}^{*}\right)^{2} \oplus\left(\mathbb{F}_{q^{2}}^{*}\right)^{2} \oplus G L_{2}\left(\mathbb{F}_{q}\right)^{2} \oplus G L_{3}\left(\mathbb{F}_{q}\right)^{2} \oplus G L_{2}\left(\mathbb{F}_{q^{2}}\right)^{2}
$$

(4) for $p^{k} \equiv 11 \bmod 12$ with k odd

$$
U\left(\mathbb{F}_{q} G_{5}\right) \cong\left(\mathbb{F}_{q}^{*}\right)^{2} \oplus\left(\mathbb{F}_{q^{2}}^{*}\right)^{2} \oplus G L_{3}\left(\mathbb{F}_{q}\right)^{2} \oplus G L_{2}\left(\mathbb{F}_{q^{2}}\right)^{3}
$$

Proof. Since $\mathbb{F}_{q} G_{5}$ is semisimple, we have

$$
\begin{equation*}
\mathbb{F}_{q} G_{5} \cong \mathbb{F}_{q} \bigoplus_{r=1}^{t-1} M_{n_{r}}\left(\mathbb{F}_{r}\right) \tag{3.16}
\end{equation*}
$$

First assume that k is even, which means that for any prime $p>3$, we have $p^{k} \equiv$ $1 \bmod 12$. This means $\left|S\left(\gamma_{g}\right)\right|=1$ for each $g \in G_{5}$. Hence, (3.16), Theorems 2.1 and 2.2 imply that

$$
\begin{equation*}
\mathbb{F}_{q} G_{5} \cong \mathbb{F}_{q} \bigoplus_{r=1}^{13} M_{n_{r}}\left(\mathbb{F}_{q}\right) \tag{3.17}
\end{equation*}
$$

Proceeding similarly as in Theorem 3.4, we get the WD exactly similar to (3.14). Now we consider that k is odd.

Case (1): $p^{k} \equiv 1 \bmod 3$ and $p^{k} \equiv 1 \bmod 4$. In this case WD is given by (3.14).
Case (2): $p^{k} \equiv 1 \bmod 3$ and $p^{k} \equiv-1 \bmod 4$ which means that $p^{k} \equiv 7 \bmod 12$. This means that $I_{\mathbb{F}}=\{1,7\}$ and accordingly we can verify that for this case

$$
\begin{aligned}
S\left(\gamma_{x}\right) & =\left\{\gamma_{x}, \gamma_{x t}\right\}, & S\left(\gamma_{x y}\right) & =\left\{\gamma_{x y}, \gamma_{x y t}\right\}, \\
S\left(\gamma_{x y^{2}}\right) & =\left\{\gamma_{x y^{2}}, \gamma_{x y^{2} z}\right\}, & S\left(\gamma_{g}\right) & =\left\{\gamma_{g}\right\}
\end{aligned}
$$

for the remaining representatives g of the conjugacy classes. Therefore, (3.17) and Theorems 2.1, 2.2 imply that

$$
\begin{equation*}
\mathbb{F}_{q} G_{5} \cong \mathbb{F}_{q} \bigoplus_{r=1}^{7} M_{n_{r}}\left(\mathbb{F}_{q}\right) \bigoplus_{r=8}^{10} M_{n_{r}}\left(\mathbb{F}_{q^{2}}\right) \tag{3.18}
\end{equation*}
$$

Since $G_{5}^{\prime} \cong Q_{8}$ with $G_{5} / G_{5}^{\prime} \cong C_{6}$, we have $\mathbb{F}_{q} C_{6} \cong \mathbb{F}_{q}^{6}$. This with (3.18) and Theorem 2.5 implies that $\mathbb{F}_{q} G_{5} \cong \mathbb{F}_{q}^{6} \bigoplus_{r=1}^{2} M_{n_{r}}\left(\mathbb{F}_{q}\right) \bigoplus_{r=3}^{5} M_{n_{r}}\left(\mathbb{F}_{q^{2}}\right), n_{r} \geqslant 2$ with $42=$ $\sum_{r=1}^{2} n_{r}^{2}+2 \sum_{r=3}^{5} n_{r}^{2}$, which further implies that the possible choices of n_{r} 's are $(3,3,2,2,2)$,
$(2,2,2,2,3)$. For uniqueness, consider the normal subgroup $H_{5}=\langle x, t\rangle$ of G_{5} having order 4 with $G_{5} / H_{5} \cong A_{4}$. From [19] and Theorem 2.5, we conclude that (3, 3, 2, 2, 2) is the required choice.

Case (3): $p^{k} \equiv-1 \bmod 3$ and $p^{k} \equiv 1 \bmod 4$ which means $p^{k} \equiv 5 \bmod 12$. This means $I_{\mathbb{F}}=\{1,5\}$ and accordingly we can verify that

$$
\begin{aligned}
S\left(\gamma_{y}\right) & =\left\{\gamma_{y}, \gamma_{y^{2}}\right\}, & S\left(\gamma_{x y}\right) & =\left\{\gamma_{x y}, \gamma_{x y^{2}}\right\}, \\
S\left(\gamma_{y z}\right) & =\left\{\gamma_{y z}, \gamma_{y^{2} z}\right\}, & S\left(\gamma_{x y t}\right) & =\left\{\gamma_{x y t}, \gamma_{x y^{2} z}\right\},
\end{aligned}
$$

and $S\left(\gamma_{g}\right)=\left\{\gamma_{g}\right\}$ for the remaining representatives g of the conjugacy classes. Therefore, (3.17) and Theorems 2.1, 2.2 imply that

$$
\begin{equation*}
\mathbb{F}_{q} G_{5} \cong \mathbb{F}_{q} \bigoplus_{r=1}^{5} M_{n_{r}}\left(\mathbb{F}_{q}\right) \bigoplus_{r=6}^{9} M_{n_{r}}\left(\mathbb{F}_{q^{2}}\right) . \tag{3.19}
\end{equation*}
$$

Since $G_{5}^{\prime} \cong Q_{8}$ with $G_{5} / G_{5}^{\prime} \cong C_{6}$, we have $\mathbb{F}_{q} C_{6} \cong \mathbb{F}_{q}^{2} \oplus \mathbb{F}_{q^{2}}^{2}$. This with Theorem 2.5
 $42=\sum_{r=1}^{4} n_{r}^{2}+2 \sum_{r=5}^{6} n_{r}^{2}$, which further implies that the possible choices of n_{r} 's are $(2,2,3,3,2,2),(2,2,2,2,2,3)$. For uniqueness, again consider the normal subgroup $H_{5}=\langle x, t\rangle$ of G_{5}. With the same approach used in Case (2), we conclude that $(2,2,3,3,2,2)$ is the required choice.

Case (4): $p^{k} \equiv-1 \bmod 3$ and $p^{k} \equiv-1 \bmod 4$, which means $p^{k} \equiv 11 \bmod 12$. This means $I_{\mathbb{F}}=\{1,11\}$ and accordingly we can verify that

$$
\begin{aligned}
S\left(\gamma_{y}\right) & =\left\{\gamma_{y}, \gamma_{y^{2}}\right\}, & S\left(\gamma_{x y}\right) & =\left\{\gamma_{x y}, \gamma_{x y^{2} z}\right\},
\end{aligned} r\left(\gamma_{y z}\right)=\left\{\gamma_{y z}, \gamma_{y^{2} z}\right\}, ~ 子 r\left(\gamma_{g}\right)=\left\{\gamma_{g}\right\}
$$

for the remaining representatives g of the conjugacy classes. Therefore, (3.17) and Theorems 2.1, 2.2 imply that

$$
\begin{equation*}
\mathbb{F}_{q} G_{5} \cong \mathbb{F}_{q} \bigoplus_{r=1}^{3} M_{n_{r}}\left(\mathbb{F}_{q}\right) \bigoplus_{r=4}^{9} M_{n_{r}}\left(\mathbb{F}_{q^{2}}\right) . \tag{3.20}
\end{equation*}
$$

Since $G_{5}^{\prime} \cong Q_{8}$ with $G_{5} / G_{5}^{\prime} \cong C_{6}$, we have $\mathbb{F}_{q} C_{6} \cong \mathbb{F}_{q}^{2} \oplus \mathbb{F}_{q^{2}}^{2}$. This with Theorem 2.5 and (3.20) implies that $\mathbb{F}_{q} G_{5} \cong \mathbb{F}_{q}^{2} \oplus \mathbb{F}_{q^{2}}^{2} \bigoplus_{r=1}^{2} M_{n_{r}}\left(\mathbb{F}_{q}\right) \underset{r=3}{\bigoplus_{r}^{5}} M_{n_{r}}\left(\mathbb{F}_{q^{2}}\right), n_{r} \geqslant 2$ with $42=\sum_{r=1}^{2} n_{r}^{2}+2 \sum_{r=3}^{5} n_{r}^{2}$, which further implies that the possible choices of n_{r} 's are $(3,3,2,2,2),(2,2,2,2,3)$. For uniqueness, again consider the normal subgroup $H_{5}=$ $\langle x, t\rangle$ of G_{5}. With the same approach used in Case (2), we conclude that (3, 3, 2, 2, 2) is the required choice.
3.6. The group $G_{6}=C_{2} \times S_{4}$. Group G_{6} has the following presentation:

$$
\begin{aligned}
\langle x, y, z, w, t| x^{2}, & z^{-1} x^{-1} z x z^{-1}, y^{-1} x^{-1} y x, w^{-1} x^{-1} w x t^{-1} w^{-1}, y^{2}, \\
& t^{-1} x^{-1} t x t^{-1} w^{-1}, z^{-1} y^{-1} z y, w^{-1} y^{-1} w y, t^{-1} y^{-1} t y, \\
& \left.z^{3}, w^{-1} z^{-1} w z t^{-1} w^{-1}, t^{-1} z^{-1} t z w^{-1}, w^{2}, t^{-1} w^{-1} t w, t^{2}\right\rangle .
\end{aligned}
$$

Group G_{6} has 10 conjugacy classes as shown in the table below.

rep	1	x	y	z	w	$x y$	$x w$	$y z$	$y w$	$x y w$
order of rep	1	2	2	3	2	2	4	6	2	4

From the above discussion, clearly the exponent of G_{6} is 12 . Also, $G_{6}^{\prime} \cong A_{4}$ and $G_{6} / G_{6}^{\prime} \cong C_{2} \times C_{2}$.

Theorem 3.6. The unit group $U\left(\mathbb{F}_{q} G_{6}\right)$ of $\mathbb{F}_{q} G_{6}$, for $q=p^{k}, p>3$ where \mathbb{F}_{q} is a finite field having $q=p^{k}$ elements is isomorphic to $\left(\mathbb{F}_{q}^{*}\right)^{4} \oplus G L_{2}\left(\mathbb{F}_{q}\right)^{2} \oplus G L_{3}\left(\mathbb{F}_{q}\right)^{4}$.

Proof. Since $\mathbb{F}_{q} G_{6}$ is semisimple, we have $\mathbb{F}_{q} G_{6} \cong \mathbb{F}_{q} \bigoplus_{r=1}^{t-1} M_{n_{r}}\left(\mathbb{F}_{r}\right)$. First assume that k is even, which means that for any prime $p>3$, we have $p^{k} \equiv 1 \bmod 12$. This means that $\left|S\left(\gamma_{g}\right)\right|=1$ for each $g \in G_{6}$ as $I_{\mathbb{F}}=\{1\}$. As $G_{6}^{\prime} \cong A_{4}$ and $G_{6} / G_{6}^{\prime} \cong$ $C_{2} \times C_{2}$, WD in this case follows on similar lines to Theorem 3.3, i.e. it is given by (3.10). Now we consider that k is odd, which means $p^{k} \in\{1,5,7,11\} \bmod 12$. Here, we can verify that for all of these possibilities, $\left|S\left(\gamma_{g}\right)\right|=1$ for each representative g of conjugacy classes. Therefore, WD is given by (3.10).

4. Unit group of $\mathbb{F}_{q} G$ For non-metabelian group of order 54

In this section, we discuss the WD of $\mathbb{F}_{q} G$, where G is a non-metabelian group of order 54. There are 15 groups of order 54 up to isomorphism, but among these the only non-metabelian group is $G=\left(\left(C_{3} \times C_{3}\right) \rtimes C_{3}\right) \rtimes C_{2}$ and it can be represented via four generators x, y, z, w as

$$
\begin{aligned}
\left\langle x^{2}, z^{-1} x^{-1} z x z^{-1},\right. & y^{-1} x^{-1} y x y^{-1}, w^{-1} x^{-1} w x, y^{3}, \\
& \left.z^{-1} y^{-1} z y w^{-1}, w^{-1} y^{-1} w y, z^{3}, w^{-1} z^{-1} w z, w^{3}\right\rangle .
\end{aligned}
$$

Further, it can be seen that G has 10 conjugacy classes shown in the table below.

$$
\begin{array}{c|cccccccccc}
\text { rep } & e & x & y & z & w & x w & y z & w^{2} & x w^{2} & y^{2} z \\
\hline \text { order of rep } & 1 & 2 & 3 & 3 & 3 & 6 & 3 & 3 & 6 & 3
\end{array}
$$

Theorem 4.1. The unit group $U\left(\mathbb{F}_{q} G\right)$ of $\mathbb{F}_{q} G$, for $q=p^{k}, p>3$ where \mathbb{F}_{q} is a finite field having $q=p^{k}$ elements is as follows:
(1) for $p \equiv 1 \bmod 6$ and k is any positive integer or $p \equiv 5 \bmod 6$ and k is odd

$$
U\left(\mathbb{F}_{q} G\right) \cong\left(\mathbb{F}_{q}^{*}\right)^{2} \times G L_{2}\left(\mathbb{F}_{q}\right)^{4} \times G L_{3}\left(\mathbb{F}_{q}\right)^{4}
$$

(2) for $p \equiv 5 \bmod 6$ and k is odd:

$$
U\left(\mathbb{F}_{q} G\right) \cong\left(\mathbb{F}_{q}^{*}\right)^{2} \times G L_{2}\left(\mathbb{F}_{q}\right)^{4} \times G L_{3}\left(\mathbb{F}_{q^{2}}\right)^{2} .
$$

Proof. As the group algebra $\mathbb{F}_{q} G$ is semisimple, we have

$$
\begin{equation*}
\mathbb{F}_{q} G \cong \mathbb{F}_{q} \bigoplus_{r=1}^{t-1} M_{n_{r}}\left(\mathbb{F}_{r}\right) \tag{4.1}
\end{equation*}
$$

Since p is an odd prime, we have the following two cases:
Case (1): $p \equiv 1 \bmod 6$ and k is any positive integer or $p \equiv 5 \bmod 6$ and k is an even integer. Then, clearly $q=p^{k} \equiv 1 \bmod 6$. This means $\left|S\left(\gamma_{g}\right)\right|=1$ for each $g \in G$ as $I_{\mathbb{F}}=\{1\}$. Hence, (4.1), Theorems 2.1 and 2.2 imply that

$$
\begin{equation*}
\mathbb{F}_{q} G \cong \mathbb{F}_{q} \bigoplus_{r=1}^{9} M_{n_{r}}\left(\mathbb{F}_{q}\right) \quad \text { with } 53=\sum_{r=1}^{9} n_{r}^{2} \tag{4.2}
\end{equation*}
$$

Further, it can be verified that G^{\prime} is isomorphic to $\left(C_{3} \times C_{3}\right) \rtimes C_{3}$. This means $\mathbb{F}_{q}\left(G / G^{\prime}\right) \cong \mathbb{F}_{q} \oplus \mathbb{F}_{q}$. Hence, Theorem 2.4 and (4.2) imply that the only possible values of n_{r} 's satisfying (4.2) are ($1,2,2,2,2,3,3,3,3$).

Case (2): $p \equiv 5 \bmod 6$ and k is an odd positive integer. Then, clearly $q=$ $p^{k} \equiv-1 \equiv 5 \bmod 6$. This means $I_{\mathbb{F}}=\{-1,1\}$ and accordingly $S\left(\gamma_{g}\right)=\left\{\gamma_{g}\right\}$ for each representative g except when $g=w, w^{2}, x w, x w^{2}$. For these cases, we have $S\left(\gamma_{w}\right)=\left\{\gamma_{w}, \gamma_{w^{2}}\right\}, S\left(\gamma_{x w}\right)=\left\{\gamma_{x w}, \gamma_{x w^{2}}\right\}$. Therefore, this with (4.1), Theorems 2.1 and 2.2 implies that $\mathbb{F}_{q} G \cong \mathbb{F}_{q} \bigoplus_{r=1}^{5} M_{n_{r}}\left(\mathbb{F}_{q}\right) \bigoplus_{r=6}^{7} M_{n_{r}}\left(\mathbb{F}_{q^{2}}\right)$. Incorporating Theorem 2.4 as in Case (1) to obtain $\mathbb{F}_{q} G \cong{ }_{4}^{r=1} \mathbb{F}_{q}^{2} \bigoplus_{r=1}^{4} M_{n_{r}}^{r=6}\left(\mathbb{F}_{q}\right) \bigoplus_{r=5}^{6} M_{n_{r}}\left(\mathbb{F}_{q^{2}}\right)$, where $n_{r} \geqslant 2$ with $52=\sum_{r=1}^{4} n_{r}^{2}+2\left(n_{5}^{2}+n_{6}^{2}\right)$. This gives the 3 choices $(3,3,3,3,2,2),(2,2,3,3,2,3)$, $(2,2,2,2,3,3)$ for n_{r} 's and for uniqueness we need to discard 2 choices. Consider the normal subgroup $H=\langle w\rangle$ of G having order 3. It can be verified that $K=G / H \cong$ $\left(C_{3} \times C_{3}\right) \rtimes C_{2}$. To obtain the WD of $\mathbb{F}_{q} G$, we need to find the WD of $\mathbb{F}_{q} K$. Representation of K is $\left\langle x, y, z \mid x^{2}, z^{-1} x^{-1} z x z^{-1}, y^{-1} x^{-1} y x y^{-1}, y^{3}, z^{3}, z^{-1} y^{-1} z y, w^{3}\right\rangle$. Further, K has 6 conjugacy classes shown in the table below.

$$
\begin{array}{c|cccccc}
\text { rep } & e & x & y & z & y z & y^{2} z \\
\hline \text { order of rep } & 1 & 2 & 3 & 3 & 3 & 3
\end{array}
$$

For $p \equiv 5 \bmod 6$, it can be verified that $S\left(\gamma_{k}\right)=\left\{\gamma_{k}\right\}$ for each representative k of the conjugacy classes of K. Therefore, employ the fact that K^{\prime} is isomorphic to $C_{3} \times C_{3}$, we have $\mathbb{F}_{q} K \cong \mathbb{F}_{q}^{2} \bigoplus_{r=1}^{4} M_{n_{r}}\left(\mathbb{F}_{q}\right)$, where $n_{r} \geqslant 2$ with $16=\sum_{r=1}^{4} n_{r}^{2}$. This means that $F_{q} K \cong \mathbb{F}_{q}^{2} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{4}$. Finally, Theorem 2.5 implies that we remain with the only choice $(2,2,2,2,3,3)$.

5. $U\left(\mathbb{F}_{q} G\right)$ FOR NON-METABELIAN GROUPS OF ORDER 72

The main objective of this section is to characterize the unit group of $\mathbb{F}_{q} G$, where G is a non-metabelian group of order 72 . Up to isomorphism, there are 7 non-metabelian groups of order 72 from which 5, namely $G_{1}=\left(C_{3} \times A_{4}\right) \rtimes C_{2}$, $G_{2}=C_{3} \times S_{4}, G_{3}=\left(S_{3} \times S_{3}\right) \rtimes C_{2}, G_{4}=C_{3} \times S L(2,3), G_{5}=\left(C_{3} \times C_{3}\right) \rtimes Q_{8}$ have exponent 12 and rest 2, namely $G_{6}=Q_{8} \rtimes C_{9}$ and $G_{7}=\left(\left(C_{2} \times C_{2}\right) \rtimes C_{9}\right) \rtimes C_{2}$ have exponent 36 .
5.1. The group $G_{1}=\left(C_{3} \times A_{4}\right) \rtimes C_{2}$. Group G_{1} has the following presentation:

$$
\begin{aligned}
\langle x, y, z, w, t| x^{2}, & z^{-1} x^{-1} z x z^{-1}, y^{-1} x^{-1} y x y^{-1}, w^{-1} x^{-1} w x t^{-1} w^{-1} \\
& t^{-1} x^{-1} t x t^{-1} w^{-1}, y^{3}, z^{3}, z^{-1} y^{-1} z y, w^{-1} y^{-1} w y t^{-1} w^{-1} \\
& \left.t^{-1} y^{-1} t y w^{-1}, w^{-1} z^{-1} w z, t^{-1} z^{-1} t z, w^{2}, t^{-1} w^{-1} t w, t^{2}\right\rangle .
\end{aligned}
$$

Further, G_{1} has 9 conjugacy classes, as shown in the table below.

rep	1	x	y	z	w	$x w$	$y z$	$z w$	$y^{2} z$
order of rep	1	2	3	3	2	4	3	6	3

From the above discussion, clearly the exponent of G_{1} is 12 . Also, $G_{1}^{\prime} \cong C_{3} \times A_{4}$.
Theorem 5.1. The unit group $U\left(\mathbb{F}_{q} G_{1}\right)$ of $\mathbb{F}_{q} G_{1}$, for $q=p^{k}, p>3$ where \mathbb{F}_{q} is a finite field having $q=p^{k}$ elements is isomorphic to

$$
\left(\mathbb{F}_{q}^{*}\right)^{2} \times G L_{2}\left(\mathbb{F}_{q}\right)^{4} \times G L_{3}\left(\mathbb{F}_{q}\right)^{2} \times G L_{6}\left(\mathbb{F}_{q}\right)
$$

Proof. Since $\mathbb{F}_{q} G_{1}$ is semisimple, we have

$$
\begin{equation*}
\mathbb{F}_{q} G_{1} \cong \mathbb{F}_{q} \bigoplus_{r=1}^{t-1} M_{n_{r}}\left(\mathbb{F}_{r}\right) \tag{5.1}
\end{equation*}
$$

First assume that k is even, which means that for an odd prime p, we have $p^{k} \equiv$ $1 \bmod 12$. This means $\left|S\left(\gamma_{g}\right)\right|=1$ for each $g \in G_{1}$. Hence, (5.1), Theorems 2.1 and 2.2 imply that

$$
\begin{equation*}
\mathbb{F}_{q} G_{1} \cong \mathbb{F}_{q} \bigoplus_{r=1}^{8} M_{n_{r}}\left(\mathbb{F}_{q}\right) \tag{5.2}
\end{equation*}
$$

Using Theorem 2.4 with $G_{1}^{\prime} \cong C_{3} \times A_{4}$ in (5.2), we see that

$$
\begin{equation*}
\mathbb{F}_{q} G_{1} \cong \mathbb{F}_{q}^{2} \bigoplus_{r=1}^{7} M_{n_{r}}\left(\mathbb{F}_{q}\right), \quad \text { where } n_{r} \geqslant 2 \text { with } 70=\sum_{r=1}^{7} n_{r}^{2} \tag{5.3}
\end{equation*}
$$

The above gives us three possibilities $(2,2,2,2,2,5,5),(2,2,2,2,3,3,6)$, and $(3,3,3,3,3,3,4)$ for the possible values of n_{r} 's and for uniqueness we need to discard 2 choices. Consider the normal subgroup $H_{1}=\langle z\rangle$ of G_{1} having order 3. It can be verified that $K=G_{1} / H_{1} \cong S_{4}$. Therefore, (3.6), (5.3) and Theorem 2.5 imply that

$$
\begin{equation*}
\mathbb{F}_{q} G_{1} \cong \mathbb{F}_{q}^{2} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{4} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{2} \oplus M_{6}\left(\mathbb{F}_{q}\right) \tag{5.4}
\end{equation*}
$$

Now we consider that k is odd. We shall discuss this case in three parts:
(1) $p^{k} \equiv 1 \bmod 12$,
(2) $p^{k} \equiv 1 \bmod 3$ and $p^{k} \equiv-1 \bmod 4$,
(3) $p^{k} \equiv-1 \bmod 3$ and $p^{k} \equiv \pm 1 \bmod 4$.

Case (1): $p^{k} \equiv 1 \bmod 12$. In this case, WD is given by (5.4).
Case (2): $p^{k} \equiv 1 \bmod 3$ and $p^{k} \equiv-1 \bmod 4$ which means $p^{k} \equiv 7 \bmod 12$. This means $I_{\mathbb{F}}=\{1,7\}$ and accordingly $\left|S\left(\gamma_{g}\right)\right|=1$ for each $g \in G_{1}$. Therefore, WD is given by (5.4).

Case (3): $p^{k} \equiv-1 \bmod 3$ and $p^{k} \equiv \pm 1 \bmod 4$ which means $p^{k} \equiv 5 \bmod 12$ or $p^{k} \equiv 11 \bmod 12$. This means $I_{\mathbb{F}}=\{1,5\}$ or $I_{\mathbb{F}}=\{1,11\}$ and accordingly $\left|S\left(\gamma_{g}\right)\right|=1$ for each $g \in G_{1}$. Therefore, WD is given by (5.4).
5.2. The group $G_{2}=C_{3} \times S_{4}$. Group G_{2} has the following presentation:

$$
\begin{aligned}
\langle x, y, z, w, t| x^{2}, & z^{-1} x^{-1} z x z^{-1}, y^{-1} x^{-1} y x, w^{-1} x^{-1} w x t^{-1} w^{-1}, \\
& t^{-1} x^{-1} t x t^{-1} w^{-1}, y^{3}, z^{3}, z^{-1} y^{-1} z y, w^{-1} y^{-1} w y, t^{-1} y^{-1} t y \\
& \left.w^{-1} z^{-1} w z t^{-1} w^{-1}, t^{-1} z^{-1} t z w^{-1}, w^{2}, t^{-1} w^{-1} t w, t^{2}\right\rangle
\end{aligned}
$$

Further, G_{2} has 15 conjugacy classes, as shown in the table below.

$$
\begin{array}{c|ccccccccccccccc}
\text { rep } & 1 & x & y & z & w & x y & x w & y^{2} & y z & y w & x y^{2} & x y w & y^{2} z & y^{2} w & x y^{2} w \\
\hline \text { order of rep } & 1 & 2 & 3 & 3 & 2 & 6 & 4 & 3 & 3 & 6 & 6 & 12 & 3 & 6 & 12
\end{array}
$$

From the above discussion, clearly the exponent of G_{2} is 12 . Also, $G_{2}^{\prime} \cong A_{4}$ and $G_{2} / G_{2}^{\prime} \cong C_{6}$.

Theorem 5.2. The unit group $U\left(\mathbb{F}_{q} G_{2}\right)$ of $\mathbb{F}_{q} G_{2}$, for $q=p^{k}$, $p>3$ where \mathbb{F}_{q} is a finite field having $q=p^{k}$ elements is as follows:
(1) for any p and k even or k odd with $p \equiv 1 \bmod 3$ and $p \equiv \pm 1 \bmod 4$,

$$
U\left(\mathbb{F}_{q} G_{2}\right) \cong\left(\mathbb{F}_{q}^{*}\right)^{6} \oplus G L_{2}\left(\mathbb{F}_{q}\right)^{3} \oplus G L_{3}\left(\mathbb{F}_{q}\right)^{6},
$$

(2) for k odd and $p \equiv-1 \bmod 3$ and $p \equiv \pm 1 \bmod 4$,

$$
U\left(\mathbb{F}_{q} G_{2}\right) \cong\left(\mathbb{F}_{q}^{*}\right)^{2} \oplus\left(\mathbb{F}_{q^{2}}^{*}\right)^{2} \oplus G L_{2}\left(\mathbb{F}_{q}\right) \oplus G L_{3}\left(\mathbb{F}_{q}\right)^{2} \oplus G L_{2}\left(\mathbb{F}_{q^{2}}\right) \oplus G L_{3}\left(\mathbb{F}_{q^{2}}\right)^{2} .
$$

Proof. Since $\mathbb{F}_{q} G_{2}$ is semisimple, we have

$$
\begin{equation*}
\mathbb{F}_{q} G_{2} \cong \mathbb{F}_{q} \bigoplus_{r=1}^{t-1} M_{n_{r}}\left(\mathbb{F}_{r}\right) \tag{5.5}
\end{equation*}
$$

Now as in Theorem 5.1 for k even, we have $p^{k} \equiv 1 \bmod 12$ which means $\left|S\left(\gamma_{g}\right)\right|=1$ for each $g \in G_{2}$. Hence, (5.5), Theorems 2.1 and 2.2 imply that $\mathbb{F}_{q} G_{2} \cong \mathbb{F}_{q} \bigoplus_{r=1}^{14} M_{n_{r}}\left(\mathbb{F}_{q}\right)$. Using Theorem 2.4 with $G_{2}^{\prime} \cong A_{4}$ in this to obtain $\mathbb{F}_{q} G_{2} \cong \mathbb{F}_{q}^{6} \underset{r=1}{9} M_{n_{r}}\left(\mathbb{F}_{q}\right)$, where $n_{r} \geqslant 2$ with $66=\sum_{r=1}^{9} n_{r}^{2}$. This gives us the only possibility $(2,2,2,3,3,3,3,3,3)$. Therefore, we have

$$
\begin{equation*}
\mathbb{F}_{q} G_{2} \cong \mathbb{F}_{q}^{6} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{3} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{6} . \tag{5.6}
\end{equation*}
$$

Now we consider that k is odd. We shall discuss this in same manner as in Theorem 5.1.

Case (1): $p^{k} \equiv 1 \bmod 12$. In this case WD is given by (5.6).
Case (2): $p^{k} \equiv 1 \bmod 3$ and $p^{k} \equiv-1 \bmod 4$, which means $p^{k} \equiv 7 \bmod 12$. This means $I_{\mathbb{F}}=\{1,7\}$ and accordingly we can verify that $\left|S\left(\gamma_{g}\right)\right|=1$ for each $g \in G_{2}$. Therefore, WD is given by (5.6).

Case (3): $p^{k} \equiv-1 \bmod 3$ and $p^{k} \equiv \pm 1 \bmod 4$ which means $p^{k} \equiv 5 \bmod 12$ or $p^{k} \equiv 11 \bmod 12$. This means $I_{\mathbb{F}}=\{1,5\}$ or $I_{\mathbb{F}}=\{1,11\}$ and accordingly we have

$$
\left.\begin{array}{rlrl}
S\left(\gamma_{y}\right) & =\left\{\gamma_{y}, \gamma_{y^{2}}\right\}, & & S\left(\gamma_{x y}\right)=\left\{\gamma_{x y}, \gamma_{x y^{2}}\right\},
\end{array} r\left(\gamma_{y w}\right)=\left\{\gamma_{y w}, \gamma_{y^{2} w}\right\},\right\}
$$

for the remaining representatives g of conjugacy classes. Therefore, (5.6), Theorems 2.1 and 2.2 imply that

$$
\begin{equation*}
\mathbb{F}_{q} G_{2} \cong \mathbb{F}_{q} \bigoplus_{r=1}^{4} M_{n_{r}}\left(\mathbb{F}_{q}\right) \bigoplus_{r=5}^{9} M_{n_{r}}\left(\mathbb{F}_{q^{2}}\right) . \tag{5.7}
\end{equation*}
$$

For $I_{\mathbb{F}}=\{1,5\}$ or $I_{\mathbb{F}}=\{1,11\}$, it is easy to see that $\mathbb{F}_{q} C_{6} \cong \mathbb{F}_{q}^{2} \oplus \mathbb{F}_{q^{2}}^{2}$. This, with (5.7) and Theorem 2.4, implies that

$$
\begin{align*}
& \mathbb{F}_{q} G_{2} \cong \mathbb{F}_{q}^{2} \oplus \mathbb{F}_{q^{2}}^{2} \bigoplus_{r=1}^{3} M_{n_{r}}\left(\mathbb{F}_{q}\right) \bigoplus_{r=4}^{6} M_{n_{r}}\left(\mathbb{F}_{q^{2}}\right), \tag{5.8}\\
& \text { where } n_{r} \geqslant 2 \text { with } 66=\sum_{r=1}^{3} n_{r}^{2}+2 \sum_{r=4}^{6} n_{r}^{2}
\end{align*}
$$

The above gives us two possibilities $(2,3,3,2,3,3)$ and $(2,2,2,3,3,3)$, but we need to discard one of these. For that, consider the normal subgroup $H_{2}=\langle y\rangle$ of G_{2} having order 3. Observe that $G_{2} / H_{2} \cong S_{4}$. Therefore, (3.6), (5.8) and Theorem 2.5 imply that $(2,3,3,2,3,3)$ is the only choice.
5.3. The group $G_{3}=\left(S_{3} \times S_{3}\right) \rtimes C_{2}$. Group G_{3} has the following presentation:

$$
\begin{aligned}
\langle x, y, z, w, t| x^{2}, & z^{-1} x^{-1} z x, y^{-1} x^{-1} y x z^{-1}, w^{-1} x^{-1} w x w^{-1}, t^{-1} x^{-1} t x, \\
& z^{-1} y^{-1} z y, y^{2}, z^{2}, w^{-1} y^{-1} w y t^{-1} w^{-2}, t^{-1} y^{-1} t y t^{-2} w^{-1} \\
& \left.w^{-1} z^{-1} w z w^{-1}, t^{-1} z^{-1} t z t^{-1}, w^{3}, t^{-1} w^{-1} t w, t^{3}\right\rangle .
\end{aligned}
$$

Further, G_{3} has 9 conjugacy classes, as shown in the table below.

rep	1	x	y	z	w	$x y$	$x t$	$y w$	$w t$
order of rep	1	2	2	2	3	4	6	6	3

Clearly the exponent of G_{3} is 12 and we can verify that $G_{3}^{\prime} \cong\left(C_{3} \times C_{3}\right) \rtimes C_{2}$ with $G_{3} / G_{3}^{\prime} \cong C_{2} \times C_{2}$.

Theorem 5.3. The unit group $U\left(\mathbb{F}_{q} G_{3}\right)$ of $\mathbb{F}_{q} G_{3}$, for $q=p^{k}, p>3$ where \mathbb{F}_{q} is a finite field having $q=p^{k}$ elements is isomorphic to $\left(\mathbb{F}_{q}^{*}\right)^{4} \oplus G L_{2}\left(\mathbb{F}_{q}\right) \oplus G L_{4}\left(\mathbb{F}_{q}\right)^{4}$.

Proof. Since $\mathbb{F}_{q} G_{3}$ is semisimple, we have

$$
\begin{equation*}
\mathbb{F}_{q} G_{3} \cong \mathbb{F}_{q} \bigoplus_{r=1}^{t-1} M_{n_{r}}\left(\mathbb{F}_{r}\right) \tag{5.9}
\end{equation*}
$$

Now as in Theorem 5.1 for k even, we have $p^{k} \equiv 1 \bmod 12$ which means $\left|S\left(\gamma_{g}\right)\right|=1$ for each $g \in G_{3}$. Hence, (5.9), Theorems 2.1, 2.2 imply that $\mathbb{F}_{q} G_{3} \cong \underset{q}{ } \mathbb{F}_{q}^{4} \bigoplus_{r=1}^{5} M_{n_{r}}\left(\mathbb{F}_{q}\right)$, where $n_{r} \geqslant 2$ with $68=\sum_{r=1}^{5} n_{r}^{2}$. This gives us two possibilities, namely $(2,4,4,4,4)$ and $(3,3,3,4,5)$, but we need one. For that, consider the normal subgroup $H_{3}=\langle w, t\rangle$ of G_{3} having order 9. Observe that $H_{3} \cong C_{3} \times C_{3}$ and $G_{3} / H_{3} \cong D_{8}$. It can be clearly seen that WD of $\mathbb{F}_{q} D_{8}$ has no term of the form $M_{3}\left(\mathbb{F}_{q}\right)$ because of the dimension constraint. Therefore, Theorem 2.5 implies that $(2,4,4,4,4)$ is the only choice we have and hence

$$
\begin{equation*}
\mathbb{F}_{q} G_{3} \cong \mathbb{F}_{q}^{4} \oplus M_{2}\left(\mathbb{F}_{q}\right) \oplus M_{4}\left(\mathbb{F}_{q}\right)^{4} \tag{5.10}
\end{equation*}
$$

Now we consider that k is odd which means that $p^{k} \in\{1,5,7,11\} \bmod 12$. For all of these possibilities, we can easily see that $\left|S\left(\gamma_{g}\right)\right|=1$ for all $g \in G_{3}$ and therefore, WD is given by (5.10).
5.4. The group $G_{4}=C_{3} \times S L(2,3)$. Group G_{4} has the following presentation:

$$
\begin{aligned}
\langle x, y, z, w, t| x^{3}, & z^{-1} x^{-1} z x t^{-1} w^{-1} z^{-1}, y^{-1} x^{-1} y x, w^{-1} x^{-1} w x t^{-1} z^{-1} \\
& t^{-1} x^{-1} t x, y^{3}, z^{-1} y^{-1} z y, w^{-1} y^{-1} w y, t^{-1} y^{-1} t y, z^{2} w^{-1} \\
& \left.w^{-1} z^{-1} w z t^{-1}, t^{-1} z^{-1} t z, w^{2} t^{-1}, t^{-1} w^{-1} t w, t^{2}\right\rangle
\end{aligned}
$$

Further, G_{4} has 21 conjugacy classes, as shown in the two tables below.

$$
\begin{array}{c|ccccccccccccc}
\text { rep } & 1 & x & y & z & t & x^{2} & x y & x t & y^{2} & y z & y t & x^{2} y & x^{2} z \\
\hline \text { order of rep } & 1 & 3 & 3 & 4 & 2 & 3 & 3 & 6 & 3 & 12 & 6 & 3 & 6 \\
\text { rep } & x y^{2} & x y t & y^{2} z & y^{2} t & x^{2} y^{2} & x^{2} y z & x y^{2} t & x^{2} y^{2} z \\
\hline \text { order of rep } & 3 & 6 & 12 & 6 & 3 & 6 & 6 & 6
\end{array}
$$

From the above discussion, the exponent of G_{4} is 12 . Also, verify that $G_{4}^{\prime} \cong Q_{8}$ and $G_{4} / G_{4}^{\prime} \cong C_{3} \times C_{3}$.

Theorem 5.4. The unit group $U\left(\mathbb{F}_{q} G_{4}\right)$ of $\mathbb{F}_{q} G_{4}$, for $q=p^{k}, p>3$ where \mathbb{F}_{q} is a finite field having $q=p^{k}$ elements is as follows:
(1) for any p and k even or k odd with $p \equiv 1 \bmod 3$ and $p \equiv \pm 1 \bmod 4$,

$$
U\left(\mathbb{F}_{q} G_{4}\right) \cong\left(\mathbb{F}_{q}^{*}\right)^{9} \oplus G L_{2}\left(\mathbb{F}_{q}\right)^{9} \oplus G L_{3}\left(\mathbb{F}_{q}\right)^{3},
$$

(2) for k odd and $p \equiv-1 \bmod 3$ and $p \equiv \pm 1 \bmod 4$,

$$
U\left(\mathbb{F}_{q} G_{4}\right) \cong \mathbb{F}_{q}^{*} \oplus\left(\mathbb{F}_{q^{2}}^{*}\right)^{4} \oplus G L_{2}\left(\mathbb{F}_{q}\right) \oplus G L_{3}\left(\mathbb{F}_{q}\right) \oplus G L_{2}\left(\mathbb{F}_{q^{2}}\right)^{4} \oplus G L_{3}\left(\mathbb{F}_{q^{2}}\right)
$$

Proof. Since $\mathbb{F}_{q} G_{4}$ is semisimple, we have

$$
\begin{equation*}
\mathbb{F}_{q} G_{4} \cong \mathbb{F}_{q} \bigoplus_{r=1}^{t-1} M_{n_{r}}\left(\mathbb{F}_{r}\right) \tag{5.11}
\end{equation*}
$$

Now as in Theorem 5.1 for k even, we get $\mathbb{F}_{q} G_{4} \cong \mathbb{F}_{q} \bigoplus_{r=1}^{20} M_{n_{r}}\left(\mathbb{F}_{q}\right)$. Using Theorem 2.4 with $G_{4}^{\prime} \cong Q_{8}$ in above to obtain $\mathbb{F}_{q} G_{4} \cong \mathbb{F}_{q}^{9} \bigoplus_{r=1}^{12} M_{n_{r}}\left(\mathbb{F}_{q}\right)$, where $n_{r} \geqslant 2$ with $63=\sum_{r=1}^{12} n_{r}^{2}$. This gives us the only possibility $(2,2,2,2,2,2,2,2,2,3,3,3)$. Therefore, we have

$$
\begin{equation*}
\mathbb{F}_{q} G_{4} \cong \mathbb{F}_{q}^{9} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{9} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{3} . \tag{5.12}
\end{equation*}
$$

Now we consider that k is odd.
Case (1): $p^{k} \equiv 1 \bmod 12$. In this case WD is given by (5.12).
Case (2): $p^{k} \equiv 1 \bmod 3$ and $p^{k} \equiv-1 \bmod 4$ which means $p^{k} \equiv 7 \bmod 12$. This means that $I_{\mathbb{F}}=\{1,7\}$ and accordingly $\left|S\left(\gamma_{g}\right)\right|=1$ for each $g \in G_{4}$. Therefore, WD is given by (5.12).

Case (3): $p^{k} \equiv-1 \bmod 3$ and $p^{k} \equiv \pm 1 \bmod 4$ which means $p^{k} \equiv 5 \bmod 12$ or $p^{k} \equiv 11 \bmod 12$. This means that $I_{\mathbb{F}}=\{1,5\}$ or $I_{\mathbb{F}}=\{1,11\}$ and accordingly we have

$$
\begin{aligned}
S\left(\gamma_{x}\right) & =\left\{\gamma_{x}, \gamma_{x^{2}}\right\}, & S\left(\gamma_{y}\right) & =\left\{\gamma_{y}, \gamma_{y^{2}}\right\}, \\
S\left(\gamma_{x y}\right) & =\left\{\gamma_{x y}, \gamma_{x^{2} y^{2}}\right\}, & S\left(\gamma_{x t}\right) & =\left\{\gamma_{x t}, \gamma_{x^{2} z}\right\}, \\
S\left(\gamma_{y z}\right) & =\left\{\gamma_{y z}, \gamma_{y^{2} z}\right\}, & S\left(\gamma_{y t}\right) & =\left\{\gamma_{y t}, \gamma_{y^{2} t}\right\} \\
S\left(\gamma_{x^{2} y}\right) & =\left\{\gamma_{x^{2} y}, \gamma_{x y^{2}}\right\}, & S\left(\gamma_{x y t}\right) & =\left\{\gamma_{x y t}, \gamma_{x^{2} y^{2} z}\right\}, \\
S\left(\gamma_{x^{2} y z}\right) & =\left\{\gamma_{x^{2} y z}, \gamma_{x y^{2} t}\right\}, & S\left(\gamma_{g}\right) & =\left\{\gamma_{g}\right\}
\end{aligned}
$$

for the remaining representatives g of the conjugacy classes. Therefore, (5.11), Theorems 2.1 and 2.2 imply that

$$
\begin{equation*}
\mathbb{F}_{q} G_{4} \cong \mathbb{F}_{q} \bigoplus_{r=1}^{2} M_{n_{r}}\left(\mathbb{F}_{q}\right) \bigoplus_{r=3}^{11} M_{n_{r}}\left(\mathbb{F}_{q^{2}}\right) . \tag{5.13}
\end{equation*}
$$

For $I_{\mathbb{F}}=\{1,5\}$ or $I_{\mathbb{F}}=\{1,11\}$, it is easy to see that $\mathbb{F}_{q}\left(C_{3} \times C_{3}\right) \cong \mathbb{F}_{q} \oplus \mathbb{F}_{q^{2}}^{4}$. This, with (5.13) and Theorem 2.4, implies that $\mathbb{F}_{q} G_{4} \cong \mathbb{F}_{q} \oplus \mathbb{F}_{q^{2}}^{4} \bigoplus_{r=1}^{2} M_{n_{r}}\left(\mathbb{F}_{q}\right) \bigoplus_{r=3}^{7} M_{n_{r}}\left(\mathbb{F}_{q^{2}}\right)$ with $63=\sum_{r=1}^{2} n_{r}^{2}+2 \sum_{r=3}^{7} n_{r}^{2}, n_{r} \geqslant 2$, which gives us the only possibility $(2,3,2,2,2,2,3)$.
5.5. The group $G_{5}=\left(C_{3} \times C_{3}\right) \rtimes Q_{8}$. Group G_{5} has the following presentation:

$$
\begin{aligned}
\langle x, y, z, w, t| x^{2} z^{-1}, & z^{-1} x^{-1} z x, y^{-1} x^{-1} y x z^{-1}, w^{-1} x^{-1} w x t^{-2}, t^{-1} x^{-1} t x t^{-1} w^{-2} \\
& z^{-1} y^{-1} z y, y^{2} z^{-1}, w^{-1} y^{-1} w y t^{-1} w^{-2}, t^{-1} y^{-1} t y t^{-2} w^{-2}, z^{2} \\
& \left.w^{-1} z^{-1} w z w^{-1}, t^{-1} z^{-1} t z t^{-1}, w^{3}, t^{-1} w^{-1} t w, t^{3}\right\rangle .
\end{aligned}
$$

Further, G_{5} has 6 conjugacy classes, as shown in the table below.

rep	1	x	y	z	w	$x y$
order of rep	1	4	4	2	3	4

Clearly the exponent of G_{5} is 12 and we can verify that $G_{5}^{\prime} \cong\left(C_{3} \times C_{3}\right) \rtimes C_{2}$ with $G_{5} / G_{5}^{\prime} \cong C_{2} \times C_{2}$.

Theorem 5.5. The unit group $U\left(\mathbb{F}_{q} G_{5}\right)$ of $\mathbb{F}_{q} G_{5}$, for $q=p^{k}, p>3$ where \mathbb{F}_{q} is a finite field having $q=p^{k}$ elements and is isomorphic to $\left(\mathbb{F}_{q}^{*}\right)^{4} \oplus G L_{2}\left(\mathbb{F}_{q}\right) \oplus G L_{8}\left(\mathbb{F}_{q}\right)$.

Proof. Since $\mathbb{F}_{q} G_{5}$ is semisimple, we have

$$
\begin{equation*}
\mathbb{F}_{q} G_{5} \cong \mathbb{F}_{q} \bigoplus_{r=1}^{t-1} M_{n_{r}}\left(\mathbb{F}_{r}\right) \tag{5.14}
\end{equation*}
$$

Now as in Theorem 5.1 for k even, we have $p^{k} \equiv 1 \bmod 12$, which means $\left|S\left(\gamma_{g}\right)\right|=1$ for each $g \in G_{5}$. Hence, (5.14), Theorems 2.1, and 2.2 imply that $\mathbb{F}_{q} G_{5} \cong$ $\mathbb{F}_{q}^{4} \bigoplus_{r=1}^{2} M_{n_{r}}\left(\mathbb{F}_{q}\right)$, where $n_{r} \geqslant 2$ with $68=\sum_{r=1}^{2} n_{r}^{2}$. The above gives the only possibility namely $(2,8)$ and therefore, the required WD is

$$
\begin{equation*}
\mathbb{F}_{q} G_{5} \cong \mathbb{F}_{q}^{4} \oplus M_{2}\left(\mathbb{F}_{q}\right) \oplus M_{8}\left(\mathbb{F}_{q}\right) \tag{5.15}
\end{equation*}
$$

Now we consider that k is odd. We have $p^{k} \in\{1,5,7,11\} \bmod 12$. For all these possibilities, it can be verified that $\left|S\left(\gamma_{g}\right)\right|=1$ for each $g \in G_{5}$. Therefore, WD is given by (5.15).

Now we characterize the unit group of $\mathbb{F}_{q} G$, where G is a non-metabelian group of order 72 and exponent 36 .
5.6. The group $G_{6}=Q_{8} \rtimes C_{9}$. Group G_{6} has the following presentation:

$$
\begin{aligned}
\langle x, y, z, w, t| x^{3} y^{-1}, & z^{-1} x^{-1} z x t^{-1} w^{-1} z^{-1}, y^{-1} x^{-1} y x, w^{-1} x^{-1} w x t^{-1} z^{-1} \\
& t^{-1} x^{-1} t x, y^{3}, z^{-1} y^{-1} z y, w^{-1} y^{-1} w y, t^{-1} y^{-1} t y, z^{2} t^{-1} \\
& \left.w^{-1} z^{-1} w z t^{-1}, t^{-1} z^{-1} t z, w^{2} t^{-1}, t^{-1} w^{-1} t w, t^{2}\right\rangle
\end{aligned}
$$

Further, G_{6} has 21 conjugacy classes, as shown in the tables below.

rep	1	x	y	z	t	x^{2}	$x y$	$x t$	y^{2}	$y z$	$y t$	$x^{2} y$	$x^{2} z$
order of rep	1	9	3	4	2	9	9	18	3	12	6	9	18
rep	$x y^{2}$	$x y t$	$y^{2} z$	$y^{2} t$	$x^{2} y^{2}$	$x^{2} y z$	$x y^{2} t$	$x^{2} y^{2} z$					
order of rep	9	18	12	6	9	18	18	18					

Clearly the exponent of G_{6} is 36 . Also verify that $G_{6}^{\prime} \cong Q_{8}$ and $G_{6} / G_{6}^{\prime} \cong C_{9}$.
Theorem 5.6. The unit group $U\left(\mathbb{F}_{q} G_{6}\right)$ of the group algebra $\mathbb{F}_{q} G_{6}$, for $q=p^{k}$, $p>3$ where \mathbb{F}_{q} is a finite field having $q=p^{k}$ elements is as follows:
(1) for $p^{k} \equiv 1 \bmod 36$ or $p^{k} \equiv 19 \bmod 36$,

$$
U\left(\mathbb{F}_{q} G_{6}\right) \cong\left(\mathbb{F}_{q}^{*}\right)^{9} \oplus G L_{2}\left(\mathbb{F}_{q}\right)^{9} \oplus G L_{3}\left(\mathbb{F}_{q}\right)^{3},
$$

(2) for $p^{k} \in\{5,11,23,29\} \bmod 36$,

$$
\begin{aligned}
U\left(\mathbb{F}_{q} G_{6}\right) \cong \mathbb{F}_{q}^{*} \oplus \mathbb{F}_{q^{2}}^{*} & \oplus \mathbb{F}_{q^{6}}^{*} \oplus G L_{2}\left(\mathbb{F}_{q}\right) \oplus G L_{3}\left(\mathbb{F}_{q}\right) \\
& \oplus G L_{2}\left(\mathbb{F}_{q^{2}}\right) \oplus G L_{3}\left(\mathbb{F}_{q^{2}}\right) \oplus G L_{2}\left(\mathbb{F}_{q^{6}}\right)
\end{aligned}
$$

(3) for $p^{k} \equiv 17 \bmod 36$ or $p^{k} \equiv 35 \bmod 36$,

$$
U\left(\mathbb{F}_{q} G_{6}\right) \cong \mathbb{F}_{q}^{*} \oplus\left(\mathbb{F}_{q^{2}}^{*}\right)^{4} \oplus G L_{2}\left(\mathbb{F}_{q}\right) \oplus G L_{3}\left(\mathbb{F}_{q}\right) \oplus G L_{2}\left(\mathbb{F}_{q^{2}}\right)^{4} \oplus G L_{3}\left(\mathbb{F}_{q^{2}}\right)
$$

(4) for $p^{k} \in\{7,13,25,31\} \bmod 36$,

$$
U\left(\mathbb{F}_{q} G_{6}\right) \cong\left(\mathbb{F}_{q}^{*}\right)^{3} \oplus\left(\mathbb{F}_{q^{3}}^{*}\right)^{2} \oplus G L_{2}\left(\mathbb{F}_{q}\right)^{3} \oplus G L_{3}\left(\mathbb{F}_{q}\right)^{3} \oplus G L_{2}\left(\mathbb{F}_{q^{3}}\right)^{2}
$$

Proof. As $\mathbb{F}_{q} G_{6}$ is semisimple, we have

$$
\begin{equation*}
\mathbb{F}_{q} G_{6} \cong \mathbb{F}_{q} \bigoplus_{r=1}^{t-1} M_{n_{r}}\left(\mathbb{F}_{r}\right) \tag{5.16}
\end{equation*}
$$

Since p is an odd prime, we have $p^{k} \in\{1,5,7,11,13,17,19,23,25,29,31,35\} \bmod 36$. We discuss each of the above mentioned possibilities one by one in the following cases.

Case (1): $p^{k} \equiv 1 \bmod 36$ or $p^{k} \equiv 19 \bmod 36$. In this case, we have $\left|S\left(\gamma_{g}\right)\right|=1$ for each $g \in G_{6}$ as $I_{\mathbb{F}}=\{1\}$ or $I_{\mathbb{F}}=\{1,19\}$. Hence, (5.16), Theorems 2.1 and 2.2 imply that $\mathbb{F}_{q} G_{6} \cong \mathbb{F}_{q} \bigoplus_{r=1}^{20} M_{n_{r}}\left(\mathbb{F}_{q}\right)$. Using Theorem 2.4 with $G_{6} / G_{6}^{\prime} \cong C_{9}$, we find

$$
\begin{equation*}
\mathbb{F}_{q} G_{6} \cong \mathbb{F}_{q}^{9} \bigoplus_{r=1}^{12} M_{n_{r}}\left(\mathbb{F}_{q}\right), \quad \text { where } n_{r} \geqslant 2 \text { with } 63=\sum_{r=1}^{12} n_{r}^{2} . \tag{5.17}
\end{equation*}
$$

The above gives the only possibility $(2,2,2,2,2,2,2,2,2,3,3,3)$ for the possible values of n_{r} 's. Therefore, (5.17) implies

$$
\begin{equation*}
\mathbb{F}_{q} G_{6} \cong \mathbb{F}_{q}^{9} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{9} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{3} . \tag{5.18}
\end{equation*}
$$

Case (2): $p^{k} \equiv 5 \bmod 36$ or $p^{k} \equiv 29 \bmod 36$. For both possibilities, we have $I_{\mathbb{F}}=\{1,5,13,17,25,29\}$ and accordingly

$$
\begin{aligned}
S\left(\gamma_{x}\right) & =\left\{\gamma_{x}, \gamma_{x^{2} y}, \gamma_{x y^{2}}, \gamma_{x y}, \gamma_{x^{2}}, \gamma_{x^{2} y^{2}}\right\}, \\
S\left(\gamma_{x t}\right) & =\left\{\gamma_{x t}, \gamma_{x^{2} y z}, \gamma_{x y t}, \gamma_{x^{2} y^{2} z}, \gamma_{x y^{2} t}, \gamma_{x^{2} z}\right\}, \\
S\left(\gamma_{y}\right) & =\left\{\gamma_{y}, \gamma_{y^{2}}\right\}, \\
S\left(\gamma_{y z}\right) & =\left\{\gamma_{y z}, \gamma_{y^{2} z}\right\}, \\
S\left(\gamma_{y t}\right) & =\left\{\gamma_{y t}, \gamma_{y^{2} t}\right\}, \\
S\left(\gamma_{g}\right) & =\left\{\gamma_{g}\right\}
\end{aligned}
$$

for the remaining representatives g of conjugacy classes. Hence, (5.16), Theorems 2.1 and 2.2 imply that

$$
\begin{equation*}
\mathbb{F}_{q} G_{6} \cong \mathbb{F}_{q} \bigoplus_{r=1}^{2} M_{n_{r}}\left(\mathbb{F}_{q}\right) \bigoplus_{r=3}^{5} M_{n_{r}}\left(\mathbb{F}_{q^{2}}\right) \bigoplus_{r=6}^{7} M_{n_{r}}\left(\mathbb{F}_{q^{6}}\right) . \tag{5.19}
\end{equation*}
$$

Since $G_{6} / G_{6}^{\prime} \cong C_{9}$, it can be easily seen that $\mathbb{F}_{q} C_{9} \cong \mathbb{F}_{q} \oplus \mathbb{F}_{q^{2}} \oplus \mathbb{F}_{q^{6}}$. This, with (5.19) and Theorem 2.4, implies that $\mathbb{F}_{q} G_{6} \cong \mathbb{F}_{q} \oplus \mathbb{F}_{q^{2}} \oplus \mathbb{F}_{q^{6}} \bigoplus_{r=1}^{2} M_{n_{r}}\left(\mathbb{F}_{q}\right) \underset{r=3}{\oplus} M_{n_{r}}\left(\mathbb{F}_{q^{2}}\right) \oplus$ $M_{n_{5}}\left(\mathbb{F}_{q^{6}}\right)$. Comparing dimensions on both the sides to obtain $63=\sum_{r=1}^{2} n_{r}^{2}+$ $2 \sum_{r=3}^{4} n_{r}^{2}+6 n_{5}^{2}, n_{r} \geqslant 2$, which gives the only possibility $(2,3,2,3,2)$.

Case (3): $p^{k} \equiv 11 \bmod 36$ or $p^{k} \equiv 23 \bmod 36$. For both possibilities, we have $I_{\mathbb{F}}=\{1,11,13,23,25,35\}$. Further, we can verify that this case is exactly similar to Case (2).

Case (4): $p^{k} \equiv 17 \bmod 36$ or $p^{k} \equiv 35 \bmod 36$. For these possibilities, we have $I_{\mathbb{F}}=\{1,17\}$ or $I_{\mathbb{F}}=\{1,35\}$, respectively, and accordingly

$$
\begin{aligned}
S\left(\gamma_{x}\right) & =\left\{\gamma_{x}, \gamma_{x^{2} y^{2}}\right\}, & S\left(\gamma_{y}\right) & =\left\{\gamma_{y}, \gamma_{y^{2}}\right\}, \\
S\left(\gamma_{x y}\right) & =\left\{\gamma_{x y}, \gamma_{x^{2} y}\right\}, & S\left(\gamma_{x t}\right) & =\left\{\gamma_{x t}, \gamma_{x^{2} y^{2} z}\right\}, \\
S\left(\gamma_{x^{2}}\right) & =\left\{\gamma_{x^{2}}, \gamma_{x y^{2}}\right\}, & S\left(\gamma_{y z}\right) & =\left\{\gamma_{y z}, \gamma_{y^{2} z}\right\}, \\
S\left(\gamma_{y t}\right) & =\left\{\gamma_{y t}, \gamma_{y^{2} t}\right\}, & S\left(\gamma_{x^{2} z}\right) & =\left\{\gamma_{x^{2} z}, \gamma_{x y^{2} t}\right\}, \\
S\left(\gamma_{x y t}\right) & =\left\{\gamma_{x y t}, \gamma_{x^{2} y z}\right\}, & S\left(\gamma_{g}\right) & =\left\{\gamma_{g}\right\}
\end{aligned}
$$

for remaining g. Therefore, (5.16), Theorems 2.1 and 2.2 imply that

$$
\begin{equation*}
\mathbb{F}_{q} G_{6} \cong \mathbb{F}_{q} \bigoplus_{r=1}^{2} M_{n_{r}}\left(\mathbb{F}_{q}\right) \bigoplus_{r=3}^{11} M_{n_{r}}\left(\mathbb{F}_{q^{2}}\right) . \tag{5.20}
\end{equation*}
$$

Also $G_{6} / G_{6}^{\prime} \cong C_{9}$, which means $\mathbb{F}_{q} C_{9} \cong \mathbb{F}_{q} \oplus \mathbb{F}_{q^{2}}^{4}$. This, with (5.20) and Theorem 2.4, implies that $\mathbb{F}_{q} G_{6} \cong \mathbb{F}_{q} \oplus \mathbb{F}_{q^{2}}^{4} \underset{r=1}{2} M_{n_{r}}\left(\mathbb{F}_{q}\right) \bigoplus_{r=3}^{7} M_{n_{r}}\left(\mathbb{F}_{q^{2}}\right)$. Applying the dimension formula to this to obtain $63=\sum_{r=1}^{2} n_{r}^{2}+2 \sum_{r=3}^{7} n_{r}^{2}, n_{r} \geqslant 2$, which gives the only possibility $(2,3,2,2,2,2,3)$.

Case (5): $p^{k} \equiv 7 \bmod 36$ or $p^{k} \equiv 31 \bmod 36$. For both possibilities, we have $I_{\mathbb{F}}=\{1,7,13,19,25,31\}$ and accordingly

$$
\begin{aligned}
S\left(\gamma_{x}\right) & =\left\{\gamma_{x}, \gamma_{x y^{2}}, \gamma_{x y}\right\}, & S\left(\gamma_{x^{2}}\right) & =\left\{\gamma_{x^{2}}, \gamma_{x^{2} y}, \gamma_{x^{2} y^{2}}\right\}, \\
S\left(\gamma_{x t}\right) & =\left\{\gamma_{x t}, \gamma_{x y t}, \gamma_{x y^{2} t}\right\}, & S\left(\gamma_{x^{2} z}\right) & =\left\{\gamma_{x^{2} z}, \gamma_{x^{2} y z}, \gamma_{x^{2} y^{2} z}\right\}, \quad \text { and } \quad S\left(\gamma_{g}\right)=\left\{\gamma_{g}\right\}
\end{aligned}
$$

for the remaining representatives g of conjugacy classes. Hence, (5.16), Theorems 2.1 and 2.2 imply that

$$
\begin{equation*}
\mathbb{F}_{q} G_{6} \cong \mathbb{F}_{q} \bigoplus_{r=1}^{8} M_{n_{r}}\left(\mathbb{F}_{q}\right) \bigoplus_{r=9}^{12} M_{n_{r}}\left(\mathbb{F}_{q^{3}}\right) . \tag{5.21}
\end{equation*}
$$

Also $G_{6} / G_{6}^{\prime} \cong C_{9}$, which means $\mathbb{F}_{q} C_{9} \cong \mathbb{F}_{q}^{3} \oplus \mathbb{F}_{q^{3}}^{2}$. This, with (5.21) and Theorem 2.4, implies that $\mathbb{F}_{q} G_{6} \cong \mathbb{F}_{q}^{3} \oplus \mathbb{F}_{q^{3}}^{2} \bigoplus_{r=1}^{6} M_{n_{r}}\left(\mathbb{F}_{q}\right) \bigoplus_{r=7}^{8} M_{n_{r}}\left(\mathbb{F}_{q^{3}}\right)$. Applying the dimension formula in the above to obtain $63=\sum_{r=1}^{6} n_{r}^{2}+3 \sum_{r=7}^{8} n_{r}^{2}, n_{r} \geqslant 2$, which gives two possibilities, namely $(2,2,2,3,3,3,2,2)$ and $(2,2,2,2,2,2,2,3)$ but we need to discard one of these. For that, consider the normal subgroup $H_{6}=\langle y\rangle$ of G_{6} having
order 3. Observe that $G_{6} / H_{6} \cong S L(2,3)$, and from [11], we know that the WD of $\mathbb{F}_{q} G_{6} / H_{6}$ contains $M_{2}\left(\mathbb{F}_{q}\right)$ as well as $M_{3}\left(\mathbb{F}_{q}\right)$. Therefore, $(2,2,2,3,3,3,2,2)$ is the only possibility for n_{r} 's.

Case (6): $p^{k} \equiv 13 \bmod 36$ or $p^{k} \equiv 25 \bmod 36$. For both the possibilities, we have $I_{\mathbb{F}}=\{1,13,25\}$ and one can verify that this case is similar to Case (5).
5.7. The group $G_{7}=\left(\left(C_{2} \times C_{2}\right) \rtimes C_{9}\right) \rtimes C_{2}$. Group G_{7} has the following presentation:

$$
\begin{aligned}
\langle x, y, z, w, t| x^{2}, & z^{-1} x^{-1} z x z^{-1}, y^{-1} x^{-1} y x z^{-1} y^{-1}, w^{-1} x^{-1} w x t^{-1} w^{-1}, \\
& t^{-1} x^{-1} t x t^{-1} w^{-1}, z^{3}, y^{3} z^{-2}, z^{-1} y^{-1} z y, w^{-1} y^{-1} w y t^{-1} w^{-1}, \\
& \left.t^{-1} y^{-1} t y w^{-1}, w^{-1} z^{-1} w z, t^{-1} z^{-1} t z, w^{2}, t^{-1} w^{-1} t w, t^{2}\right\rangle .
\end{aligned}
$$

Further, G_{7} has 9 conjugacy classes, as shown in the table below.

rep	1	x	y	z	w	$x w$	y^{2}	$z w$	$y z^{2}$
order of rep	1	2	9	3	2	4	9	6	9

Clearly the exponent of G_{7} is 36 , and we can verify that $G_{7}^{\prime} \cong\left(C_{2} \times C_{2}\right) \rtimes C_{9}$ with $G_{7} / G_{7}^{\prime} \cong C_{2}$.

Theorem 5.7. The unit group $U\left(\mathbb{F}_{q} G_{7}\right)$ of $\mathbb{F}_{q} G_{7}$, for $q=p^{k}, p>3$ where \mathbb{F}_{q} is a finite field having $q=p^{k}$ elements is as follows:
(1) for $p^{k} \in\{1,17,19,35\} \bmod 36$

$$
U\left(\mathbb{F}_{q} G_{7}\right) \cong\left(\mathbb{F}_{q}^{*}\right)^{2} \oplus G L_{2}\left(\mathbb{F}_{q}\right)^{4} \oplus G L_{3}\left(\mathbb{F}_{q}\right)^{2} \oplus G L_{6}\left(\mathbb{F}_{q}\right),
$$

(2) $p^{k} \in\{5,7,11,13,23,25,29,31\} \bmod 36$,

$$
U\left(\mathbb{F}_{q} G_{7}\right) \cong\left(\mathbb{F}_{q}^{*}\right)^{2} \oplus G L_{2}\left(\mathbb{F}_{q}\right) \oplus G L_{3}\left(\mathbb{F}_{q}\right)^{2} \oplus G L_{6}\left(\mathbb{F}_{q}\right) \oplus G L_{2}\left(\mathbb{F}_{q^{3}}\right)
$$

Proof. Since $\mathbb{F}_{q} G_{7}$ is semisimple, we have

$$
\begin{equation*}
\mathbb{F}_{q} G_{7} \cong \mathbb{F}_{q} \bigoplus_{r=1}^{t-1} M_{n_{r}}\left(\mathbb{F}_{r}\right) \tag{5.22}
\end{equation*}
$$

Now, we proceed in a similar manner as in Theorem 5.6.
Case (1): $p^{k} \equiv 1 \bmod 36$ or $p^{k} \equiv 19 \bmod 36$. In this case, we have $\left|S\left(\gamma_{g}\right)\right|=1$ for each $g \in G_{7}$ as $I_{\mathbb{F}}=\{1\}$ or $I_{\mathbb{F}}=\{1,19\}$. Hence, (5.22), Theorems 2.1 and 2.2 imply that $\mathbb{F}_{q} G_{7} \cong \mathbb{F}_{q} \bigoplus_{r=1}^{8} M_{n_{r}}\left(\mathbb{F}_{q}\right)$. Using Theorem 2.4 with $G_{7} / G_{7}^{\prime} \cong C_{2}$ in this to obtain $\mathbb{F}_{q} G_{7} \cong \mathbb{F}_{q} \oplus \mathbb{F}_{q} \bigoplus_{r=1}^{7} M_{n_{r}}\left(\mathbb{F}_{q}\right)$, with $70=\sum_{r=1}^{7} n_{r}^{2}, n_{r} \geqslant 2$. This gives 3 possibilities $(2,2,2,2,2,5,5),(2,2,2,2,3,3,6)$ and $(3,3,3,3,3,3,4)$ for the possible
values of n_{r} 's and we need to discard two. For that, consider the normal subgroup $H_{7}=\langle z\rangle$ of G_{7} having order 3. Observe that $G_{7} / H_{7} \cong S_{4}$ and therefore, using (3.6) and Theorem 2.5, we conclude that $(2,2,2,2,3,3,6)$ is the only possibility.

Case (2): $p^{k} \equiv 5 \bmod 36$ or $p^{k} \equiv 29 \bmod 36$. For both possibilities, we have $I_{\mathbb{F}}=$ $\{1,5,13,17,25,29\}$ and accordingly $S\left(\gamma_{y}\right)=\left\{\gamma_{y}, \gamma_{y^{2}}, \gamma_{y z^{2}}\right\}, S\left(\gamma_{g}\right)=\left\{\gamma_{g}\right\}$ for the remaining representatives g of conjugacy classes. Hence, (5.22), Theorems 2.1 and 2.2 imply that $\mathbb{F}_{q} G_{7} \cong \mathbb{F}_{q} \bigoplus_{r=1}^{5} M_{n_{r}}\left(\mathbb{F}_{q}\right) \oplus M_{6}\left(\mathbb{F}_{q^{3}}\right)$. Since $G_{7} / G_{7}^{\prime} \cong C_{2}$, Theorem 2.4 further leads to

$$
\begin{equation*}
\mathbb{F}_{q} G_{7} \cong \mathbb{F}_{q}^{2} \bigoplus_{r=1}^{4} M_{n_{r}}\left(\mathbb{F}_{q}\right) \oplus M_{5}\left(\mathbb{F}_{q^{3}}\right), \quad \text { with } 70=\sum_{r=1}^{4} n_{r}^{2}+3 n_{5}^{2}, n_{r} \geqslant 2 \tag{5.23}
\end{equation*}
$$

The above gives us three possibilities, namely $(2,2,5,5,2),(2,3,3,6,2),(3,3,3,4,3)$. Now, again consider the normal subgroup H_{7} of G_{7}. Therefore, (5.23) and Theorem 2.5 imply that $(2,3,3,6,2)$ is the only choice we have.

Case (3): $p^{k} \equiv 11 \bmod 36$ or $p^{k} \equiv 23 \bmod 36$. For both possibilities, we have $I_{\mathbb{F}}=\{1,11,13,23,25,35\}$. Further, we can verify that this case is exactly similar to Case (2).

Case (4): $p^{k} \equiv 17 \bmod 36$ or $p^{k} \equiv 35 \bmod 36$. For both possibilities, we have $I_{\mathbb{F}}=\{1,17\}$ or $I_{\mathbb{F}}=\{1,35\}$, respectively, and accordingly this case is exactly similar to Case (1).

Case (5): $p^{k} \equiv 7 \bmod 36$ or $p^{k} \equiv 31 \bmod 36$. For both possibilities, we have $I_{\mathbb{F}}=\{1,7,13,19,25,31\}$ and accordingly we can verify that this case is similar to Case (2).

Case (6): $p^{k} \equiv 13 \bmod 36$ or $p^{k} \equiv 25 \bmod 36$. For both possibilities, we have $I_{\mathbb{F}}=\{1,13,25\}$ and one can verify that this case is again similar to Case (2).

6. Discussion

We have discussed the unit groups of semisimple group algebras of 14 nonmetabelian groups. All the results are verified using GAP. It can be clearly seen that with the increase in the order of group, complexity in the determination of unique Wedderburn decomposition upsurges. This completes the study of the unit group of semisimple group algebras up to groups of order 72 .

Acknowledgments. The authors are extremely thankful to the learned referee for his comments, critical review and suggestions, which improved the overall quality of the paper. The first author would also like to thank NBHM for supporting his research work.

References

[1] A. A. Bovdi, J. Kurdics: Lie properties of the group algebra and the nilpotency class of the group of units. J. Algebra 212 (1999), 28-64.
zbl MR doi
[2] V. Bovdi, M. Salim: On the unit group of a commutative group ring. Acta Sci. Math. 80 (2014), 433-445.
zbl MR doi
[3] L. Creedon, J. Gildea: The structure of the unit group of the group algebra $F_{2^{k}} D_{8}$. Can. Math. Bull. 54 (2011), 237-243.
zbl MR doi
[4] R. A. Ferraz: Simple components of the center of $F G / J(F G)$. Commun. Algebra 36 (2008), 3191-3199.
zbl MR doi
[5] J. Gildea: The structure of the unit group of the group algebra $F_{2^{k}} A_{4}$. Czech. Math. J. 61 (2011), 531-539.
zbl MR doi
[6] J. Gildea, F. Monaghan: Units of some group algebras of groups of order 12 over any finite field of characteristic 3. Algebra Discrete Math. 11 (2011), 46-58.
[7] T. Hurley: Convolutional codes from units in matrix and group rings. Int. J. Pure Appl. Math. 50 (2009), 431-463.
[8] G. Karpilovsky: The Jacobson Radical of Group Algebras. North-Holland Mathematics Studies 135. North-Holland, Amsterdam, 1987.
zbl MR doi
[9] M. Khan, R. K. Sharma, J. B. Srivastava: The unit group of $F S_{4}$. Acta Math. Hung. 118 (2008), 105-113.
zbl MR doi
[10] Y. Kumar: On The Unit Group Of Certain Finite Group Algebras. PhD Thesis. Indian Institute of Technology Delhi (IIT Delhi), New Delhi, 2019; Available at http:// eprint.iitd.ac.in/bitstream/handle/2074/8276/TH-5966.pdf?sequence=1.
[11] R. Lidl, H. Niederreiter: Introduction to Finite Fields and Their Applications. Cambridge University Press, Cambridge, 1994.
[12] S. Maheshwari, R. K. Sharma: The unit group of group algebra $F_{q} S L\left(2 ; Z_{3}\right)$. J. Algebra Comb. Discrete Struct. Appl. 3 (2016), 1-6.
[13] N. Makhijani, R. K. Sharma, J. B. Srivastava: The unit group of $F_{q}\left[D_{30}\right]$. Serdica Math. J. 41 (2015), 185-198.
[14] N. Makhijani, R.K.Sharma, J.B.Srivastava: A note on the structure of $F_{p^{k}} A_{5} /$ $J\left(F_{p^{k}} A_{5}\right)$. Acta Sci. Math. 82 (2016), 29-43.
zbl MR doi
[15] N. Makhijani, R. K. Sharma, J. B. Srivastava: Units in finite dihedral and quaternion group algebras. J. Egypt. Math. Soc. 24 (2016), 5-7.
zbl MR doi
[16] G. Pazderski: The orders to which only belong metabelian groups. Math. Nachr. 95 (1980), 7-16.
zbl MR doi
[17] S. Perlis, G. L. Walker: Abelian group algebras of finite order. Trans. Am. Math. Soc. 68 (1950), 420-426.
zbl MR doi
[18] C. Polcino Milies, S. K. Sehgal: An Introduction to Group Rings. Algebras and Applications 1. Kluwer Academic Publishers, Dordrecht, 2002.
zbl MR
[19] R. K. Sharma, J. B. Srivastava, M. Khan: The unit group of $F A_{4}$. Publ. Math. 71 (2007), 21-26.
[20] R. K. Sharma, J. B. Srivastava, M. Khan: The unit group of $F S_{3}$. Acta Math. Acad. Paedagog. Nyházi 23 (2007), 129-142.
zbl MR
[21] G. Tang, Y. Wei, Y. Li: Unit groups of group algebras of some small groups. Czech. Math. J. 64 (2014), 149-157.
zbl MR doi

Authors' addresses: Gaurav Mittal, Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee, India, email: gmittal@ma.iitr.ac.in; Rajendra Kumar Sharma, Department of Mathematics, Indian Institute of Technology Delhi, New Delhi, India, e-mail: rksharma@maths.iitd.ac.in.

