RAMIFICATION IN QUARTIC CYCLIC NUMBER FIELDS K GENERATED BY $x^4 + px^2 + p$

JULIO PÉREZ-HERNÁNDEZ, MARIO PINEDA-RUELAS, Mexico City

Received September 9, 2019. Published online February 11, 2021. Communicated by Clemens Fuchs

Abstract. If K is the splitting field of the polynomial $f(x) = x^4 + px^2 + p$ and p is a rational prime of the form $4+n^2$, we give appropriate generators of K to obtain the explicit factorization of the ideal $q\mathcal{O}_K$, where q is a positive rational prime. For this, we calculate the index of these generators and integral basis of certain prime ideals.

Keywords: ramification; cyclic quartic field; discriminant; index

MSC 2020: 11S15, 11R16

1. INTRODUCTION

Let K be a number field of degree n and \mathcal{O}_K the ring of integers K. We choose $\alpha \in \mathcal{O}_K$ such that $K = \mathbb{Q}(\alpha)$, and denote by δ_K the discriminant of K and $D(\alpha)$ the discriminant of the basis $\{1, \alpha, \ldots, \alpha^{n-1}\}$. We associate to α the positive integer $\operatorname{ind}(\alpha) = \sqrt{D(\alpha)/\delta_K}$ called the *index of* α . We know that δ_K and $D(\alpha)$ are related by $D(\alpha) = \det(C)^2 \delta_K$, where C is the coefficient matrix that maps the basis $1, \alpha, \ldots, \alpha^{n-1}$ to some fixed integral basis of K. Since $D(\alpha) = \operatorname{ind}(\alpha)^2 \delta_K$, then $\operatorname{ind}(\alpha) = |\det(C)|$. According to the Theorem 9.1.2 of [2] we have $\operatorname{ind}(\theta) = [\mathcal{O}_K : \mathbb{Z}[\alpha]]$, so that $[\mathcal{O}_K : \mathbb{Z}[\alpha]] = |\det(C)|$. Let p be a positive rational prime and let P_1, \ldots, P_g be prime ideals in \mathcal{O}_K such that

$$p\mathcal{O}_K = P_1^{e_1} \dots P_q^{e_g}.$$

If $I \neq \{o\}$ is any ideal of \mathcal{O}_K , we denote by $N(I) = |\mathcal{O}_K/I|$ the norm of the ideal I. Moreover, if $\alpha_1, \ldots, \alpha_n$ is an integral basis of I, then $N(I) = \sqrt{D(\alpha_1, \ldots, \alpha_n)/\delta_K}$.

DOI: 10.21136/MB.2021.0131-19

The first author has been supported by CONACyT (México) 291197.

Particularly, $N(P_i) = |\mathcal{O}_K/P_i| = p^{f_i}$ for i = 1, ..., n and some $f_i \in \mathbb{N}$. If K/\mathbb{Q} is a Galois extension, then $e = e_1 = ... = e_g$, $f = f_1 = ... = f_g$ and efg = n. If $G = \operatorname{Gal}(K/\mathbb{Q})$ and $\alpha \in \mathcal{O}_K$, we denote the norm of α by $N(\alpha) = \prod_{\sigma \in G} \sigma(\alpha)$. If $f(x) = a_0 + a_1x + ... + a_{n-1}x^{n-1} + x^n = \operatorname{Irr}(\alpha, \mathbb{Z})$, then $N(\alpha) = (-1)^n a_0$.

An old problem in algebraic number theory consists in explicitly giving prime ideals P_i with generators and positive integers e_i such that $p\mathcal{O}_K = P_1^{e_1} \dots P_g^{e_g}$. If pis a prime number such that $p \nmid \operatorname{ind}(\alpha)$ then we can decompose theoretically $p\mathcal{O}_K$ as Dedekind's theorem ensures. Conrad has a comprehensive exposition of Dedekind's theorem in [4].

Theorem 1.1 (Dedekind). Let $K = \mathbb{Q}(\alpha)$ be a number field with $\alpha \in \mathcal{O}_K$, p be a rational prime and $f(x) = \operatorname{Irr}(\alpha, \mathbb{Q}) \in \mathbb{Z}[x]$. Let us consider the natural map $\exists \mathbb{Z}[x] \to \mathbb{F}_p[x]$, where $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$. Let $\overline{f}(x) = g_1(x)^{e_1} \dots g_r(x)^{e_r}$, where $g_1(x), \dots, g_r(x)$ are distinct irreducible polynomials in $\mathbb{F}_p[x]$ and e_1, \dots, e_r are positive integers. For $i = 1, \dots, r$ let $f_i(x)$ be any polynomial of $\mathbb{Z}[x]$ such that $\overline{f}_i(x) = g_i(x)$ and $\operatorname{deg}(f_i(x)) = \operatorname{deg}(g_i(x))$. Set

$$P_i = \langle p, f_i(\alpha) \rangle.$$

If $p \nmid [\mathcal{O}_K : \mathbb{Z}[\alpha]]$, then P_1, \ldots, P_r are distinct prime ideals of \mathcal{O}_K with

$$p\mathcal{O}_K = P_1^{e_1} \dots P_r^{e_r}$$
 and $N(P_i) = p^{\deg(f_i(x))}$.

But if $p \mid \operatorname{ind}(\alpha)$ or $p \mid [\mathcal{O}_K : \mathbb{Z}[\alpha]]$ we have the question: can we factorize $p\mathcal{O}_K$? Obviously we can't factorize $p\mathcal{O}_K$ using Dedekind's theorem, unless we could change α for another $\alpha' \in \mathcal{O}_K$ such that $p \nmid \operatorname{ind}(\alpha')$ and $K = \mathbb{Q}(\alpha')$. Remember that $\operatorname{ind}(K) = \operatorname{gcd}\{\operatorname{ind}(\alpha) : \alpha \in \mathcal{O}_K, K = \mathbb{Q}(\alpha)\}$, so, if $p \mid \operatorname{ind}(K)$, we can't find α' as we wish.

In cubic number fields K, Llorente and Nart (see [12]) give the factorization of $p\mathcal{O}_K$ for any prime p, but don't give generators of the prime ideal factors. Following the cubic case, Alaca et al. (see [1]) give the explicit factorization of $2\mathcal{O}_K$, where $\operatorname{ind}(K) = 2$. Guàrdia et al. (see [7]) build an algorithm to compute generators for the prime ideals P_i and the discriminant of any number field. This algorithm is a p-adic factorization method based on Newton polygons of higher order. The theory of Newton polygons of higher order is developed by Montes in [13] and revised in [8]. We suggest the interested reader to delight in reading [7]; we also suggest reading Chapter 6 in [3], where the reader can find an introduction to this subject and, especially, a version of Dedekind's theorem without using the hypothesis $p \nmid \operatorname{ind}(\alpha)$. In this paper we are interested in getting the factorization of $q\mathcal{O}_K$ with $K = \mathbb{Q}(\alpha)$, where $f(\alpha) = 0$, $f(x) = x^4 + px^2 + p$ and, for some $n \in \mathbb{N}$, $p = 4 + n^2$ is a rational prime. We don't use Newton polygons; we use explicitly the integral basis of cyclic quartic fields (see [10]), we calculate the integral basis of some prime ideals and we make calculation of the index of generators of K. In our case, it is relatively easy to factorize $q\mathcal{O}_K$, when q > 2. For this reason, we start Section 3 by factoring $q\mathcal{O}_K$ for any prime $q \neq p$ such that $q \neq 2$ and $q \nmid n$, this includes the first case of the factorization of q = 3. We finish Section 3 by factoring q = 2. In Section 4 we study the case when K has index 3 and q = 3.

2. Preliminaries

In this paper we shall consider a quartic field $K = \mathbb{Q}(\alpha)$ with

$$\alpha = \sqrt{-\frac{1}{2}(p - n\sqrt{p})}$$

and $p = 4 + n^2 \in \mathbb{N}$ being a prime number. If $f(x) = x^4 + bx^2 + d \in \mathbb{Z}[x]$ is irreducible, then the Galois group of f(x) can be V, C_4 or D_4 , where V is the Klein 4-group, C_4 is the cyclic group of order 4, and D_4 is the dihedral group of order 8. If $f(x) = x^4 + px^2 + p$ with p a prime number and $\alpha^4 + p\alpha^2 + p = 0$, then, according to Theorem 3 in [11], $K = \mathbb{Q}(\alpha)/\mathbb{Q}$ is cyclic if and only if $p = 4 + n^2$. Hardy et al. (see [9]) show that any cyclic quartic field can be expressed in a unique way as

$$\mathbb{Q}\Big(\sqrt{A(D+B\sqrt{D})}\Big),$$

where $A, B, C, D \in \mathbb{Z}$ are such that A is an odd squarefree integer, $D = B^2 + C^2$ is squarefree, B > 0, C > 0 and A, D are relatively prime. Hudson and Williams (see [10]) give an integral basis for the integer ring of $K = \mathbb{Q}\left(\sqrt{A(D + B\sqrt{D})}\right)$. In our case, $K = \mathbb{Q}(\alpha)$. Since

$$\alpha' = \frac{n+2}{2}\alpha + \frac{\sqrt{p}}{2}\alpha,$$

then $\mathbb{Q}(\alpha') \subset \mathbb{Q}(\alpha)$. But $\operatorname{Irr}(\alpha', \mathbb{Q}) = x^4 + 2px^2 + n^2p$, so

$$K = \mathbb{Q}(\alpha) = \mathbb{Q}(\alpha'), \quad \alpha' = \sqrt{-(p+2\sqrt{p})}, \quad \beta' = \sqrt{-(p-2\sqrt{p})},$$

where $p = 4 + n^2$ is a rational prime. According to the unique theorem in [10], an integral basis for \mathcal{O}_K is as follows: if $n \equiv 3 \pmod{4}$ then

$$\omega_1 = 1, \quad \omega_2 = \frac{1 + \sqrt{p}}{2}, \quad \omega_3 = \frac{1 + \sqrt{p} + \alpha' + \beta'}{4}, \quad \omega_4 = \frac{1 - \sqrt{p} + \alpha' - \beta'}{4}$$
473

and if $n \equiv 1 \pmod{4}$ then

$$\omega_1 = 1, \quad \omega_2 = \frac{1 + \sqrt{p}}{2}, \quad \omega_3 = \frac{1 + \sqrt{p} + \alpha' - \beta'}{4}, \quad \omega_4 = \frac{1 - \sqrt{p} + \alpha' + \beta'}{4}.$$

In any case $\delta_K = p^3$, and so p is the only ramified prime.

Theorem 2.1. Let $K = \mathbb{Q}(\alpha)$ with

$$\alpha = \sqrt{-\frac{1}{2}(p - n\sqrt{p})}$$

Then $p\mathcal{O}_K = \langle \alpha \rangle^4$.

Proof. We have

$$\operatorname{ind}(\alpha) = \sqrt{\frac{D(\alpha)}{\delta_K}} = \sqrt{\frac{2^4 n^4 p^3}{p^3}} = 2^2 n^2,$$

then $\operatorname{ind}(\alpha) \not\equiv 0 \pmod{p}$. Since $\operatorname{Irr}(\alpha, \mathbb{Q}) = x^4 + px^2 + p$, by Theorem 1.1, $p\mathcal{O}_K = \langle p, \alpha \rangle^4 = \langle \alpha \rangle^4$.

Since K is a Galois extension, then any prime $q \neq p$ does not ramify, i.e. e = 1 and fg = 4, so we have g = 1, g = 2 or g = 4.

On the other hand, Engstrom in [6] shows that for any quartic number field K, ind(K) = 1, 2, 3, 4, 6, 12. Sperman and Williams in Theorem A (see [14]) show that, in the cyclic case, ind(K) assumes all of these values and give necessary and sufficient conditions for each to occur. In our case, according to Theorem A of [14], ind(K) = 1, 3.

Theorem 2.2. Let $K = \mathbb{Q}(\alpha)$ with $p = 4 + n^2$ be a rational prime. Then $\operatorname{ind}(K) = 3$ if and only if $3 \mid n$.

Proof. By Theorem A of [14], we have that if $p \equiv 2 \pmod{3}$, then $\operatorname{ind}(K) = 1$; and if $p \equiv 1 \pmod{3}$, then $\operatorname{ind}(K) = 3$. If $\operatorname{ind}(K) = 3$, then $p \not\equiv 2 \pmod{3}$. Since $p = 4 + n^2 \ge 5$, then $p \equiv 1 \pmod{3}$. Therefore $n \equiv 0 \pmod{3}$. If n = 3t for some $t \in \mathbb{Z}$, we have

$$p = 4 + 9t^2 \equiv 1 \pmod{3},$$

so $\operatorname{ind}(K) = 3$.

474

3. Factoring $q \neq p$

Let $q \in \mathbb{N}$ be a rational prime number. To use Dedekind's theorem to factorize $q\mathcal{O}_K$ in \mathcal{O}_K where $K = \mathbb{Q}(\alpha) = \mathbb{Q}(\alpha')$, we need that $\operatorname{ind}(\alpha) \not\equiv 0 \pmod{q}$ or $\operatorname{ind}(\alpha') \not\equiv 0 \pmod{q}$, but if

$$\operatorname{ind}(\alpha) = 2^2 n^2, \quad \operatorname{ind}(\alpha') = 2^6 n,$$

then we can factorize any prime $q \neq 2$, $q \neq p$ and $q \nmid n$.

Theorem 3.1. Let $K = \mathbb{Q}(\alpha)$ and q be a rational prime such that $q \neq 2$ and $q \nmid n$. Then:

- (1) If $\left(\frac{p}{q}\right) = -1$, then $q\mathcal{O}_K = \langle q, \alpha^4 + p\alpha^2 + p \rangle$ is a prime ideal of \mathcal{O}_K . (2) If $p \equiv t^2 \pmod{q}$ for some $t \in \mathbb{Z}$ and $\left(\frac{-p-2t}{q}\right) = -1$, then

$$q\mathcal{O}_K = \langle q, \alpha^2 + a_1\alpha + a_0 \rangle \langle q, \alpha^2 + b_1\alpha + b_0 \rangle,$$

where $a_1, a_0, b_1, b_0 \in \mathbb{Z}$ satisfy

$$x^4 + px^2 + p \equiv (x^2 + a_1x + a_0)(x^2 + b_1x + b_0) \pmod{q}.$$

(3) If $p \equiv t^2 \pmod{q}$ for some $t \in \mathbb{Z}$ and $\left(\frac{-p-2t}{q}\right) = 1$, then

$$q\mathcal{O}_K = \langle q, \alpha + a_0 \rangle \langle q, \alpha + b_0 \rangle \langle q, \alpha + a_1 \rangle \langle q, \alpha + b_1 \rangle,$$

where $a_1, a_0, b_1, b_0 \in \mathbb{Z}$ satisfy

$$x^{4} + px^{2} + p \equiv (x + a_{0})(x + b_{0})(x + a_{1})(x + b_{1}) \pmod{q}.$$

Proof. We prove only the first assertion, the others are similar. As $ind(\alpha) \neq 0$ $(\mod q)$, we can use Dedekind's theorem. Since

$$\left(\frac{p}{q}\right) = -1,$$

then

$$\left(\frac{p^2 - 4p}{q}\right) = -1,$$

so by Theorem 3 (iv) in [5], we have that $x^4 + px^2 + p$ is irreducible in $\mathbb{F}_q[x]$. Therefore $q\mathcal{O}_K = \langle q, \alpha^4 + p\alpha^2 + p \rangle.$

Note that if $3 \nmid n$, then $\operatorname{ind}(K) = 1$. By (1) above, we have $3\mathcal{O}_K = \langle 3 \rangle$. If $q \mid n$, then $\operatorname{ind}(\alpha) \equiv \operatorname{ind}(\alpha') \equiv 0 \pmod{q}$. So we need to find new generators that satisfy the hypothesis of Theorem 1.1.

Proposition 3.1. Let $K = \mathbb{Q}(\alpha')$ be with $\alpha' = \sqrt{-(p+2\sqrt{p})}$ and $\beta' = \sqrt{-(p-2\sqrt{p})}$. Then:

(i) $\mathbb{Q}(\alpha') = \mathbb{Q}(\alpha' + t\beta')$ for all $t \in \mathbb{Z}$;

(ii) $\operatorname{ind}(\alpha' + t\beta') = 2^6(4t - n(1 - t^2))(t^2 - 1 - tn)^2$.

Proof. Since $\alpha', \beta' \in \mathbb{Q}(\alpha')$, then $\mathbb{Q}(\alpha' + t\beta') \subseteq \mathbb{Q}(\alpha')$. By Theorem 2 (iii) in [11] we have that

$$h(x) = x^{4} + 2p(1+t^{2})x^{2} + p(4t - n(1-t^{2}))^{2}$$

is irreducible in $\mathbb{Q}[x]$. Since $h(\alpha' + t\beta') = 0$, then $h(x) = \operatorname{Irr}(\alpha' + t\beta', \mathbb{Q})$. Therefore $[\mathbb{Q}(\alpha' + t\beta') : \mathbb{Q}] = 4$ and so $\mathbb{Q}(\alpha') = \mathbb{Q}(\alpha' + t\beta')$.

For the second assertion we know that $\operatorname{ind}(\alpha' + t\beta') = \sqrt{D(\alpha' + t\beta')/\delta_K}$ and $D(\alpha' + t\beta') = N(h'(\alpha' + t\beta'))$, where h'(x) is the derivative of h(x). Since

$$h'(\alpha' + t\beta') = 4(\alpha' + t\beta')((\alpha' + t\beta')^2 + p(1 + t^2)) = 4(\alpha' + t\beta')(2t^2 - 2 - 2tn)\sqrt{p},$$

then $N(h'(\alpha' + t\beta')) = 4^4 p (4t - n(1 - t^2))^2 (2t^2 - 2 - 2tn)^4 p^2$.

Thus

$$\operatorname{ind}(\alpha' + t\beta') = 2^6(4t - n(1 - t^2))(t^2 - 1 - tn)^2.$$

-	_	_	

We note that if $q \mid n$, then $q \mid ind(\alpha' + t\beta')$ if and only if $q \mid t - 1$, $q \mid t$ or $q \mid t + 1$.

Theorem 3.2. Let $K = \mathbb{Q}(\alpha')$ and q be a rational prime such that $q \neq 2, 3$ and $q \mid n$. If $\theta_1 = \alpha' + 2\beta'$, then:

(1) If $q \equiv 5,7 \pmod{8}$, then $q\mathcal{O}_K = \langle q, \theta_1^2 + a_1\theta_1 + a_0 \rangle \langle q, \theta_1^2 + b_1\theta_1 + b_0 \rangle$, where $a_1, a_0, b_1, b_0 \in \mathbb{Z}$ satisfy

$$x^{4} + 10px^{2} + p(8+3n)^{2} \equiv (x^{2} + a_{1}x + a_{0})(x^{2} + b_{1}x + b_{0}) \pmod{q}$$

(2) If $q \equiv 1, 3 \pmod{8}$, then $q\mathcal{O}_K = \langle q, \theta_1 + a_0 \rangle \langle q, \theta_1 + b_0 \rangle \langle q, \theta_1 + a_1 \rangle \langle q, \theta_1 + b_1 \rangle$, where $a_1, a_0, b_1, b_0 \in \mathbb{Z}$ satisfy

$$x^{4} + 10px^{2} + p(8+3n)^{2} \equiv (x+a_{0})(x+b_{0})(x+a_{1})(x+b_{1}) \pmod{q}$$

Proof. We note that for θ_1 it follows that $K = \mathbb{Q}(\theta_1)$ and $\operatorname{ind}(\theta_1) \not\equiv 0 \pmod{q}$. The proof is similar to that of Theorem 3.1.

Now we factorize q = 2 no matter what ind(K) is.

Proposition 3.2. Let $K = \mathbb{Q}(\alpha')$ as in Proposition 3.1. Then:

- (i) $\mathbb{Q}(\alpha') = \mathbb{Q}(\theta)$ with $\theta = \frac{1}{2}(1 + \alpha');$
- (ii) $ind(\theta) = n$, where $p = 4 + n^2 = 4k + 1$.

Proof. First note that $\mathbb{Q}(\theta) \subset \mathbb{Q}(\alpha')$. Let us consider

$$h(x) = x^{4} - 2x^{3} + 2(k+1)x^{2} - (2k+1)x + k^{2}.$$

By Theorem 2 (iii) in [11],

$$h\left(x+\frac{1}{2}\right) = x^4 + \left(-\frac{3}{2} + 2(k+1)\right)x^2 + \left(-\frac{3}{16} - \frac{k}{2} + k^2\right)$$

is irreducible in $\mathbb{Q}[x]$. Therefore h(x) is irreducible. Since $h(\theta) = 0$, we have

$$Irr(\theta, \mathbb{Q}) = x^4 - 2x^3 + 2(k+1)x^2 - (2k+1)x + k^2$$

and $\mathbb{Q}(\alpha') = \mathbb{Q}(\theta)$. For the assertion (ii) remember that

$$D(\theta) = \det \begin{pmatrix} 4 & 2 & 1-p & \frac{1-3p}{2} \\ 2 & 1-p & \frac{1-3p}{2} & \frac{(p-1)^2}{4} \\ 1-p & \frac{1-3p}{2} & \frac{(p-1)^2}{4} & \frac{1+10p+5p^2}{8} \\ \frac{1-3p}{2} & \frac{(p-1)^2}{4} & \frac{1+10p+5p^2}{8} & \frac{1+45p+3p^2-p^3}{16} \end{pmatrix},$$

so $D(\theta) = n^2 p^3$. Therefore $\operatorname{ind}(\theta) = \sqrt{n^2 p^3 / p^3} = n$.

As a consequence of (ii) above we have $2 \nmid ind(\theta)$.

Theorem 3.3. Let K be as in Proposition 3.1 and $\theta = \frac{1}{2}(1+\alpha')$. Then $2\mathcal{O}_K = \langle 2 \rangle$.

Proof. Note that $\operatorname{Irr}(\theta) = x^4 - 2x^3 + 2(k+1)x^2 - (2k+1)x + k^2 \equiv x^4 + x + 1 \pmod{2}$ and $x^4 + x + 1$ is irreducible in $\mathbb{F}_2[x]$. Therefore by Dedekind's theorem $2\mathcal{O}_K = \langle 2, \theta^4 + \theta + 1 \rangle$. Finally $N(\langle 2, \theta^4 + \theta + 1 \rangle) = 2^4$, $N(\langle 2 \rangle) = N(2) = 2^4$ and $\langle 2 \rangle \subseteq \langle 2, \theta^4 + \theta + 1 \rangle$, so $2\mathcal{O}_K = \langle 2, \theta^4 + \theta + 1 \rangle = \langle 2 \rangle$ is principal.

4. Factoring 3 with ind(K) = 3

In Section 3 we obtained the factorization of $3\mathcal{O}_K$ in the case $\operatorname{ind}(K) = 1$. Remember that $3 \mid n$ if and only if $\operatorname{ind}(K) = 3$. If 3 is a common index divisor of K, we can't use Dedekind's theorem. We find new generators.

Lemma 4.1. Let $K = \mathbb{Q}(\alpha')$ with $\alpha' = \sqrt{-(p+2\sqrt{p})}$ and $\{\omega_1, \omega_2, \omega_3, \omega_4\}$ be the integral basis as in Section 2. Then:

(i) $\frac{1}{2}(3 + \alpha') = 1 + \omega_3 + \omega_4;$ (ii) $\frac{1}{2}(5 - \alpha') = 3 - \omega_3 - \omega_4;$ (iii) $\frac{1}{2}(5 + \alpha') = 2 + \omega_3 + \omega_4.$

Proof. We prove only one case, the others are similar. If $n \equiv 3 \pmod{4}$, then

$$\omega_1 = 1, \quad \omega_2 = \frac{1 + \sqrt{p}}{2}, \quad \omega_3 = \frac{1 + \sqrt{p} + \alpha' + \beta'}{4}, \quad \omega_4 = \frac{1 - \sqrt{p} + \alpha' - \beta'}{4}.$$

Therefore $1 + \omega_3 + \omega_4 = \frac{1}{2}(3 + \alpha').$

Proposition 4.1. Let $K = \mathbb{Q}(\alpha')$ be as in Lemma 4.1. The ideals

$$M = \left\langle 3, \frac{3+\alpha'}{2} \right\rangle, \quad P_1 = \left\langle 3, \frac{5-\alpha'}{2} \right\rangle, \quad P_2 = \left\langle 3, \frac{5+\alpha'}{2} \right\rangle$$

satisfy:

- (i) $M = 3\mathbb{Z} + (3 + 3\omega_3)\mathbb{Z} + (-4 + \omega_2 3\omega_3)\mathbb{Z} + (1 + \omega_3 + \omega_4)\mathbb{Z};$
- (ii) $P_1 = 3\mathbb{Z} + (-17 + \omega_3)\mathbb{Z} + (-8 + \omega_2 + \omega_3)\mathbb{Z} + (-3 + \omega_3 + \omega_4)\mathbb{Z};$
- (iii) $P_2 = 3\mathbb{Z} + (-1 + \omega_3)\mathbb{Z} + (\omega_2 + 3\omega_3)\mathbb{Z} + (2 + \omega_3 + \omega_4)\mathbb{Z}.$

Proof. Only we comment the proof of assertion (i). Since $1+\omega_3+\omega_4 = \frac{1}{2}(3+\alpha')$, then $M \subset 3\mathbb{Z} + (3+3\omega_3)\mathbb{Z} + (-4+\omega_2-3\omega_3)\mathbb{Z} + (1+\omega_3+\omega_4)\mathbb{Z}$. The other statement is obtained by solving a linear equation system. The other assertions are similar. \Box

Corollary 4.1. Let $K = \mathbb{Q}(\alpha')$, M, P_1 and P_2 be as in Proposition 4.1. Then N(M) = 9, $N(P_1) = N(P_2) = 3$.

 ${\rm P\,r\,o\,o\,f.}$ Proposition 4.1 provides an integral basis. Next calculate the discriminant. $\hfill \Box$

Since $N(P_1) = N(P_2) = 3$ we have that P_1 and P_2 are prime ideals of \mathcal{O}_K and $P_1 \cap \mathbb{Z} = P_2 \cap \mathbb{Z} = 3\mathbb{Z}$. Also it is clear that $P_1 \neq P_2$ and $M \neq \mathcal{O}_K$.

Theorem 4.1. Let $K = \mathbb{Q}(\alpha')$ with $\alpha' = \sqrt{-(p+2\sqrt{p})}$. Let us consider

$$M = \left\langle 3, \frac{3+\alpha'}{2} \right\rangle, \quad P_1 = \left\langle 3, \frac{5-\alpha'}{2} \right\rangle, \quad P_2 = \left\langle 3, \frac{5+\alpha'}{2} \right\rangle.$$

Then

$$3\mathcal{O}_K = MP_1P_2.$$

Proof. First we show that

$$P_1P_2 = \left\langle 9, 6 + 3\omega_3 + 3\omega_4, 9 - 3\omega_3 - 3\omega_4, \frac{23+p}{4} + \omega_2 \right\rangle = \langle 3, -\omega_2 \rangle,$$

where $\{1, \omega_2, \omega_3, \omega_4\}$ is an integral basis as in Section 2, no matter if $n \equiv 1$ or 3 (mod 4).

In our case, $\operatorname{ind}(K) = 3$ and p = 4k + 1 implies that k = 3m for some $m \in \mathbb{Z}$. Since $\frac{1}{4}(23+p) + \omega_2 = 3(2+m) + \omega_2 \in \langle 3, -\omega_2 \rangle$, we have $P_1P_2 \subset \langle 3, -\omega_2 \rangle$. Likewise

$$3 = 2(9) - 3\left(\frac{5+\alpha'}{2}\right) - 3\left(\frac{5-\alpha'}{2}\right)$$

and

$$\frac{23+p}{4} = 3(2+m),$$

then

$$\omega_2 = \left(\frac{23+p}{4} + \omega_2\right) - \left(\frac{23+p}{4}\right) \in P_1 P_2$$

and therefore, $\langle 3, -\omega_2 \rangle \subset P_1 P_2$.

Finally, as $-\omega_2 = \frac{1}{4}(\alpha'^2 + (p-2))$ then

$$MP_1P_2 = \left\langle 9, 3\frac{3+\alpha'}{2}, 3\frac{\alpha'^2 + (p-2)}{4}, \frac{3+\alpha'}{2}\frac{\alpha'^2 + (p-2)}{4} \right\rangle$$

The following numbers are in $3\mathcal{O}_K$:

$$\frac{3+\alpha'}{2}\frac{\alpha'^2+(p-2)}{4}, \quad 9, \quad 3\frac{\alpha'^2+(p-2)}{4}, \quad 3\frac{3+\alpha'}{2},$$

so $MP_1P_2 \subseteq 3\mathcal{O}_K$. Since $N(MP_1P_2) = N(3\mathcal{O}_K) = 3^4$, then $MP_1P_2 = 3\mathcal{O}_K$. \Box

In the next result we give an integral basis of some prime ideals that will help us to decompose the ideal M.

Proposition 4.2. Let K be as in Theorem 4.1. If $n \equiv 3 \pmod{4}$ let's consider the ideals $Q_1 = \langle 3, \omega_2 - \omega_3 \rangle$, $Q_2 = \langle 3, -\omega_3 \rangle$ and if $n \equiv 1 \pmod{4}$, let's consider the ideals $Q'_1 = \langle 3, -1 - \omega_4 \rangle$, $Q'_2 = \langle 3, 2 - \omega_2 - \omega_4 \rangle$. Then:

- (i) $Q_1 = 3\mathbb{Z} + (1 \omega_3)\mathbb{Z} + (\omega_2 \omega_3)\mathbb{Z} + (1 + \omega_2 + \omega_4)\mathbb{Z};$
- (ii) $Q_2 = 3\mathbb{Z} + (2 + \omega_2 \omega_3)\mathbb{Z} + (\omega_2 + \omega_4)\mathbb{Z} \omega_3\mathbb{Z};$
- (iii) $Q'_1 = 3\mathbb{Z} + (-1 \omega_4)\mathbb{Z} + \omega_3\mathbb{Z} + (3 \omega_2 \omega_4)\mathbb{Z};$
- (iv) $Q'_2 = 3\mathbb{Z} + (1 \omega_4)\mathbb{Z} + (2 + \omega_3)\mathbb{Z} + (-2 + \omega_2 + \omega_4)\mathbb{Z}$.

Proof. The proof is similar to the proof of Proposition 4.1.

By Proposition 4.2 it is clear that $N(Q_1) = N(Q_2) = N(Q'_1) = N(Q'_2) = 3$ and therefore Q_1, Q_2, Q'_1, Q'_2 are prime ideals.

Theorem 4.2. Let $K = \mathbb{Q}(\alpha')$ with $\alpha' = \sqrt{-(p+2\sqrt{p})}$ and Q_1, Q_2, Q'_1, Q'_2 be as in Proposition 4.2. Then

$$M = \begin{cases} Q_1 Q_2 & \text{if } n \equiv 3 \pmod{4}, \\ Q_1' Q_2' & \text{if } n \equiv 1 \pmod{4}. \end{cases}$$

Proof. If $n \equiv 3 \pmod{4}$, we show that $Q_1Q_2 = \langle 3, 1 + \omega_3 + \omega_4 \rangle = M$. First we note that 9, $-3\omega_3$, $3\omega_2 - 3\omega_3 \in \langle 3, 1 + \omega_3 + \omega_4 \rangle$. As n = 4l + 3 for some $l \in \mathbb{Z}$, we have $-\omega_3(\omega_2 - \omega_3) = (-3l^2 - 4l - 2) - (1 + l)\omega_2$. By Proposition 4.1, $\{3, 3 + 3\omega_3, -4 + \omega_2 - 3\omega_3, 1 + \omega_3 + \omega_4\}$ is an integral basis of M and

$$(-3l^2 - 4l - 2) - (1 + l)\omega_2 = 3x_1 + (3 + 3\omega_3)x_2 + (-4 + \omega_2 - 3\omega_3)x_3 + (1 + \omega_3 + \omega_4)x_4,$$

where $x_1 = \frac{1}{3}(-3l^2 - 5l - 3)$, $x_2 = -l - 1$, $x_3 = -l - 1$, $x_4 = 0 \in \mathbb{Z}$. Therefore $-\omega_3(\omega_2 - \omega_3) \in M$ and $Q_1Q_2 \subseteq M$. Since $N(Q_1Q_2) = N(M) = 9$ we conclude that $Q_1Q_2 = M$. The factorization $M = Q'_1Q'_2$ in the case $n \equiv 1 \pmod{4}$ is similar. \Box

A c k n o w l e d g e m e n t. We thank the referee for the valuable comments, which improved the presentation of this work.

References

[1]	<i>Ş. Alaca, B. K. Spearman, K. S. Williams</i> : The factorization of 2 in cubic fields with index 2. Far East J. Math. Sci. (FJMS) 14 (2004), 273–282.
[2]	S. Alaca, K. S. Williams: Introductory Algebraic Number Theory. Cambridge University
	Press, Cambridge, 2004. Zbl MR doi
[3]	H. Cohen: A Course in Computational Algebraic Number Theory. Graduate Texts in
	Mathematics 138. Springer, Berlin, 1993. zbl MR doi
[4]	K. Conrad: Factoring after Dedekind. Available at
	https://kconrad.math.uconn.edu/blurbs/gradnumthy/dedekindf.pdf, 7 pages.
[5]	E. Driver, P. A. Leonard, K. S. Williams: Irreducible quartic polynomials with factoriza-
	tions modulo <i>p</i> . Am. Math. Mon. <i>112</i> (2005), 876–890. zbl MR doi
[6]	H. T. Engstrom: On the common index divisors of an algebraic field. Trans. Am. Math.
	Soc. 32 (1930), 223–237. zbl MR doi
[7]	J. Guàrdia, J. Montes, E. Nart: Higher Newton polygons in the computation of discrim-
	inants and prime ideals decomposition in number fields. J. Théor. Nombres Bordx. 23
	(2011), 667–696. zbl MR doi
[8]	J. Guàrdia, J. Montes, E. Nart: Newton polygons of higher order in algebraic number
	theory. Trans. Am. Math. Soc. 364 (2012), $361-416$. Zbl MR doi
[9]	K. Hardy, R. H. Hudson, D. Richman, K. S. Williams, N. M. Holtz. Calculation of the
	Class Numbers of Imaginary Cyclic Quartic Fields. Carleton-Ottawa Mathematical Lec-
	ture Note Series 7. Carleton University, Ottawa, 1986. Zbl
[10]	R. H. Hudson, K. S. Williams: The integers of a cyclic quartic field. Rocky Mt. J. Math.
	20 (1990), 145–150. ZDI MR doi
[11]	LC. Kappe, B. Warren: An elementary test for the Galois group of a quartic polyno-
[10]	mial. Am. Math. Mon. 96 (1989), 133–137. ZDI MR doi
[12]	<i>P. Llorente, E. Nart</i> : Effective determination of the decomposition of the rational primes
[1.0]	in a cubic field. Proc. Am. Math. Soc. 87 (1983), 579–585.
[13]	J. Montes: Poligonos de Newton de orden superior y aplicaciones aritméticas: Disserta-
[1] 4]	tion Ph.D. Universitat de Barcelona, Barcelona, 1999. (In Spanish.)
[14]	B. K. Spearman, K. S. Williams: The index of a cyclic quartic field. Monatsh. Math. 140
	(2003), 19-70. ZDI MIR doi

Authors' address: Julio Pérez-Hernández, Mario Pineda-Ruelas, Departamento de Matemáticas, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco No. 186, Col. Vicentina, CP 09340, Ciudad de México, Mexico, e-mail: galois60@gmail.com, mpr@xanum.uam.mx.