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Abstract. We characterize the unit group of semisimple group algebras FqG of some

non-metabelian groups, where Fq is a field with q = pk elements for p prime and a positive
integer k. In particular, we consider all 6 non-metabelian groups of order 48, the only
non-metabelian group ((C3 × C3)⋊ C3)⋊ C2 of order 54, and 7 non-metabelian groups of
order 72. This completes the study of unit groups of semisimple group algebras for groups
upto order 72.
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1. Introduction

Let Fq denote a finite field with q = pk elements for an odd prime p, G a finite

group and let FqG be the group algebra. We refer to [18] for elementary definitions

and results related to the group algebras and [2], [17] for the abelian group algebras.

One of the most important research problems in the theory of group algebras is the

determination of their unit groups, which are very important from the application

point of view; for instance, in the exploration of Lie properties of group algebras,

the isomorphism problem etc., see [1]. Hurley in [7] suggested the construction of

convolutional codes from units in group algebra as an important application of units.

Considering some of the existing literature, we refer to [3], [6], [13], [15] for the

unit group U(FG) of dihedral groups G and [5], [6], [9], [12], [14], [15], [19]–[21]

for some non abelian groups other than the dihedral groups. The unit group of

finite semisimple group algebras of metabelian groups (groups in which there exists

a normal subgroup N of G such that both N and G/N are abelian) has been well

studied. From [16], it can be seen that all groups up to order 23 are metabelian.
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The only non-metabelian groups of order 24 are S4 and SL(2, 3), and their unit

group algebras have been discussed in [9], [12]. Further, [16] also implies that there

are non-metabelian groups of order 48, 54, 60 and 72. It can be verified that A5 is

the only non-metabelian group of order 60 and the unit group of its group algebra,

i.e. U(FqA5) can be easily deduced from [14] for p > 5.

The main motive of this paper is to characterize the unit groups of FqG, where first

we consider G to be a non-metabelian group of order 48. There are 6 such groups up

to isomorphism. After that we consider the only non-metabelian group of order 54.

Finally, we consider all the non-metabelian groups of order 72. In all, we cover the

unit groups of 14 semisimple group algebras of non-metabelian groups. The rest of

the paper is organized in the following manner: we recall all the basic definitions and

results to be used later on in Section 2. Our main results for the characterization of

the unit groups are presented in the third, fourth and fifth sections. Some remarks

are discussed in the last section.

2. Preliminaries

Let e denote the exponent of G, ζ be a primitive eth root of unity and F be an

arbitrary finite field. On the lines of [4], we define

IF = {n : ζ 7→ ζn is an automorphism of F(ζ) over F}.

Since, the Galois group Gal(F(ζ),F) is a cyclic group and for any τ ∈ Gal(F(ζ),F),

there exists a positive integer s which is invertible modulo e such that τ(ζ) = ζs.

In other words, IF is a subgroup of the multiplicative group Z
∗
e. For any p-regular

element g ∈ G, i.e. an element whose order is not divisible by p, let the sum of

all conjugates of g be denoted by γg, and the cyclotomic F-class of γg be denoted

by S(γg) = {γgn : n ∈ IF}. The cardinality of S(γg) and the number of cyclotomic

F-classes will be incorporated later on for the characterization of the unit groups.

Now, we recall the following two results related to the cyclotomic F-classes.

Theorem 2.1 ([4]). The number of simple components of FG/J(FG) and the

number of cyclotomic F-classes in G are equal.

Theorem 2.2 ([4]). Let j be the number of cyclotomic F-classes in G. If Ki,

1 6 i 6 j, are the simple components of center of FG/J(FG) and Si, 1 6 i 6 j, are

the cyclotomic F-classes in G, then |Si| = [Ki : F] for each i after suitable ordering

of the indices.
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For determining the structure of the unit group U(FG), we need Wedderburn

decomposition of the group algebra FG. In other words, we want to determine the

simple components of FG. Based on the existing literature, we can always claim

that F is one of the simple components in the decomposition of FG/J(FG). The

simple proof is given here for completeness.

Lemma 2.1. Let A1 and A2 denote the finite dimensional algebras over F. Fur-

ther, let A2 be semisimple and g be an onto map between A1 and A2, then we must

have A1/J(A1) ∼= A3 +A2, where A3 is some semisimple F-algebra.

P r o o f. From [8], we have J(A1) ⊆ Ker(g). This means there exists an F-algebra

homomorphism g1 from A1/J(A1) to A2 which is also onto. In other words, we have

g1 : A1/J(A1) 7→ A2 defined by g1(a + J(A1)) = g(a), a ∈ A1. As A1/J(A1) is

semisimple, there exists an ideal I of A1/J(A1) such that A1/J(A1) = ker(g1) ⊕ I.

Our claim is that I ∼= A2. To prove this, note that any element a ∈ A1/J(A1)

can be uniquely written as a = a1 + a2, where a1 ∈ ker(g1), a2 ∈ I. So, define

g2 : A1/J(A1) 7→ ker(g1)⊕ A2 by g2(a) = (a1, g1(a2)). Since ker(g1) is a semisimple

algebra over F, the result holds. �

The above lemma concludes that F is one of the simple components of FG, provided

J(FG) = 0. Now we characterize the set IF defined in the beginning of this section.

Theorem 2.3 ([11]). Let F be a finite field with prime power order q. If e is

such that gcd(e, q) = 1, ζ is the primitive eth root of unity and |q| is the order of q

modulo e, then IF = {1, q, q2, . . . , q|q|−1}.

The next two results are Propositions 3.6.11 and 3.6.7, respectively, from [18] and

are quite useful in our work.

Theorem 2.4. If RG is a semisimple group algebra, then RG ∼= R(G/G′) ⊕

∆(G,G′), where G′ is the commutator subgroup of G, R(G/G′) is the sum of all

commutative simple components of RG, and ∆(G,G′) is the sum of all others.

Theorem 2.5. Let RG be a semisimple group algebra and H be a normal sub-

group of G. Then RG ∼= R(G/H)⊕∆(G,H), where ∆(G,H) is the left ideal of RG

generated by the set {h− 1: h ∈ H}.
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3. Unit group of FqG for non-metabelian groups of order 48

The main objective of this section is to characterize the unit groups of FqG,

where G is a non-metabelian group of order 48. Up to isomorphism, there are 6 non-

metabelian groups of order 48, namely G1 = C2 · S4, G2 = GL(2, 3), G3 = A4 ⋊C4,

G4 = C2 × SL(2, 3), G5 = ((C4 × C2) ⋊ C2) ⋊ C3 and G6 = C2 × S4. Here C2 · S4

represents the non-split extension of S4 by C2. We consider each of these groups one

by one and discuss the unit groups of their respective group algebras along with the

WD’s in the subsequent subsections (here WD means Wedderburn decomposition

and from now onwards we use this notation).

3.1. The group G1 = C2 · S4. Group G1 has the following presentation:

〈x, y, z, w, t | x2t−1, z−1x−1zxt−1w−1z−1, y−1x−1yxy−1, w−1x−1wxt−1w−1z−1,

y3, t−1x−1tx, t2, z−1y−1zyw−1z−1, w−1y−1wyt−1z−1,

t−1y−1ty, w−1z−1wzt−1, z2t−1, t−1z−1tz, t−1w−1tw, w2t−1〉.

Also G1 has 8 conjugacy classes as shown in the table below.

rep 1 x y z t xz yw xyz
order of rep 1 4 3 4 2 8 6 8

where rep means representative of conjugacy class. From the above discussion, clearly

the exponent of G1 is 24. Also G
′
1
∼= SL(2, 3). Next, we give the unit group of FqG1

when p > 3.

Theorem 3.1. The unit group of FqG1, for q = pk, p > 3 where Fq is a finite

field having q = pk elements is as follows:

(1) for k even or pk ∈ {1, 7, 17, 23} mod 24 with k odd

U(FqG1) ∼= (F∗
q)

2 ⊕GL2(Fq)
3 ⊕GL3(Fq)

2 ⊕GL4(Fq),

(2) for pk ∈ {5, 11, 13, 19} mod 24 with k odd

U(FqG1) ∼= (F∗
q)

2 ⊕GL2(Fq)⊕GL3(Fq)
2 ⊕GL4(Fq)⊕GL2(Fq2).
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P r o o f. Since FqG1 is semisimple, we have

(3.1) FqG1
∼= Fq

t−1⊕

r=1

Mnr
(Fr).

First assume that k is even which means for any prime p > 3, we have pk ≡ 1 mod 24.

This means |S(γg)| = 1 for each g ∈ G1 as IF = {1}. Hence, (3.1), Theorems 2.1

and 2.2 imply that

(3.2) FqG1
∼= Fq

7⊕

r=1

Mnr
(Fq).

Using Theorem 2.4 with G′
1
∼= SL(2, 3) in (3.2), we reach

(3.3) FqG1
∼= F

2

q

6⊕

r=1

Mnr
(Fq), where nr > 2 with 46 =

6∑

r=1

n2

r.

The above gives the only possibility (2, 2, 2, 3, 3, 4) for the possible values of nr’s and

therefore, (3.3) implies that

(3.4) FqG1
∼= F

2

q ⊕M2(Fq)
3 ⊕M3(Fq)

2 ⊕M4(Fq).

It is straight-forward to deduce the unit group from WD. Now we consider that k is

odd. We shall discuss this case in two parts:

(1) pk ∈ {1, 7, 17, 23} mod 24,

(2) pk ∈ {5, 11, 13, 19} mod 24.

Case (1): For pk ∈ {1, 7, 17, 23} mod 24, it can be verified that |S(γg)| = 1 for

each g ∈ G1. This means WD is given by (3.4).

Case (2): For pk ∈ {5, 11, 13, 19} mod 24, we can verify that S(γg) = {γg}

for each representative of the conjugacy classes except xz, for which S(γxz) =

{S(γxz), S(γxyz)}. Therefore, (3.1) and Theorems 2.1 and 2.2 imply that FqG1
∼=

Fq

5⊕
r=1

Mnr
(Fq) ⊕Mn6

(Fq2). Using Theorem 2.4 in this to obtain (after suitable re-

arrangement of indexes)

(3.5) FqG1
∼= F

2

q

4⊕

r=1

Mnr
(Fq)⊕Mn5

(Fq2), nr > 2 with 46 =
4∑

r=1

n2

r + 2n2

5
.

The above gives us two possibilities, namely (2, 2, 2, 4, 3) and (2, 3, 3, 4, 2) for the

possible values of nr’s. However, we need to discard one of these possibilities. For
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that, consider the normal subgroupH1 = 〈t〉 ∼= C2 of G1 with G1/H1
∼= S4. From [9],

we know that

(3.6) FqS4
∼= F

2

q ⊕M2(Fq)⊕M3(Fq)
2.

Therefore, (3.5), (3.6) and Theorem 2.5 imply that (2, 3, 3, 4, 2) is the only possibility

for nr’s. �

3.2. The group G2 = GL(2, 3). Group G2 has the following presentation:

〈x, y, z, w, t | x2, z−1x−1zxt−1w−1z−1, y−1x−1yxy−1, w−1x−1wxw−1z−1, y3,

t−1x−1tx, t−1z−1tz, z−1y−1zyw−1z−1, w−1y−1wyt−1z−1,

t−1y−1ty, w−1z−1wzt−1, w2t−1, t−1w−1tw, w2t−1, t2〉.

Further, G2 has 8 conjugacy classes, as shown in the table below.

rep 1 x y z t xz yw xyz
order of rep 1 2 3 4 2 8 6 8

From the above discussion, clearly the exponent of G2 is 24. Also G
′
2
∼= SL(2, 3).

Theorem 3.2. The unit group of FqG2, for q = pk, p > 3 where Fq is a finite

field having q = pk elements is as follows:

(1) for k even or pk ∈ {1, 11, 17, 19} mod 24 with k odd

U(FqG2) ∼= (F∗
q)

2 ⊕GL2(Fq)
3 ⊕GL3(Fq)

2 ⊕GL4(Fq),

(2) for pk ∈ {5, 7, 13, 23} mod 24 with k odd

U(FqG2) ∼= (F∗
q)

2 ⊕GL2(Fq)⊕GL3(Fq)
2 ⊕GL4(Fq)⊕GL2(Fq2).

P r o o f. See Theorem 3.2 in [10]. �

3.3. The group G3 = A4 ⋊ C4. Group G3 has the following presentation:

〈x, y, z, w, t | x2y−1, z−1x−1zxz−1, y−1x−1yx, w−1x−1wxt−1w−1, y2,

t−1x−1txt−1w−1, z−1y−1zy, w−1y−1wy, t−1y−1ty, z3,

w−1z−1wzt−1w−1, t−1z−1tzw−1, w2, t−1w−1tw, t2〉.
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Further, G3 has 10 conjugacy classes, as shown in the table below.

rep 1 x y z w xy xw yz yw xyw
order of rep 1 4 2 3 2 4 4 6 2 4

From the above discussion, clearly the exponent of G3 is 12. Also G′
3
∼= A4 and

G3/G
′
3
∼= C4.

Theorem 3.3. The unit group U(FqG3) of FqG3, for q = pk, p > 3 where Fq is

a finite field having q = pk elements is as follows:

(1) for any p and k even or pk ∈ {1, 5} mod 12 with k odd

U(FqG3) ∼= (F∗
q)

4 ⊕GL2(Fq)
2 ⊕GL3(Fq)

4,

(2) for pk ∈ {7, 11} mod 12 with k odd

U(FqG3) ∼= (F∗
q)

2 ⊕ F
∗
q2 ⊕GL2(Fq)

2 ⊕GL3(Fq)
2 ⊕GL3(Fq2).

P r o o f. Since FqG3 is semisimple, we have

(3.7) FqG3
∼= Fq

t−1⊕

r=1

Mnr
(Fr).

First assume that k is even, which means that for any prime p > 3, we have pk ≡

1 mod 12. This means |S(γg)| = 1 for each g ∈ G3 as IF = {1}. Hence, (3.7),

Theorems 2.1 and 2.2 imply that

(3.8) FqG3
∼= Fq

9⊕

r=1

Mnr
(Fq).

Using Theorem 2.4 with G′
3
∼= A4 and G3/G

′
3
∼= C4 in (3.8), we reach

(3.9) FqG3
∼= F

4

q

6⊕

r=1

Mnr
(Fq), where nr > 2 with 44 =

6∑

r=1

n2

r.

The above gives us the only possibility (2, 2, 3, 3, 3, 3) for the possible values of nr’s.

Therefore, we have

(3.10) FqG3
∼= F

4

q ⊕M2(Fq)
2 ⊕M3(Fq)

4.
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Now we consider that k is odd. We shall discuss this case into three parts:

(1) pk ≡ 1 mod 12.

(2) pk ≡ ±1 mod 3 and pk ≡ −1 mod 4.

(3) pk ≡ −1 mod 3 and pk ≡ 1 mod 4.

Case (1): pk ≡ 1 mod 12. In this case WD is given by (3.10).

Case (2): pk ≡ ±1 mod 3 and pk ≡ −1 mod 4 which means pk ∈ {7, 11} mod 12.

This means IF = {1, 7} or {1, 11} and accordingly we can verify that for both the

cases, |S(γg)| = 1 for each representative g of conjugacy classes except the one’s

having order 4. For representatives of order 4, we have S(γx) = {γx, γxy}, S(γxw) =

{γxw, γxyw}. Therefore, (3.7) and Theorems 2.1, 2.2 imply that

(3.11) FqG3
∼= Fq

5⊕

r=1

Mnr
(Fq)

7⊕

r=6

Mnr
(Fq2).

Since G′
3
∼= A4 with G3/G

′
3
∼= C4, we have FqC4

∼= Fq ⊕ Fq ⊕ Fq2 . This with (3.11)

and Theorem 2.5 implies that FqG3
∼= F

2

q ⊕ Fq2

4⊕
r=1

Mnr
(Fq) ⊕ Mn5

(Fq2), nr > 2

with 44 =
4∑

r=1

n2

r + 2n2

5
, which further implies that the possible choices of nr’s are

(3, 3, 3, 3, 2), (2, 2, 3, 3, 3). For uniqueness, consider the normal subgroup H3 = 〈y〉

of G3 having order 2 with G3/H3
∼= S4. Using (3.6) and Theorem 2.5, we conclude

that (2, 2, 3, 3, 3) is the required choice.

Case (3): pk ≡ −1 mod 3 and pk ≡ 1 mod 4 which means pk ≡ 5 mod 12. This

means IF = {1, 5} and accordingly we can verify that WD in this case is given

by (3.10). �

3.4. The group G4 = C2 × SL(2, 3). Group G4 has the following presentation:

〈x, y, z, w, t | x2, z−1x−1zx, y−1x−1yx, w−1x−1wx, t−1x−1tx,

z−1y−1zyt−1w−1z−1, y3, w−1y−1wyt−1z−1, t−1y−1ty,

z2t−1, w−1z−1wzt−1, t−1z−1tz, w2t−1, t−1w−1tw, t2〉.

Further, G4 has 14 conjugacy classes, as shown in the table below.

rep 1 x y z t xy xz xt y2 yt xy2 xyt y2z xy2z
order of rep 1 2 3 4 2 6 4 2 3 6 6 6 6 6

From the above discussion, clearly the exponent of G4 is 12. Also G′
4
∼= Q8 and

G4/G
′
4
∼= C6.
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Theorem 3.4. The unit group U(FqG4) of FqG4, for q = pk, p > 3 where Fq is

a finite field having q = pk elements is as follows:

(1) for any p and k even or pk ∈ {1, 7} mod 12 with k odd

U(FqG4) ∼= (F∗
q)

6 ⊕GL2(Fq)
6 ⊕GL3(Fq)

2,

(2) for pk ∈ {5, 11} mod 12 with k odd

U(FqG4) ∼= (F∗
q)

2 ⊕ (F∗
q2)

2 ⊕GL2(Fq)
4 ⊕GL2(Fq2)⊕GL3(Fq2).

P r o o f. Since FqG4 is semisimple, we have

(3.12) FqG4
∼= Fq

t−1⊕

r=1

Mnr
(Fr).

First assume that k is even, which means for any prime p > 3, we have pk ≡ 1 mod 12.

This means |S(γg)| = 1 for each g ∈ G4. Hence, (3.12), Theorems 2.1 and 2.2 imply

that

(3.13) FqG4
∼= Fq

13⊕

r=1

Mnr
(Fq).

Using Theorem 2.4 with G′
4
∼= Q8 and G4/G

′
4
∼= C6 in (3.13), we reach to FqG4

∼=

F
6

q

8⊕
r=1

Mnr
(Fq), where nr > 2, with 42 =

8∑
r=1

n2

r. This gives the only possibility

(2, 2, 2, 2, 2, 2, 3, 3) for the possible values of nr’s. Therefore, we have

(3.14) FqG4
∼= F

6

q ⊕M2(Fq)
6 ⊕M3(Fq)

2.

Now we consider that k is odd.

Case (1): pk ≡ 1 mod 3 and pk ≡ 1 mod 4 or pk ≡ 1 mod 3 and pk ≡ −1 mod 4

which means pk ≡ 1, 7 mod 12. It can be seen that for these possibilities, |S(γg)| = 1

for each g ∈ G4. Therefore, WD is given by (3.14).

Case (2): pk ≡ −1 mod 3 and pk ≡ ±1 mod 4 which means pk ∈ {5, 11} mod 12.

This means that IF = {1, 5} or {1, 11} and accordingly we can verify that for both

the cases

S(γy) = {γy, γy2}, S(γxy) = {γxy, γxy2},

S(γyt) = {γyt, γy2z}, S(γxyt) = {γxyt, γxy2z},
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and S(γg) = {γg} for the remaining representatives g of the conjugacy classes. There-

fore, (3.12) and Theorems 2.1, 2.2 imply that

(3.15) FqG4
∼= Fq

5⊕

r=1

Mnr
(Fq)

9⊕

r=6

Mnr
(Fq2).

Since G′
4
∼= Q8 with G4/G

′
4
∼= C6, we have FqC6

∼= Fq ⊕ Fq ⊕ F
2

q2 . This with (3.15)

and Theorem 2.5 leads to FqG4
∼= F

2

q ⊕ F
2

q2

4⊕
r=1

Mnr
(Fq)

6⊕
r=5

Mnr
(Fq2), nr > 2 with

42 =
4∑

r=1

n2

r + 2
6∑

r=5

n2

r, which further implies that the possible choices of nr’s

are (2, 2, 3, 3, 2, 2), (2, 2, 2, 2, 2, 3). For uniqueness, consider the normal subgroup

H4 = 〈xt〉 of G4 having order 2 with G4/H4
∼= SL(2, 3). Using Theorem 3.1

from [12] and Theorem 2.5, we conclude that (2, 2, 2, 2, 2, 3) is the required choice.

�

3.5. The group G5 = ((C4 × C2) ⋊ C2) ⋊ C3. Group G5 has the following

presentation:

〈x, y, z, w, t | x2t−1, z−1x−1zx, y−1x−1yx, w−1x−1wx, t−1x−1tx,

z−1y−1zyt−1w−1z−1, y3, w−1y−1wyt−1z−1, t−1y−1ty,

z2t−1, w−1z−1wzt−1, t−1z−1tz, w2t−1, t−1w−1tw, t2〉.

Further, G5 has 14 conjugacy classes, as shown in the table below.

rep 1 x y z t xy xz xt y2 yt xy2 xyt y2z xy2z
order of rep 1 4 3 4 2 12 2 4 3 6 12 12 6 12

From the above discussion, clearly the exponent of G5 is 12. Also, G
′
5
∼= Q8 and

G5/G
′
5
∼= C6.

Theorem 3.5. The unit group U(FqG5) of FqG5, for q = pk, p > 3 where Fq is

a finite field having q = pk elements is as follows:

(1) for any p and k even or pk ≡ 1 mod 12 with k odd

U(FqG5) ∼= (F∗
q)

6 ⊕GL2(Fq)
6 ⊕GL3(Fq)

2,

(2) for pk ≡ 7 mod 12 with k odd

U(FqG5) ∼= (F∗
q)

6 ⊕GL3(Fq)
2 ⊕GL2(Fq2)

3,
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(3) for pk ≡ 5 mod 12 with k odd

U(FqG5) ∼= (F∗
q)

2 ⊕ (F∗
q2)

2 ⊕GL2(Fq)
2 ⊕GL3(Fq)

2 ⊕GL2(Fq2)
2,

(4) for pk ≡ 11 mod 12 with k odd

U(FqG5) ∼= (F∗
q)

2 ⊕ (F∗
q2)

2 ⊕GL3(Fq)
2 ⊕GL2(Fq2)

3.

P r o o f. Since FqG5 is semisimple, we have

(3.16) FqG5
∼= Fq

t−1⊕

r=1

Mnr
(Fr).

First assume that k is even, which means that for any prime p > 3, we have pk ≡

1 mod 12. This means |S(γg)| = 1 for each g ∈ G5. Hence, (3.16), Theorems 2.1

and 2.2 imply that

(3.17) FqG5
∼= Fq

13⊕

r=1

Mnr
(Fq).

Proceeding similarly as in Theorem 3.4, we get the WD exactly similar to (3.14).

Now we consider that k is odd.

Case (1): pk ≡ 1 mod 3 and pk ≡ 1 mod 4. In this case WD is given by (3.14).

Case (2): pk ≡ 1 mod 3 and pk ≡ −1 mod 4 which means that pk ≡ 7 mod 12.

This means that IF = {1, 7} and accordingly we can verify that for this case

S(γx) = {γx, γxt}, S(γxy) = {γxy, γxyt},

S(γxy2) = {γxy2, γxy2z}, S(γg) = {γg}

for the remaining representatives g of the conjugacy classes. Therefore, (3.17) and

Theorems 2.1, 2.2 imply that

(3.18) FqG5
∼= Fq

7⊕

r=1

Mnr
(Fq)

10⊕

r=8

Mnr
(Fq2).

Since G′
5
∼= Q8 with G5/G

′
5
∼= C6, we have FqC6

∼= F
6

q. This with (3.18) and

Theorem 2.5 implies that FqG5
∼= F

6
q

2⊕
r=1

Mnr
(Fq)

5⊕
r=3

Mnr
(Fq2), nr > 2 with 42 =

2∑
r=1

n2

r+2
5∑

r=3

n2

r, which further implies that the possible choices of nr’s are (3, 3, 2, 2, 2),
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(2, 2, 2, 2, 3). For uniqueness, consider the normal subgroup H5 = 〈x, t〉 of G5 having

order 4 with G5/H5
∼= A4. From [19] and Theorem 2.5, we conclude that (3, 3, 2, 2, 2)

is the required choice.

Case (3): pk ≡ −1 mod 3 and pk ≡ 1 mod 4 which means pk ≡ 5 mod 12. This

means IF = {1, 5} and accordingly we can verify that

S(γy) = {γy, γy2}, S(γxy) = {γxy, γxy2},

S(γyz) = {γyz, γy2z}, S(γxyt) = {γxyt, γxy2z},

and S(γg) = {γg} for the remaining representatives g of the conjugacy classes. There-

fore, (3.17) and Theorems 2.1, 2.2 imply that

(3.19) FqG5
∼= Fq

5⊕

r=1

Mnr
(Fq)

9⊕

r=6

Mnr
(Fq2).

Since G′
5
∼= Q8 with G5/G

′
5
∼= C6, we have FqC6

∼= F
2

q ⊕F
2

q2
. This with Theorem 2.5

and (3.19) implies that FqG5
∼= F

2
q ⊕ F

2

q2

4⊕
r=1

Mnr
(Fq)

6⊕
r=5

Mnr
(Fq2), nr > 2 with

42 =
4∑

r=1

n2

r + 2
6∑

r=5

n2

r, which further implies that the possible choices of nr’s are

(2, 2, 3, 3, 2, 2), (2, 2, 2, 2, 2, 3). For uniqueness, again consider the normal subgroup

H5 = 〈x, t〉 of G5. With the same approach used in Case (2), we conclude that

(2, 2, 3, 3, 2, 2) is the required choice.

Case (4): pk ≡ −1 mod 3 and pk ≡ −1 mod 4, which means pk ≡ 11 mod12. This

means IF = {1, 11} and accordingly we can verify that

S(γy) = {γy, γy2}, S(γxy) = {γxy, γxy2z}, S(γyz) = {γyz, γy2z},

S(γxyt) = {γxyt, γxy2}, S(γx) = {γx, γxt}, S(γg) = {γg}

for the remaining representatives g of the conjugacy classes. Therefore, (3.17) and

Theorems 2.1, 2.2 imply that

(3.20) FqG5
∼= Fq

3⊕

r=1

Mnr
(Fq)

9⊕

r=4

Mnr
(Fq2).

Since G′
5
∼= Q8 with G5/G

′
5
∼= C6, we have FqC6

∼= F
2

q ⊕F
2

q2
. This with Theorem 2.5

and (3.20) implies that FqG5
∼= F

2

q ⊕ F
2

q2

2⊕
r=1

Mnr
(Fq)

5⊕
r=3

Mnr
(Fq2), nr > 2 with

42 =
2∑

r=1

n2

r + 2
5∑

r=3

n2

r, which further implies that the possible choices of nr’s are

(3, 3, 2, 2, 2), (2, 2, 2, 2, 3). For uniqueness, again consider the normal subgroup H5 =

〈x, t〉 of G5. With the same approach used in Case (2), we conclude that (3, 3, 2, 2, 2)

is the required choice. �
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3.6. The group G6 = C2 × S4. Group G6 has the following presentation:

〈x, y, z, w, t | x2, z−1x−1zxz−1, y−1x−1yx, w−1x−1wxt−1w−1, y2,

t−1x−1txt−1w−1, z−1y−1zy, w−1y−1wy, t−1y−1ty,

z3, w−1z−1wzt−1w−1, t−1z−1tzw−1, w2, t−1w−1tw, t2〉.

Group G6 has 10 conjugacy classes as shown in the table below.

rep 1 x y z w xy xw yz yw xyw
order of rep 1 2 2 3 2 2 4 6 2 4

From the above discussion, clearly the exponent of G6 is 12. Also, G
′
6
∼= A4 and

G6/G
′
6
∼= C2 × C2.

Theorem 3.6. The unit group U(FqG6) of FqG6, for q = pk, p > 3 where Fq is

a finite field having q = pk elements is isomorphic to (F∗
q)

4 ⊕GL2(Fq)
2 ⊕GL3(Fq)

4.

P r o o f. Since FqG6 is semisimple, we have FqG6
∼= Fq

t−1⊕
r=1

Mnr
(Fr). First as-

sume that k is even, which means that for any prime p > 3, we have pk ≡ 1 mod 12.

This means that |S(γg)| = 1 for each g ∈ G6 as IF = {1}. As G′
6
∼= A4 and G6/G

′
6
∼=

C2 × C2, WD in this case follows on similar lines to Theorem 3.3, i.e. it is given

by (3.10). Now we consider that k is odd, which means pk ∈ {1, 5, 7, 11} mod 12.

Here, we can verify that for all of these possibilities, |S(γg)| = 1 for each representa-

tive g of conjugacy classes. Therefore, WD is given by (3.10). �

4. Unit group of FqG for non-metabelian group of order 54

In this section, we discuss the WD of FqG, where G is a non-metabelian group of

order 54. There are 15 groups of order 54 up to isomorphism, but among these the

only non-metabelian group is G = ((C3 × C3)⋊ C3)⋊ C2 and it can be represented

via four generators x, y, z, w as

〈x2, z−1x−1zxz−1, y−1x−1yxy−1, w−1x−1wx, y3,

z−1y−1zyw−1, w−1y−1wy, z3, w−1z−1wz,w3〉.

Further, it can be seen that G has 10 conjugacy classes shown in the table below.

rep e x y z w xw yz w2 xw2 y2z
order of rep 1 2 3 3 3 6 3 3 6 3

Theorem 4.1. The unit group U(FqG) of FqG, for q = pk, p > 3 where Fq is a

finite field having q = pk elements is as follows:
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(1) for p ≡ 1 mod 6 and k is any positive integer or p ≡ 5 mod 6 and k is odd

U(FqG) ∼= (F∗
q)

2 ×GL2(Fq)
4 ×GL3(Fq)

4,

(2) for p ≡ 5 mod 6 and k is odd:

U(FqG) ∼= (F∗
q)

2 ×GL2(Fq)
4 ×GL3(Fq2)

2.

P r o o f. As the group algebra FqG is semisimple, we have

(4.1) FqG ∼= Fq

t−1⊕

r=1

Mnr
(Fr).

Since p is an odd prime, we have the following two cases:

Case (1): p ≡ 1 mod 6 and k is any positive integer or p ≡ 5 mod 6 and k is an

even integer. Then, clearly q = pk ≡ 1 mod 6. This means |S(γg)| = 1 for each g ∈ G

as IF = {1}. Hence, (4.1), Theorems 2.1 and 2.2 imply that

(4.2) FqG ∼= Fq

9⊕

r=1

Mnr
(Fq) with 53 =

9∑

r=1

n2

r.

Further, it can be verified that G′ is isomorphic to (C3 × C3) ⋊ C3. This means

Fq(G/G′) ∼= Fq ⊕ Fq. Hence, Theorem 2.4 and (4.2) imply that the only possible

values of nr’s satisfying (4.2) are (1, 2, 2, 2, 2, 3, 3, 3, 3).

Case (2): p ≡ 5 mod 6 and k is an odd positive integer. Then, clearly q =

pk ≡ −1 ≡ 5 mod 6. This means IF = {−1, 1} and accordingly S(γg) = {γg} for

each representative g except when g = w,w2, xw, xw2. For these cases, we have

S(γw) = {γw, γw2}, S(γxw) = {γxw, γxw2}. Therefore, this with (4.1), Theorems 2.1

and 2.2 implies that FqG ∼= Fq

5⊕
r=1

Mnr
(Fq)

7⊕
r=6

Mnr
(Fq2). Incorporating Theorem 2.4

as in Case (1) to obtain FqG ∼= F
2
q

4⊕
r=1

Mnr
(Fq)

6⊕
r=5

Mnr
(Fq2), where nr > 2 with

52 =
4∑

r=1

n2
r + 2(n2

5 + n2
6). This gives the 3 choices (3, 3, 3, 3, 2, 2), (2, 2, 3, 3, 2, 3),

(2, 2, 2, 2, 3, 3) for nr’s and for uniqueness we need to discard 2 choices. Consider the

normal subgroup H = 〈w〉 of G having order 3. It can be verified that K = G/H ∼=

(C3 × C3) ⋊ C2. To obtain the WD of FqG, we need to find the WD of FqK. Rep-

resentation of K is 〈x, y, z | x2, z−1x−1zxz−1, y−1x−1yxy−1, y3, z3, z−1y−1zy, w3〉.

Further, K has 6 conjugacy classes shown in the table below.

rep e x y z yz y2z
order of rep 1 2 3 3 3 3
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For p ≡ 5 mod 6, it can be verified that S(γk) = {γk} for each representative k of the

conjugacy classes of K. Therefore, employ the fact that K ′ is isomorphic to C3×C3,

we have FqK ∼= F
2

q

4⊕
r=1

Mnr
(Fq), where nr > 2 with 16 =

4∑
r=1

n2

r . This means that

FqK ∼= F
2
q ⊕ M2(Fq)

4. Finally, Theorem 2.5 implies that we remain with the only

choice (2, 2, 2, 2, 3, 3). �

5. U(FqG) for non-metabelian groups of order 72

The main objective of this section is to characterize the unit group of FqG,

where G is a non-metabelian group of order 72. Up to isomorphism, there are 7

non-metabelian groups of order 72 from which 5, namely G1 = (C3 × A4) ⋊ C2,

G2 = C3 × S4, G3 = (S3 ×S3)⋊C2, G4 = C3 × SL(2, 3), G5 = (C3 ×C3)⋊Q8 have

exponent 12 and rest 2, namely G6 = Q8⋊C9 and G7 = ((C2 ×C2)⋊C9)⋊C2 have

exponent 36.

5.1. The group G1 = (C3 ×A4)⋊C2. Group G1 has the following presentation:

〈x, y, z, w, t | x2, z−1x−1zxz−1, y−1x−1yxy−1, w−1x−1wxt−1w−1,

t−1x−1txt−1w−1, y3, z3, z−1y−1zy, w−1y−1wyt−1w−1,

t−1y−1tyw−1, w−1z−1wz, t−1z−1tz, w2, t−1w−1tw, t2〉.

Further, G1 has 9 conjugacy classes, as shown in the table below.

rep 1 x y z w xw yz zw y2z
order of rep 1 2 3 3 2 4 3 6 3

From the above discussion, clearly the exponent of G1 is 12. Also, G
′
1
∼= C3 ×A4.

Theorem 5.1. The unit group U(FqG1) of FqG1, for q = pk, p > 3 where Fq is

a finite field having q = pk elements is isomorphic to

(F∗
q)

2 ×GL2(Fq)
4 ×GL3(Fq)

2 ×GL6(Fq).

P r o o f. Since FqG1 is semisimple, we have

(5.1) FqG1
∼= Fq

t−1⊕

r=1

Mnr
(Fr).
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First assume that k is even, which means that for an odd prime p, we have pk ≡

1 mod 12. This means |S(γg)| = 1 for each g ∈ G1. Hence, (5.1), Theorems 2.1

and 2.2 imply that

(5.2) FqG1
∼= Fq

8⊕

r=1

Mnr
(Fq).

Using Theorem 2.4 with G′
1
∼= C3 ×A4 in (5.2), we see that

(5.3) FqG1
∼= F

2

q

7⊕

r=1

Mnr
(Fq), where nr > 2 with 70 =

7∑

r=1

n2

r.

The above gives us three possibilities (2, 2, 2, 2, 2, 5, 5), (2, 2, 2, 2, 3, 3, 6), and

(3, 3, 3, 3, 3, 3, 4) for the possible values of nr’s and for uniqueness we need to dis-

card 2 choices. Consider the normal subgroup H1 = 〈z〉 of G1 having order 3. It can

be verified thatK = G1/H1
∼= S4. Therefore, (3.6), (5.3) and Theorem 2.5 imply that

(5.4) FqG1
∼= F

2

q ⊕M2(Fq)
4 ⊕M3(Fq)

2 ⊕M6(Fq).

Now we consider that k is odd. We shall discuss this case in three parts:

(1) pk ≡ 1 mod 12,

(2) pk ≡ 1 mod 3 and pk ≡ −1 mod 4,

(3) pk ≡ −1 mod 3 and pk ≡ ±1 mod 4.

Case (1): pk ≡ 1 mod 12. In this case, WD is given by (5.4).

Case (2): pk ≡ 1 mod 3 and pk ≡ −1 mod 4 which means pk ≡ 7 mod 12. This

means IF = {1, 7} and accordingly |S(γg)| = 1 for each g ∈ G1. Therefore, WD is

given by (5.4).

Case (3): pk ≡ −1 mod 3 and pk ≡ ±1 mod 4 which means pk ≡ 5 mod 12 or

pk ≡ 11 mod 12. This means IF = {1, 5} or IF = {1, 11} and accordingly |S(γg)| = 1

for each g ∈ G1. Therefore, WD is given by (5.4). �

5.2. The group G2 = C3 × S4. Group G2 has the following presentation:

〈x, y, z, w, t | x2, z−1x−1zxz−1, y−1x−1yx, w−1x−1wxt−1w−1,

t−1x−1txt−1w−1, y3, z3, z−1y−1zy, w−1y−1wy, t−1y−1ty,

w−1z−1wzt−1w−1, t−1z−1tzw−1, w2, t−1w−1tw, t2〉.

Further, G2 has 15 conjugacy classes, as shown in the table below.

rep 1 x y z w xy xw y2 yz yw xy2 xyw y2z y2w xy2w
order of rep 1 2 3 3 2 6 4 3 3 6 6 12 3 6 12
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From the above discussion, clearly the exponent of G2 is 12. Also, G
′
2
∼= A4 and

G2/G
′
2
∼= C6.

Theorem 5.2. The unit group U(FqG2) of FqG2, for q = pk, p > 3 where Fq is

a finite field having q = pk elements is as follows:

(1) for any p and k even or k odd with p ≡ 1 mod 3 and p ≡ ±1 mod 4,

U(FqG2) ∼= (F∗
q)

6 ⊕GL2(Fq)
3 ⊕GL3(Fq)

6,

(2) for k odd and p ≡ −1 mod 3 and p ≡ ±1 mod 4,

U(FqG2) ∼= (F∗
q)

2 ⊕ (F∗
q2)

2 ⊕GL2(Fq)⊕GL3(Fq)
2 ⊕GL2(Fq2)⊕GL3(Fq2)

2.

P r o o f. Since FqG2 is semisimple, we have

(5.5) FqG2
∼= Fq

t−1⊕

r=1

Mnr
(Fr).

Now as in Theorem 5.1 for k even, we have pk ≡ 1 mod 12 which means |S(γg)| = 1 for

each g ∈ G2. Hence, (5.5), Theorems 2.1 and 2.2 imply that FqG2
∼= Fq

14⊕
r=1

Mnr
(Fq).

Using Theorem 2.4 with G′
2
∼= A4 in this to obtain FqG2

∼= F
6
q

9⊕
r=1

Mnr
(Fq), where

nr > 2 with 66 =
9∑

r=1

n2

r. This gives us the only possibility (2, 2, 2, 3, 3, 3, 3, 3, 3).

Therefore, we have

(5.6) FqG2
∼= F

6

q ⊕M2(Fq)
3 ⊕M3(Fq)

6.

Now we consider that k is odd. We shall discuss this in same manner as in Theo-

rem 5.1.

Case (1): pk ≡ 1 mod 12. In this case WD is given by (5.6).

Case (2): pk ≡ 1 mod 3 and pk ≡ −1 mod 4, which means pk ≡ 7 mod 12. This

means IF = {1, 7} and accordingly we can verify that |S(γg)| = 1 for each g ∈ G2.

Therefore, WD is given by (5.6).

Case (3): pk ≡ −1 mod 3 and pk ≡ ±1 mod 4 which means pk ≡ 5 mod 12 or

pk ≡ 11 mod 12. This means IF = {1, 5} or IF = {1, 11} and accordingly we have

S(γy) = {γy, γy2}, S(γxy) = {γxy, γxy2}, S(γyw) = {γyw, γy2w},

S(γxyw) = {γxyw, γxy2w}, S(γyz) = {γyz, γy2z} S(γg) = {γg}
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for the remaining representatives g of conjugacy classes. Therefore, (5.6), Theo-

rems 2.1 and 2.2 imply that

(5.7) FqG2
∼= Fq

4⊕

r=1

Mnr
(Fq)

9⊕

r=5

Mnr
(Fq2).

For IF = {1, 5} or IF = {1, 11}, it is easy to see that FqC6
∼= F

2

q⊕F
2

q2 . This, with (5.7)

and Theorem 2.4, implies that

(5.8) FqG2
∼= F

2

q ⊕ F
2

q2

3⊕

r=1

Mnr
(Fq)

6⊕

r=4

Mnr
(Fq2),

where nr > 2 with 66 =
3∑

r=1

n2

r + 2
6∑

r=4

n2

r.

The above gives us two possibilities (2, 3, 3, 2, 3, 3) and (2, 2, 2, 3, 3, 3), but we need to

discard one of these. For that, consider the normal subgroup H2 = 〈y〉 of G2 having

order 3. Observe that G2/H2
∼= S4. Therefore, (3.6), (5.8) and Theorem 2.5 imply

that (2, 3, 3, 2, 3, 3) is the only choice. �

5.3. The group G3 = (S3 × S3)⋊C2. Group G3 has the following presentation:

〈x, y, z, w, t | x2, z−1x−1zx, y−1x−1yxz−1, w−1x−1wxw−1, t−1x−1tx,

z−1y−1zy, y2, z2, w−1y−1wyt−1w−2, t−1y−1tyt−2w−1,

w−1z−1wzw−1, t−1z−1tzt−1, w3, t−1w−1tw, t3〉.

Further, G3 has 9 conjugacy classes, as shown in the table below.

rep 1 x y z w xy xt yw wt
order of rep 1 2 2 2 3 4 6 6 3

Clearly the exponent of G3 is 12 and we can verify that G
′
3
∼= (C3 × C3)⋊ C2 with

G3/G
′
3
∼= C2 × C2.

Theorem 5.3. The unit group U(FqG3) of FqG3, for q = pk, p > 3 where Fq is

a finite field having q = pk elements is isomorphic to (F∗
q)

4 ⊕GL2(Fq)⊕GL4(Fq)
4.

P r o o f. Since FqG3 is semisimple, we have

(5.9) FqG3
∼= Fq

t−1⊕

r=1

Mnr
(Fr).
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Now as in Theorem 5.1 for k even, we have pk ≡ 1 mod 12 which means |S(γg)| = 1

for each g ∈ G3. Hence, (5.9), Theorems 2.1, 2.2 imply that FqG3
∼= F

4
q

5⊕
r=1

Mnr
(Fq),

where nr > 2 with 68 =
5∑

r=1

n2
r. This gives us two possibilities, namely (2, 4, 4, 4, 4)

and (3, 3, 3, 4, 5), but we need one. For that, consider the normal subgroup

H3 = 〈w, t〉 of G3 having order 9. Observe that H3
∼= C3 × C3 and G3/H3

∼= D8.

It can be clearly seen that WD of FqD8 has no term of the form M3(Fq) because

of the dimension constraint. Therefore, Theorem 2.5 implies that (2, 4, 4, 4, 4) is the

only choice we have and hence

(5.10) FqG3
∼= F

4

q ⊕M2(Fq)⊕M4(Fq)
4.

Now we consider that k is odd which means that pk ∈ {1, 5, 7, 11} mod 12. For all

of these possibilities, we can easily see that |S(γg)| = 1 for all g ∈ G3 and therefore,

WD is given by (5.10). �

5.4. The group G4 = C3 × SL(2, 3). Group G4 has the following presentation:

〈x, y, z, w, t | x3, z−1x−1zxt−1w−1z−1, y−1x−1yx, w−1x−1wxt−1z−1,

t−1x−1tx, y3, z−1y−1zy, w−1y−1wy, t−1y−1ty, z2w−1,

w−1z−1wzt−1, t−1z−1tz, w2t−1, t−1w−1tw, t2〉.

Further, G4 has 21 conjugacy classes, as shown in the two tables below.

rep 1 x y z t x2 xy xt y2 yz yt x2y x2z
order of rep 1 3 3 4 2 3 3 6 3 12 6 3 6

rep xy2 xyt y2z y2t x2y2 x2yz xy2t x2y2z
order of rep 3 6 12 6 3 6 6 6

From the above discussion, the exponent of G4 is 12. Also, verify that G
′
4
∼= Q8 and

G4/G
′
4
∼= C3 × C3.

Theorem 5.4. The unit group U(FqG4) of FqG4, for q = pk, p > 3 where Fq is

a finite field having q = pk elements is as follows:

(1) for any p and k even or k odd with p ≡ 1 mod 3 and p ≡ ±1 mod 4,

U(FqG4) ∼= (F∗
q)

9 ⊕GL2(Fq)
9 ⊕GL3(Fq)

3,

(2) for k odd and p ≡ −1 mod 3 and p ≡ ±1 mod 4,

U(FqG4) ∼= F
∗
q ⊕ (F∗

q2 )
4 ⊕GL2(Fq)⊕GL3(Fq)⊕GL2(Fq2 )

4 ⊕GL3(Fq2).
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P r o o f. Since FqG4 is semisimple, we have

(5.11) FqG4
∼= Fq

t−1⊕

r=1

Mnr
(Fr).

Now as in Theorem 5.1 for k even, we get FqG4
∼= Fq

20⊕
r=1

Mnr
(Fq). Using Theorem 2.4

with G′
4
∼= Q8 in above to obtain FqG4

∼= F
9
q

12⊕
r=1

Mnr
(Fq), where nr > 2 with

63 =
12∑
r=1

n2

r. This gives us the only possibility (2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3). Therefore,

we have

(5.12) FqG4
∼= F

9

q ⊕M2(Fq)
9 ⊕M3(Fq)

3.

Now we consider that k is odd.

Case (1): pk ≡ 1 mod 12. In this case WD is given by (5.12).

Case (2): pk ≡ 1 mod 3 and pk ≡ −1 mod 4 which means pk ≡ 7 mod 12. This

means that IF = {1, 7} and accordingly |S(γg)| = 1 for each g ∈ G4. Therefore, WD

is given by (5.12).

Case (3): pk ≡ −1 mod 3 and pk ≡ ±1 mod 4 which means pk ≡ 5 mod 12 or

pk ≡ 11 mod 12. This means that IF = {1, 5} or IF = {1, 11} and accordingly we have

S(γx) = {γx, γx2}, S(γy) = {γy, γy2},

S(γxy) = {γxy, γx2y2}, S(γxt) = {γxt, γx2z},

S(γyz) = {γyz, γy2z}, S(γyt) = {γyt, γy2t},

S(γx2y) = {γx2y, γxy2}, S(γxyt) = {γxyt, γx2y2z},

S(γx2yz) = {γx2yz, γxy2t}, S(γg) = {γg}

for the remaining representatives g of the conjugacy classes. Therefore, (5.11),

Theorems 2.1 and 2.2 imply that

(5.13) FqG4
∼= Fq

2⊕

r=1

Mnr
(Fq)

11⊕

r=3

Mnr
(Fq2).

For IF = {1, 5} or IF = {1, 11}, it is easy to see that Fq(C3 × C3) ∼= Fq ⊕ F
4

q2 . This,

with (5.13) and Theorem 2.4, implies that FqG4
∼= Fq⊕F

4

q2

2⊕
r=1

Mnr
(Fq)

7⊕
r=3

Mnr
(Fq2)

with 63 =
2∑

r=1

n2

r+2
7∑

r=3

n2

r, nr > 2, which gives us the only possibility (2, 3, 2, 2, 2, 2, 3).

�
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5.5. The group G5 = (C3 ×C3)⋊Q8. Group G5 has the following presentation:

〈x, y, z, w, t | x2z−1, z−1x−1zx, y−1x−1yxz−1, w−1x−1wxt−2, t−1x−1txt−1w−2,

z−1y−1zy, y2z−1, w−1y−1wyt−1w−2, t−1y−1tyt−2w−2, z2,

w−1z−1wzw−1, t−1z−1tzt−1, w3, t−1w−1tw, t3〉.

Further, G5 has 6 conjugacy classes, as shown in the table below.

rep 1 x y z w xy
order of rep 1 4 4 2 3 4

Clearly the exponent of G5 is 12 and we can verify that G
′
5
∼= (C3 × C3)⋊ C2 with

G5/G
′
5
∼= C2 × C2.

Theorem 5.5. The unit group U(FqG5) of FqG5, for q = pk, p > 3 where Fq is a

finite field having q = pk elements and is isomorphic to (F∗
q)

4 ⊕GL2(Fq)⊕GL8(Fq).

P r o o f. Since FqG5 is semisimple, we have

(5.14) FqG5
∼= Fq

t−1⊕

r=1

Mnr
(Fr).

Now as in Theorem 5.1 for k even, we have pk ≡ 1 mod 12, which means |S(γg)| = 1

for each g ∈ G5. Hence, (5.14), Theorems 2.1, and 2.2 imply that FqG5
∼=

F
4

q

2⊕
r=1

Mnr
(Fq), where nr > 2 with 68 =

2∑
r=1

n2

r. The above gives the only pos-

sibility namely (2,8) and therefore, the required WD is

(5.15) FqG5
∼= F

4

q ⊕M2(Fq)⊕M8(Fq).

Now we consider that k is odd. We have pk ∈ {1, 5, 7, 11} mod 12. For all these

possibilities, it can be verified that |S(γg)| = 1 for each g ∈ G5. Therefore, WD is

given by (5.15). �

Now we characterize the unit group of FqG, where G is a non-metabelian group

of order 72 and exponent 36.

5.6. The group G6 = Q8 ⋊ C9. Group G6 has the following presentation:

〈x, y, z, w, t | x3y−1, z−1x−1zxt−1w−1z−1, y−1x−1yx, w−1x−1wxt−1z−1,

t−1x−1tx, y3, z−1y−1zy, w−1y−1wy, t−1y−1ty, z2t−1,

w−1z−1wzt−1, t−1z−1tz, w2t−1, t−1w−1tw, t2〉.
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Further, G6 has 21 conjugacy classes, as shown in the tables below.

rep 1 x y z t x2 xy xt y2 yz yt x2y x2z
order of rep 1 9 3 4 2 9 9 18 3 12 6 9 18

rep xy2 xyt y2z y2t x2y2 x2yz xy2t x2y2z
order of rep 9 18 12 6 9 18 18 18

Clearly the exponent of G6 is 36. Also verify that G
′
6
∼= Q8 and G6/G

′
6
∼= C9.

Theorem 5.6. The unit group U(FqG6) of the group algebra FqG6, for q = pk,

p > 3 where Fq is a finite field having q = pk elements is as follows:

(1) for pk ≡ 1 mod 36 or pk ≡ 19 mod 36,

U(FqG6) ∼= (F∗
q)

9 ⊕GL2(Fq)
9 ⊕GL3(Fq)

3,

(2) for pk ∈ {5, 11, 23, 29} mod 36,

U(FqG6) ∼= F
∗
q ⊕ F

∗
q2 ⊕ F

∗
q6 ⊕GL2(Fq)⊕GL3(Fq)

⊕GL2(Fq2)⊕GL3(Fq2)⊕GL2(Fq6),

(3) for pk ≡ 17 mod 36 or pk ≡ 35 mod 36,

U(FqG6) ∼= F
∗
q ⊕ (F∗

q2 )
4 ⊕GL2(Fq)⊕GL3(Fq)⊕GL2(Fq2 )

4 ⊕GL3(Fq2),

(4) for pk ∈ {7, 13, 25, 31} mod 36,

U(FqG6) ∼= (F∗
q)

3 ⊕ (F∗
q3)

2 ⊕GL2(Fq)
3 ⊕GL3(Fq)

3 ⊕GL2(Fq3)
2.

P r o o f. As FqG6 is semisimple, we have

(5.16) FqG6
∼= Fq

t−1⊕

r=1

Mnr
(Fr).

Since p is an odd prime, we have pk ∈ {1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35} mod 36.

We discuss each of the above mentioned possibilities one by one in the following

cases.
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Case (1): pk ≡ 1 mod 36 or pk ≡ 19 mod 36. In this case, we have |S(γg)| = 1 for

each g ∈ G6 as IF = {1} or IF = {1, 19}. Hence, (5.16), Theorems 2.1 and 2.2 imply

that FqG6
∼= Fq

20⊕
r=1

Mnr
(Fq). Using Theorem 2.4 with G6/G

′
6
∼= C9, we find

(5.17) FqG6
∼= F

9

q

12⊕

r=1

Mnr
(Fq), where nr > 2 with 63 =

12∑

r=1

n2

r.

The above gives the only possibility (2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3) for the possible values

of nr’s. Therefore, (5.17) implies

(5.18) FqG6
∼= F

9

q ⊕M2(Fq)
9 ⊕M3(Fq)

3.

Case (2): pk ≡ 5 mod 36 or pk ≡ 29 mod 36. For both possibilities, we have

IF = {1, 5, 13, 17, 25, 29} and accordingly

S(γx) = {γx, γx2y, γxy2 , γxy, γx2 , γx2y2},

S(γxt) = {γxt, γx2yz, γxyt, γx2y2z, γxy2t, γx2z},

S(γy) = {γy, γy2},

S(γyz) = {γyz, γy2z},

S(γyt) = {γyt, γy2t},

S(γg) = {γg}

for the remaining representatives g of conjugacy classes. Hence, (5.16), Theorems 2.1

and 2.2 imply that

(5.19) FqG6
∼= Fq

2⊕

r=1

Mnr
(Fq)

5⊕

r=3

Mnr
(Fq2)

7⊕

r=6

Mnr
(Fq6).

Since G6/G
′
6
∼= C9, it can be easily seen that FqC9

∼= Fq⊕Fq2⊕Fq6 . This, with (5.19)

and Theorem 2.4, implies that FqG6
∼= Fq ⊕ Fq2 ⊕ Fq6

2⊕
r=1

Mnr
(Fq)

4⊕
r=3

Mnr
(Fq2) ⊕

Mn5
(Fq6). Comparing dimensions on both the sides to obtain 63 =

2∑
r=1

n2

r +

2
4∑

r=3

n2

r + 6n2

5
, nr > 2, which gives the only possibility (2, 3, 2, 3, 2).

Case (3): pk ≡ 11 mod 36 or pk ≡ 23 mod 36. For both possibilities, we have

IF = {1, 11, 13, 23, 25, 35}. Further, we can verify that this case is exactly similar to

Case (2).

451



Case (4): pk ≡ 17 mod 36 or pk ≡ 35 mod 36. For these possibilities, we have

IF = {1, 17} or IF = {1, 35}, respectively, and accordingly

S(γx) = {γx, γx2y2}, S(γy) = {γy, γy2},

S(γxy) = {γxy, γx2y}, S(γxt) = {γxt, γx2y2z},

S(γx2) = {γx2 , γxy2}, S(γyz) = {γyz, γy2z},

S(γyt) = {γyt, γy2t}, S(γx2z) = {γx2z, γxy2t},

S(γxyt) = {γxyt, γx2yz}, S(γg) = {γg}

for remaining g. Therefore, (5.16), Theorems 2.1 and 2.2 imply that

(5.20) FqG6
∼= Fq

2⊕

r=1

Mnr
(Fq)

11⊕

r=3

Mnr
(Fq2).

Also G6/G
′
6
∼= C9, which means FqC9

∼= Fq⊕F
4

q2 . This, with (5.20) and Theorem 2.4,

implies that FqG6
∼= Fq ⊕ F

4

q2

2⊕
r=1

Mnr
(Fq)

7⊕
r=3

Mnr
(Fq2). Applying the dimension

formula to this to obtain 63 =
2∑

r=1

n2

r+2
7∑

r=3

n2

r, nr > 2, which gives the only possibility

(2, 3, 2, 2, 2, 2, 3).

Case (5): pk ≡ 7 mod 36 or pk ≡ 31 mod 36. For both possibilities, we have

IF = {1, 7, 13, 19, 25, 31} and accordingly

S(γx) = {γx, γxy2 , γxy}, S(γx2) = {γx2, γx2y, γx2y2},

S(γxt) = {γxt, γxyt, γxy2t}, S(γx2z) = {γx2z, γx2yz, γx2y2z}, and S(γg) = {γg}

for the remaining representatives g of conjugacy classes. Hence, (5.16), Theorems 2.1

and 2.2 imply that

(5.21) FqG6
∼= Fq

8⊕

r=1

Mnr
(Fq)

12⊕

r=9

Mnr
(Fq3).

Also G6/G
′
6
∼= C9, which means FqC9

∼= F
3
q ⊕ F

2

q3 . This, with (5.21) and The-

orem 2.4, implies that FqG6
∼= F

3

q ⊕ F
2

q3

6⊕
r=1

Mnr
(Fq)

8⊕
r=7

Mnr
(Fq3). Applying the

dimension formula in the above to obtain 63 =
6∑

r=1

n2
r +3

8∑
r=7

n2
r, nr > 2, which gives

two possibilities, namely (2, 2, 2, 3, 3, 3, 2, 2) and (2, 2, 2, 2, 2, 2, 2, 3) but we need to

discard one of these. For that, consider the normal subgroup H6 = 〈y〉 of G6 having
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order 3. Observe that G6/H6
∼= SL(2, 3), and from [11], we know that the WD of

FqG6/H6 contains M2(Fq) as well as M3(Fq). Therefore, (2, 2, 2, 3, 3, 3, 2, 2) is the

only possibility for nr’s.

Case (6): pk ≡ 13 mod 36 or pk ≡ 25 mod 36. For both the possibilities, we have

IF = {1, 13, 25} and one can verify that this case is similar to Case (5). �

5.7. The group G7 = ((C2 × C2) ⋊ C9) ⋊ C2. Group G7 has the following

presentation:

〈x, y, z, w, t | x2, z−1x−1zxz−1, y−1x−1yxz−1y−1, w−1x−1wxt−1w−1,

t−1x−1txt−1w−1, z3, y3z−2, z−1y−1zy, w−1y−1wyt−1w−1,

t−1y−1tyw−1, w−1z−1wz, t−1z−1tz, w2, t−1w−1tw, t2〉.

Further, G7 has 9 conjugacy classes, as shown in the table below.

rep 1 x y z w xw y2 zw yz2

order of rep 1 2 9 3 2 4 9 6 9

Clearly the exponent of G7 is 36, and we can verify that G
′
7
∼= (C2 × C2)⋊ C9 with

G7/G
′
7
∼= C2.

Theorem 5.7. The unit group U(FqG7) of FqG7, for q = pk, p > 3 where Fq is

a finite field having q = pk elements is as follows:

(1) for pk ∈ {1, 17, 19, 35} mod 36

U(FqG7) ∼= (F∗
q)

2 ⊕GL2(Fq)
4 ⊕GL3(Fq)

2 ⊕GL6(Fq),

(2) pk ∈ {5, 7, 11, 13, 23, 25, 29, 31} mod 36,

U(FqG7) ∼= (F∗
q)

2 ⊕GL2(Fq)⊕GL3(Fq)
2 ⊕GL6(Fq)⊕GL2(Fq3).

P r o o f. Since FqG7 is semisimple, we have

(5.22) FqG7
∼= Fq

t−1⊕

r=1

Mnr
(Fr).

Now, we proceed in a similar manner as in Theorem 5.6.

Case (1): pk ≡ 1 mod 36 or pk ≡ 19 mod 36. In this case, we have |S(γg)| = 1

for each g ∈ G7 as IF = {1} or IF = {1, 19}. Hence, (5.22), Theorems 2.1 and 2.2

imply that FqG7
∼= Fq

8⊕
r=1

Mnr
(Fq). Using Theorem 2.4 with G7/G

′
7
∼= C2 in this

to obtain FqG7
∼= Fq ⊕ Fq

7⊕
r=1

Mnr
(Fq), with 70 =

7∑
r=1

n2

r, nr > 2. This gives 3

possibilities (2, 2, 2, 2, 2, 5, 5), (2, 2, 2, 2, 3, 3, 6) and (3, 3, 3, 3, 3, 3, 4) for the possible
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values of nr’s and we need to discard two. For that, consider the normal subgroup

H7 = 〈z〉 of G7 having order 3. Observe that G7/H7
∼= S4 and therefore, using (3.6)

and Theorem 2.5, we conclude that (2, 2, 2, 2, 3, 3, 6) is the only possibility.

Case (2): pk ≡ 5 mod 36 or pk ≡ 29 mod 36. For both possibilities, we have IF =

{1, 5, 13, 17, 25, 29} and accordingly S(γy) = {γy, γy2 , γyz2}, S(γg) = {γg} for the

remaining representatives g of conjugacy classes. Hence, (5.22), Theorems 2.1 and 2.2

imply that FqG7
∼= Fq

5⊕
r=1

Mnr
(Fq) ⊕ M6(Fq3). Since G7/G

′
7
∼= C2, Theorem 2.4

further leads to

(5.23) FqG7
∼= F

2

q

4⊕

r=1

Mnr
(Fq)⊕M5(Fq3), with 70 =

4∑

r=1

n2

r + 3n2

5, nr > 2.

The above gives us three possibilities, namely (2, 2, 5, 5, 2), (2, 3, 3, 6, 2), (3, 3, 3, 4, 3).

Now, again consider the normal subgroup H7 of G7. Therefore, (5.23) and Theo-

rem 2.5 imply that (2, 3, 3, 6, 2) is the only choice we have.

Case (3): pk ≡ 11 mod 36 or pk ≡ 23 mod 36. For both possibilities, we have

IF = {1, 11, 13, 23, 25, 35}. Further, we can verify that this case is exactly similar to

Case (2).

Case (4): pk ≡ 17 mod 36 or pk ≡ 35 mod 36. For both possibilities, we have

IF = {1, 17} or IF = {1, 35}, respectively, and accordingly this case is exactly similar

to Case (1).

Case (5): pk ≡ 7 mod 36 or pk ≡ 31 mod 36. For both possibilities, we have

IF = {1, 7, 13, 19, 25, 31} and accordingly we can verify that this case is similar to

Case (2).

Case (6): pk ≡ 13 mod 36 or pk ≡ 25 mod 36. For both possibilities, we have

IF = {1, 13, 25} and one can verify that this case is again similar to Case (2). �

6. Discussion

We have discussed the unit groups of semisimple group algebras of 14 non-

metabelian groups. All the results are verified using GAP. It can be clearly seen

that with the increase in the order of group, complexity in the determination of

unique Wedderburn decomposition upsurges. This completes the study of the unit

group of semisimple group algebras up to groups of order 72.

A c k n ow l e d gm e n t s. The authors are extremely thankful to the learned ref-

eree for his comments, critical review and suggestions, which improved the overall

quality of the paper. The first author would also like to thank NBHM for supporting

his research work.

454



References

[1] A.A.Bovdi, J.Kurdics: Lie properties of the group algebra and the nilpotency class of
the group of units. J. Algebra 212 (1999), 28–64. zbl MR doi

[2] V.Bovdi, M. Salim: On the unit group of a commutative group ring. Acta Sci. Math. 80
(2014), 433–445. zbl MR doi

[3] L.Creedon, J. Gildea: The structure of the unit group of the group algebra F
2k
D8. Can.

Math. Bull. 54 (2011), 237–243. zbl MR doi
[4] R.A. Ferraz: Simple components of the center of FG/J(FG). Commun. Algebra 36
(2008), 3191–3199. zbl MR doi

[5] J.Gildea: The structure of the unit group of the group algebra F
2k
A4. Czech. Math. J.

61 (2011), 531–539. zbl MR doi
[6] J.Gildea, F.Monaghan: Units of some group algebras of groups of order 12 over any
finite field of characteristic 3. Algebra Discrete Math. 11 (2011), 46–58. zbl MR

[7] T.Hurley: Convolutional codes from units in matrix and group rings. Int. J. Pure Appl.
Math. 50 (2009), 431–463. zbl MR

[8] G.Karpilovsky: The Jacobson Radical of Group Algebras. North-Holland Mathematics
Studies 135. North-Holland, Amsterdam, 1987. zbl MR doi

[9] M.Khan, R.K. Sharma, J. B. Srivastava: The unit group of FS4. Acta Math. Hung. 118
(2008), 105–113. zbl MR doi

[10] Y.Kumar: On The Unit Group Of Certain Finite Group Algebras. PhD Thesis. In-
dian Institute of Technology Delhi (IIT Delhi), New Delhi, 2019; Available at http://
eprint.iitd.ac.in/bitstream/handle/2074/8276/TH-5966.pdf?sequence=1.

[11] R.Lidl, H. Niederreiter: Introduction to Finite Fields and Their Applications. Cam-
bridge University Press, Cambridge, 1994. zbl MR doi

[12] S.Maheshwari, R.K. Sharma: The unit group of group algebra FqSL(2;Z3). J. Algebra
Comb. Discrete Struct. Appl. 3 (2016), 1–6. zbl MR doi

[13] N.Makhijani, R.K. Sharma, J. B. Srivastava: The unit group of Fq[D30]. Serdica Math.
J. 41 (2015), 185–198. MR

[14] N.Makhijani, R.K. Sharma, J. B. Srivastava: A note on the structure of FpkA5/
J(FpkA5). Acta Sci. Math. 82 (2016), 29–43. zbl MR doi

[15] N.Makhijani, R.K. Sharma, J. B. Srivastava: Units in finite dihedral and quaternion
group algebras. J. Egypt. Math. Soc. 24 (2016), 5–7. zbl MR doi

[16] G.Pazderski: The orders to which only belong metabelian groups. Math. Nachr. 95
(1980), 7–16. zbl MR doi

[17] S.Perlis, G. L.Walker: Abelian group algebras of finite order. Trans. Am. Math. Soc.
68 (1950), 420–426. zbl MR doi

[18] C.PolcinoMilies, S. K. Sehgal: An Introduction to Group Rings. Algebras and Applica-
tions 1. Kluwer Academic Publishers, Dordrecht, 2002. zbl MR

[19] R.K. Sharma, J. B. Srivastava, M.Khan: The unit group of FA4. Publ. Math. 71 (2007),
21–26. zbl MR

[20] R.K. Sharma, J.B. Srivastava, M.Khan: The unit group of FS3. Acta Math. Acad.
Paedagog. Nyházi 23 (2007), 129–142. zbl MR

[21] G.Tang, Y.Wei, Y. Li: Unit groups of group algebras of some small groups. Czech.
Math. J. 64 (2014), 149–157. zbl MR doi

Authors’ addresses: Gaurav Mittal, Department of Mathematics, Indian Institute of
Technology Roorkee, Roorkee, India, email: gmittal@ma.iitr.ac.in; Rajendra Kumar
Sharma, Department of Mathematics, Indian Institute of Technology Delhi, New Delhi,
India, e-mail: rksharma@maths.iitd.ac.in.

455

https://zbmath.org/?q=an:0936.16028
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1670626
http://dx.doi.org/10.1006/jabr.1998.7617
https://zbmath.org/?q=an:1322.16024
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3307035
http://dx.doi.org/10.14232/actasm-013-510-1
https://zbmath.org/?q=an:1242.16033
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2884238
http://dx.doi.org/10.4153/CMB-2010-098-5
https://zbmath.org/?q=an:1156.16019
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2441107
http://dx.doi.org/10.1080/00927870802103503
https://zbmath.org/?q=an:1237.16035
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2905421
http://dx.doi.org/10.1007/s10587-011-0071-5
https://zbmath.org/?q=an:1256.16023
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2868359
https://zbmath.org/?q=an:1173.94452
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2490664
https://zbmath.org/?q=an:0618.16001
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0886889
http://dx.doi.org/10.1016/s0304-0208(08)x7052-5
https://zbmath.org/?q=an:1156.16024
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2378543
http://dx.doi.org/10.1007/s10474-007-6169-4
http://eprint.iitd.ac.in/bitstream/handle/2074/8276/TH-5966.pdf?sequence=1
http://eprint.iitd.ac.in/bitstream/handle/2074/8276/TH-5966.pdf?sequence=1
https://zbmath.org/?q=an:0820.11072
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1294139
http://dx.doi.org/10.1017/CBO9781139172769
https://zbmath.org/?q=an:1429.16027
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3450932
http://dx.doi.org/10.13069/jacodesmath.83854
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3363601
https://zbmath.org/?q=an:1399.16065
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3526335
http://dx.doi.org/10.14232/actasm-014-311-2
https://zbmath.org/?q=an:1336.16042
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3456857
http://dx.doi.org/10.1016/j.joems.2014.08.001
https://zbmath.org/?q=an:0468.20018
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0592878
http://dx.doi.org/10.1002/mana.19800950102
https://zbmath.org/?q=an:0038.17301
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0034758
http://dx.doi.org/10.1090/S0002-9947-1950-0034758-3
https://zbmath.org/?q=an:0997.20003
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1896125
https://zbmath.org/?q=an:1135.16033
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2340031
https://zbmath.org/?q=an:1135.16034
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2368934
https://zbmath.org/?q=an:1340.16040
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3247451
http://dx.doi.org/10.1007/s10587-014-0090-0

