RAMIFICATION IN QUARTIC CYCLIC NUMBER FIELDS K GENERATED BY $x^{4}+p x^{2}+p$

Julio Pérez-Hernández, Mario Pineda-Ruelas, Mexico City

Received September 9, 2019. Published online February 11, 2021. Communicated by Clemens Fuchs

Abstract. If K is the splitting field of the polynomial $f(x)=x^{4}+p x^{2}+p$ and p is a rational prime of the form $4+n^{2}$, we give appropriate generators of K to obtain the explicit factorization of the ideal $q \mathcal{O}_{K}$, where q is a positive rational prime. For this, we calculate the index of these generators and integral basis of certain prime ideals.

Keywords: ramification; cyclic quartic field; discriminant; index
MSC 2020: 11S15, 11R16

1. Introduction

Let K be a number field of degree n and \mathcal{O}_{K} the ring of integers K. We choose $\alpha \in \mathcal{O}_{K}$ such that $K=\mathbb{Q}(\alpha)$, and denote by δ_{K} the discriminant of K and $D(\alpha)$ the discriminant of the basis $\left\{1, \alpha, \ldots, \alpha^{n-1}\right\}$. We associate to α the positive integer $\operatorname{ind}(\alpha)=\sqrt{D(\alpha) / \delta_{K}}$ called the index of α. We know that δ_{K} and $D(\alpha)$ are related by $D(\alpha)=\operatorname{det}(C)^{2} \delta_{K}$, where C is the coefficient matrix that maps the basis $1, \alpha, \ldots, \alpha^{n-1}$ to some fixed integral basis of K. Since $D(\alpha)=$ $\operatorname{ind}(\alpha)^{2} \delta_{K}$, then $\operatorname{ind}(\alpha)=|\operatorname{det}(C)|$. According to the Theorem 9.1.2 of [2] we have $\operatorname{ind}(\theta)=\left[\mathcal{O}_{K}: \mathbb{Z}[\alpha]\right]$, so that $\left[\mathcal{O}_{K}: \mathbb{Z}[\alpha]\right]=|\operatorname{det}(C)|$. Let p be a positive rational prime and let P_{1}, \ldots, P_{g} be prime ideals in \mathcal{O}_{K} such that

$$
p \mathcal{O}_{K}=P_{1}^{e_{1}} \ldots P_{g}^{e_{g}}
$$

If $I \neq\{o\}$ is any ideal of \mathcal{O}_{K}, we denote by $N(I)=\left|\mathcal{O}_{K} / I\right|$ the norm of the ideal I. Moreover, if $\alpha_{1}, \ldots, \alpha_{n}$ is an integral basis of I, then $N(I)=\sqrt{D\left(\alpha_{1}, \ldots, \alpha_{n}\right) / \delta_{K}}$.

The first author has been supported by CONACyT (México) 291197.

Particularly, $N\left(P_{i}\right)=\left|\mathcal{O}_{K} / P_{i}\right|=p^{f_{i}}$ for $i=1, \ldots, n$ and some $f_{i} \in \mathbb{N}$. If K / \mathbb{Q} is a Galois extension, then $e=e_{1}=\ldots=e_{g}, f=f_{1}=\ldots=f_{g}$ and efg $=n$. If $G=\operatorname{Gal}(K / \mathbb{Q})$ and $\alpha \in \mathcal{O}_{K}$, we denote the norm of α by $N(\alpha)=\prod_{\sigma \in G} \sigma(\alpha)$. If $f(x)=a_{0}+a_{1} x+\ldots+a_{n-1} x^{n-1}+x^{n}=\operatorname{Irr}(\alpha, \mathbb{Z})$, then $N(\alpha)=(-1)^{n} a_{0}$.

An old problem in algebraic number theory consists in explicitly giving prime ideals P_{i} with generators and positive integers e_{i} such that $p \mathcal{O}_{K}=P_{1}^{e_{1}} \ldots P_{g}^{e_{g}}$. If p is a prime number such that $p \nmid \operatorname{ind}(\alpha)$ then we can decompose theoretically $p \mathcal{O}_{K}$ as Dedekind's theorem ensures. Conrad has a comprehensive exposition of Dedekind's theorem in [4].

Theorem 1.1 (Dedekind). Let $K=\mathbb{Q}(\alpha)$ be a number field with $\alpha \in \mathcal{O}_{K}, p$ be a rational prime and $f(x)=\operatorname{Irr}(\alpha, \mathbb{Q}) \in \mathbb{Z}[x]$. Let us consider the natural map $-: \mathbb{Z}[x] \rightarrow \mathbb{F}_{p}[x]$, where $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$. Let $\bar{f}(x)=g_{1}(x)^{e_{1}} \ldots g_{r}(x)^{e_{r}}$, where $g_{1}(x), \ldots, g_{r}(x)$ are distinct irreducible polynomials in $\mathbb{F}_{p}[x]$ and e_{1}, \ldots, e_{r} are positive integers. For $i=1, \ldots, r$ let $f_{i}(x)$ be any polynomial of $\mathbb{Z}[x]$ such that $\bar{f}_{i}(x)=g_{i}(x)$ and $\operatorname{deg}\left(f_{i}(x)\right)=\operatorname{deg}\left(g_{i}(x)\right)$. Set

$$
P_{i}=\left\langle p, f_{i}(\alpha)\right\rangle .
$$

If $p \nmid\left[\mathcal{O}_{K}: \mathbb{Z}[\alpha]\right]$, then P_{1}, \ldots, P_{r} are distinct prime ideals of \mathcal{O}_{K} with

$$
p \mathcal{O}_{K}=P_{1}^{e_{1}} \ldots P_{r}^{e_{r}} \quad \text { and } \quad N\left(P_{i}\right)=p^{\operatorname{deg}\left(f_{i}(x)\right)}
$$

But if $p \mid \operatorname{ind}(\alpha)$ or $p \mid\left[\mathcal{O}_{K}: \mathbb{Z}[\alpha]\right]$ we have the question: can we factorize $p \mathcal{O}_{K}$? Obviously we can't factorize $p \mathcal{O}_{K}$ using Dedekind's theorem, unless we could change α for another $\alpha^{\prime} \in \mathcal{O}_{K}$ such that $p \nmid \operatorname{ind}\left(\alpha^{\prime}\right)$ and $K=\mathbb{Q}\left(\alpha^{\prime}\right)$. Remember that $\operatorname{ind}(K)=\operatorname{gcd}\left\{\operatorname{ind}(\alpha): \alpha \in \mathcal{O}_{K}, K=\mathbb{Q}(\alpha)\right\}$, so, if $p \mid \operatorname{ind}(K)$, we can't find α^{\prime} as we wish.

In cubic number fields K, Llorente and Nart (see [12]) give the factorization of $p \mathcal{O}_{K}$ for any prime p, but don't give generators of the prime ideal factors. Following the cubic case, Alaca et al. (see [1]) give the explicit factorization of $2 \mathcal{O}_{K}$, where $\operatorname{ind}(K)=2$. Guàrdia et al. (see [7]) build an algorithm to compute generators for the prime ideals P_{i} and the discriminant of any number field. This algorithm is a p-adic factorization method based on Newton polygons of higher order. The theory of Newton polygons of higher order is developed by Montes in [13] and revised in [8]. We suggest the interested reader to delight in reading [7]; we also suggest reading Chapter 6 in [3], where the reader can find an introduction to this subject and, especially, a version of Dedekind's theorem without using the hypothesis $p \nmid \operatorname{ind}(\alpha)$.

In this paper we are interested in getting the factorization of $q \mathcal{O}_{K}$ with $K=\mathbb{Q}(\alpha)$, where $f(\alpha)=0, f(x)=x^{4}+p x^{2}+p$ and, for some $n \in \mathbb{N}, p=4+n^{2}$ is a rational prime. We don't use Newton polygons; we use explicitly the integral basis of cyclic quartic fields (see [10]), we calculate the integral basis of some prime ideals and we make calculation of the index of generators of K. In our case, it is relatively easy to factorize $q \mathcal{O}_{K}$, when $q>2$. For this reason, we start Section 3 by factoring $q \mathcal{O}_{K}$ for any prime $q \neq p$ such that $q \neq 2$ and $q \nmid n$, this includes the first case of the factorization of $q=3$. We finish Section 3 by factoring $q=2$. In Section 4 we study the case when K has index 3 and $q=3$.

2. Preliminaries

In this paper we shall consider a quartic field $K=\mathbb{Q}(\alpha)$ with

$$
\alpha=\sqrt{-\frac{1}{2}(p-n \sqrt{p})}
$$

and $p=4+n^{2} \in \mathbb{N}$ being a prime number. If $f(x)=x^{4}+b x^{2}+d \in \mathbb{Z}[x]$ is irreducible, then the Galois group of $f(x)$ can be V, C_{4} or D_{4}, where V is the Klein 4 -group, C_{4} is the cyclic group of order 4 , and D_{4} is the dihedral group of order 8 . If $f(x)=x^{4}+p x^{2}+p$ with p a prime number and $\alpha^{4}+p \alpha^{2}+p=0$, then, according to Theorem 3 in [11], $K=\mathbb{Q}(\alpha) / \mathbb{Q}$ is cyclic if and only if $p=4+n^{2}$. Hardy et al. (see [9]) show that any cyclic quartic field can be expressed in a unique way as

$$
\mathbb{Q}(\sqrt{A(D+B \sqrt{D})})
$$

where $A, B, C, D \in \mathbb{Z}$ are such that A is an odd squarefree integer, $D=B^{2}+C^{2}$ is squarefree, $B>0, C>0$ and A, D are relatively prime. Hudson and Williams (see [10]) give an integral basis for the integer ring of $K=\mathbb{Q}(\sqrt{A(D+B \sqrt{D})})$. In our case, $K=\mathbb{Q}(\alpha)$. Since

$$
\alpha^{\prime}=\frac{n+2}{2} \alpha+\frac{\sqrt{p}}{2} \alpha,
$$

then $\mathbb{Q}\left(\alpha^{\prime}\right) \subset \mathbb{Q}(\alpha)$. But $\operatorname{Irr}\left(\alpha^{\prime}, \mathbb{Q}\right)=x^{4}+2 p x^{2}+n^{2} p$, so

$$
K=\mathbb{Q}(\alpha)=\mathbb{Q}\left(\alpha^{\prime}\right), \quad \alpha^{\prime}=\sqrt{-(p+2 \sqrt{p})}, \quad \beta^{\prime}=\sqrt{-(p-2 \sqrt{p})},
$$

where $p=4+n^{2}$ is a rational prime. According to the unique theorem in [10], an integral basis for \mathcal{O}_{K} is as follows: if $n \equiv 3(\bmod 4)$ then

$$
\omega_{1}=1, \quad \omega_{2}=\frac{1+\sqrt{p}}{2}, \quad \omega_{3}=\frac{1+\sqrt{p}+\alpha^{\prime}+\beta^{\prime}}{4}, \quad \omega_{4}=\frac{1-\sqrt{p}+\alpha^{\prime}-\beta^{\prime}}{4}
$$

and if $n \equiv 1(\bmod 4)$ then

$$
\omega_{1}=1, \quad \omega_{2}=\frac{1+\sqrt{p}}{2}, \quad \omega_{3}=\frac{1+\sqrt{p}+\alpha^{\prime}-\beta^{\prime}}{4}, \quad \omega_{4}=\frac{1-\sqrt{p}+\alpha^{\prime}+\beta^{\prime}}{4}
$$

In any case $\delta_{K}=p^{3}$, and so p is the only ramified prime.
Theorem 2.1. Let $K=\mathbb{Q}(\alpha)$ with

$$
\alpha=\sqrt{-\frac{1}{2}(p-n \sqrt{p})}
$$

Then $p \mathcal{O}_{K}=\langle\alpha\rangle^{4}$.
Proof. We have

$$
\operatorname{ind}(\alpha)=\sqrt{\frac{D(\alpha)}{\delta_{K}}}=\sqrt{\frac{2^{4} n^{4} p^{3}}{p^{3}}}=2^{2} n^{2}
$$

then $\operatorname{ind}(\alpha) \not \equiv 0(\bmod p)$. Since $\operatorname{Irr}(\alpha, \mathbb{Q})=x^{4}+p x^{2}+p$, by Theorem 1.1, $p \mathcal{O}_{K}=$ $\langle p, \alpha\rangle^{4}=\langle\alpha\rangle^{4}$.

Since K is a Galois extension, then any prime $q \neq p$ does not ramify, i.e. $e=1$ and $f g=4$, so we have $g=1, g=2$ or $g=4$.

On the other hand, Engstrom in [6] shows that for any quartic number field K, $\operatorname{ind}(K)=1,2,3,4,6,12$. Sperman and Williams in Theorem A (see [14]) show that, in the cyclic case, $\operatorname{ind}(K)$ assumes all of these values and give necessary and sufficient conditions for each to occur. In our case, according to Theorem A of [14], $\operatorname{ind}(K)=1,3$.

Theorem 2.2. Let $K=\mathbb{Q}(\alpha)$ with $p=4+n^{2}$ be a rational prime. Then $\operatorname{ind}(K)=3$ if and only if $3 \mid n$.

Proof. By Theorem A of [14], we have that if $p \equiv 2(\bmod 3)$, then $\operatorname{ind}(K)=1$; and if $p \equiv 1(\bmod 3)$, then $\operatorname{ind}(K)=3$. If $\operatorname{ind}(K)=3$, then $p \not \equiv 2(\bmod 3)$. Since $p=4+n^{2} \geqslant 5$, then $p \equiv 1(\bmod 3)$. Therefore $n \equiv 0(\bmod 3)$. If $n=3 t$ for some $t \in \mathbb{Z}$, we have

$$
p=4+9 t^{2} \equiv 1(\bmod 3)
$$

so $\operatorname{ind}(K)=3$.

3. FACTORING $q \neq p$

Let $q \in \mathbb{N}$ be a rational prime number. To use Dedekind's theorem to factorize $q \mathcal{O}_{K}$ in \mathcal{O}_{K} where $K=\mathbb{Q}(\alpha)=\mathbb{Q}\left(\alpha^{\prime}\right)$, we need that $\operatorname{ind}(\alpha) \not \equiv 0(\bmod q)$ or $\operatorname{ind}\left(\alpha^{\prime}\right) \not \equiv 0(\bmod q)$, but if

$$
\operatorname{ind}(\alpha)=2^{2} n^{2}, \quad \operatorname{ind}\left(\alpha^{\prime}\right)=2^{6} n
$$

then we can factorize any prime $q \neq 2, q \neq p$ and $q \nmid n$.
Theorem 3.1. Let $K=\mathbb{Q}(\alpha)$ and q be a rational prime such that $q \neq 2$ and $q \nmid n$. Then:
(1) If $\left(\frac{p}{q}\right)=-1$, then $q \mathcal{O}_{K}=\left\langle q, \alpha^{4}+p \alpha^{2}+p\right\rangle$ is a prime ideal of \mathcal{O}_{K}.
(2) If $p \equiv t^{2}(\bmod q)$ for some $t \in \mathbb{Z}$ and $\left(\frac{-p-2 t}{q}\right)=-1$, then

$$
q \mathcal{O}_{K}=\left\langle q, \alpha^{2}+a_{1} \alpha+a_{0}\right\rangle\left\langle q, \alpha^{2}+b_{1} \alpha+b_{0}\right\rangle
$$

where $a_{1}, a_{0}, b_{1}, b_{0} \in \mathbb{Z}$ satisfy

$$
x^{4}+p x^{2}+p \equiv\left(x^{2}+a_{1} x+a_{0}\right)\left(x^{2}+b_{1} x+b_{0}\right)(\bmod q) .
$$

(3) If $p \equiv t^{2}(\bmod q)$ for some $t \in \mathbb{Z}$ and $\left(\frac{-p-2 t}{q}\right)=1$, then

$$
q \mathcal{O}_{K}=\left\langle q, \alpha+a_{0}\right\rangle\left\langle q, \alpha+b_{0}\right\rangle\left\langle q, \alpha+a_{1}\right\rangle\left\langle q, \alpha+b_{1}\right\rangle,
$$

where $a_{1}, a_{0}, b_{1}, b_{0} \in \mathbb{Z}$ satisfy

$$
x^{4}+p x^{2}+p \equiv\left(x+a_{0}\right)\left(x+b_{0}\right)\left(x+a_{1}\right)\left(x+b_{1}\right)(\bmod q) .
$$

Proof. We prove only the first assertion, the others are similar. As $\operatorname{ind}(\alpha) \not \equiv 0$ $(\bmod q)$, we can use Dedekind's theorem. Since

$$
\left(\frac{p}{q}\right)=-1
$$

then

$$
\left(\frac{p^{2}-4 p}{q}\right)=-1
$$

so by Theorem 3 (iv) in [5], we have that $x^{4}+p x^{2}+p$ is irreducible in $\mathbb{F}_{q}[x]$. Therefore $q \mathcal{O}_{K}=\left\langle q, \alpha^{4}+p \alpha^{2}+p\right\rangle$.

Note that if $3 \nmid n$, then $\operatorname{ind}(K)=1$. By (1) above, we have $3 \mathcal{O}_{K}=\langle 3\rangle$. If $q \mid n$, then $\operatorname{ind}(\alpha) \equiv \operatorname{ind}\left(\alpha^{\prime}\right) \equiv 0(\bmod q)$. So we need to find new generators that satisfy the hypothesis of Theorem 1.1.

Proposition 3.1. Let $K=\mathbb{Q}\left(\alpha^{\prime}\right)$ be with $\alpha^{\prime}=\sqrt{-(p+2 \sqrt{p})}$ and $\beta^{\prime}=$ $\sqrt{-(p-2 \sqrt{p})}$. Then:
(i) $\mathbb{Q}\left(\alpha^{\prime}\right)=\mathbb{Q}\left(\alpha^{\prime}+t \beta^{\prime}\right)$ for all $t \in \mathbb{Z}$;
(ii) $\operatorname{ind}\left(\alpha^{\prime}+t \beta^{\prime}\right)=2^{6}\left(4 t-n\left(1-t^{2}\right)\right)\left(t^{2}-1-t n\right)^{2}$.

Proof. Since $\alpha^{\prime}, \beta^{\prime} \in \mathbb{Q}\left(\alpha^{\prime}\right)$, then $\mathbb{Q}\left(\alpha^{\prime}+t \beta^{\prime}\right) \subseteq \mathbb{Q}\left(\alpha^{\prime}\right)$. By Theorem 2 (iii) in [11] we have that

$$
h(x)=x^{4}+2 p\left(1+t^{2}\right) x^{2}+p\left(4 t-n\left(1-t^{2}\right)\right)^{2}
$$

is irreducible in $\mathbb{Q}[x]$. Since $h\left(\alpha^{\prime}+t \beta^{\prime}\right)=0$, then $h(x)=\operatorname{Irr}\left(\alpha^{\prime}+t \beta^{\prime}, \mathbb{Q}\right)$. Therefore $\left[\mathbb{Q}\left(\alpha^{\prime}+t \beta^{\prime}\right): \mathbb{Q}\right]=4$ and so $\mathbb{Q}\left(\alpha^{\prime}\right)=\mathbb{Q}\left(\alpha^{\prime}+t \beta^{\prime}\right)$.

For the second assertion we know that $\operatorname{ind}\left(\alpha^{\prime}+t \beta^{\prime}\right)=\sqrt{D\left(\alpha^{\prime}+t \beta^{\prime}\right) / \delta_{K}}$ and $D\left(\alpha^{\prime}+t \beta^{\prime}\right)=N\left(h^{\prime}\left(\alpha^{\prime}+t \beta^{\prime}\right)\right)$, where $h^{\prime}(x)$ is the derivative of $h(x)$. Since

$$
h^{\prime}\left(\alpha^{\prime}+t \beta^{\prime}\right)=4\left(\alpha^{\prime}+t \beta^{\prime}\right)\left(\left(\alpha^{\prime}+t \beta^{\prime}\right)^{2}+p\left(1+t^{2}\right)\right)=4\left(\alpha^{\prime}+t \beta^{\prime}\right)\left(2 t^{2}-2-2 t n\right) \sqrt{p},
$$

then $N\left(h^{\prime}\left(\alpha^{\prime}+t \beta^{\prime}\right)\right)=4^{4} p\left(4 t-n\left(1-t^{2}\right)\right)^{2}\left(2 t^{2}-2-2 t n\right)^{4} p^{2}$.
Thus

$$
\operatorname{ind}\left(\alpha^{\prime}+t \beta^{\prime}\right)=2^{6}\left(4 t-n\left(1-t^{2}\right)\right)\left(t^{2}-1-t n\right)^{2}
$$

We note that if $q \mid n$, then $q \mid \operatorname{ind}\left(\alpha^{\prime}+t \beta^{\prime}\right)$ if and only if $q|t-1, q| t$ or $q \mid t+1$.

Theorem 3.2. Let $K=\mathbb{Q}\left(\alpha^{\prime}\right)$ and q be a rational prime such that $q \neq 2,3$ and $q \mid n$. If $\theta_{1}=\alpha^{\prime}+2 \beta^{\prime}$, then:
(1) If $q \equiv 5,7(\bmod 8)$, then $q \mathcal{O}_{K}=\left\langle q, \theta_{1}^{2}+a_{1} \theta_{1}+a_{0}\right\rangle\left\langle q, \theta_{1}^{2}+b_{1} \theta_{1}+b_{0}\right\rangle$, where $a_{1}, a_{0}, b_{1}, b_{0} \in \mathbb{Z}$ satisfy

$$
x^{4}+10 p x^{2}+p(8+3 n)^{2} \equiv\left(x^{2}+a_{1} x+a_{0}\right)\left(x^{2}+b_{1} x+b_{0}\right)(\bmod q) .
$$

(2) If $q \equiv 1,3(\bmod 8)$, then $q \mathcal{O}_{K}=\left\langle q, \theta_{1}+a_{0}\right\rangle\left\langle q, \theta_{1}+b_{0}\right\rangle\left\langle q, \theta_{1}+a_{1}\right\rangle\left\langle q, \theta_{1}+b_{1}\right\rangle$, where $a_{1}, a_{0}, b_{1}, b_{0} \in \mathbb{Z}$ satisfy

$$
x^{4}+10 p x^{2}+p(8+3 n)^{2} \equiv\left(x+a_{0}\right)\left(x+b_{0}\right)\left(x+a_{1}\right)\left(x+b_{1}\right)(\bmod q) .
$$

Proof. We note that for θ_{1} it follows that $K=\mathbb{Q}\left(\theta_{1}\right)$ and $\operatorname{ind}\left(\theta_{1}\right) \not \equiv 0(\bmod q)$. The proof is similar to that of Theorem 3.1.

Now we factorize $q=2$ no matter what $\operatorname{ind}(K)$ is.
Proposition 3.2. Let $K=\mathbb{Q}\left(\alpha^{\prime}\right)$ as in Proposition 3.1. Then:
(i) $\mathbb{Q}\left(\alpha^{\prime}\right)=\mathbb{Q}(\theta)$ with $\theta=\frac{1}{2}\left(1+\alpha^{\prime}\right)$;
(ii) $\operatorname{ind}(\theta)=n$, where $p=4+n^{2}=4 k+1$.

Proof. First note that $\mathbb{Q}(\theta) \subset \mathbb{Q}\left(\alpha^{\prime}\right)$. Let us consider

$$
h(x)=x^{4}-2 x^{3}+2(k+1) x^{2}-(2 k+1) x+k^{2} .
$$

By Theorem 2 (iii) in [11],

$$
h\left(x+\frac{1}{2}\right)=x^{4}+\left(-\frac{3}{2}+2(k+1)\right) x^{2}+\left(-\frac{3}{16}-\frac{k}{2}+k^{2}\right)
$$

is irreducible in $\mathbb{Q}[x]$. Therefore $h(x)$ is irreducible. Since $h(\theta)=0$, we have

$$
\operatorname{Irr}(\theta, \mathbb{Q})=x^{4}-2 x^{3}+2(k+1) x^{2}-(2 k+1) x+k^{2}
$$

and $\mathbb{Q}\left(\alpha^{\prime}\right)=\mathbb{Q}(\theta)$. For the assertion (ii) remember that

$$
D(\theta)=\operatorname{det}\left(\begin{array}{cccc}
4 & 2 & 1-p & \frac{1-3 p}{2} \\
2 & 1-p & \frac{1-3 p}{2} & \frac{(p-1)^{2}}{4} \\
1-p & \frac{1-3 p}{2} & \frac{(p-1)^{2}}{4} & \frac{1+10 p+5 p^{2}}{8} \\
\frac{1-3 p}{2} & \frac{(p-1)^{2}}{4} & \frac{1+10 p+5 p^{2}}{8} & \frac{1+45 p+3 p^{2}-p^{3}}{16}
\end{array}\right)
$$

so $D(\theta)=n^{2} p^{3}$. Therefore $\operatorname{ind}(\theta)=\sqrt{n^{2} p^{3} / p^{3}}=n$.
As a consequence of (ii) above we have $2 \nmid \operatorname{ind}(\theta)$.
Theorem 3.3. Let K be as in Proposition 3.1 and $\theta=\frac{1}{2}\left(1+\alpha^{\prime}\right)$. Then $2 \mathcal{O}_{K}=\langle 2\rangle$.
Proof. Note that $\operatorname{Irr}(\theta)=x^{4}-2 x^{3}+2(k+1) x^{2}-(2 k+1) x+k^{2} \equiv x^{4}+x+1$ $(\bmod 2)$ and $x^{4}+x+1$ is irreducible in $\mathbb{F}_{2}[x]$. Therefore by Dedekind's theorem $2 \mathcal{O}_{K}=\left\langle 2, \theta^{4}+\theta+1\right\rangle$. Finally $N\left(\left\langle 2, \theta^{4}+\theta+1\right\rangle\right)=2^{4}, N(\langle 2\rangle)=N(2)=2^{4}$ and $\langle 2\rangle \subseteq\left\langle 2, \theta^{4}+\theta+1\right\rangle$, so $2 \mathcal{O}_{K}=\left\langle 2, \theta^{4}+\theta+1\right\rangle=\langle 2\rangle$ is principal.

4. Factoring 3 with $\operatorname{ind}(K)=3$

In Section 3 we obtained the factorization of $3 \mathcal{O}_{K}$ in the case $\operatorname{ind}(K)=1$. Remember that $3 \mid n$ if and only if $\operatorname{ind}(K)=3$. If 3 is a common index divisor of K, we can't use Dedekind's theorem. We find new generators.

Lemma 4.1. Let $K=\mathbb{Q}\left(\alpha^{\prime}\right)$ with $\alpha^{\prime}=\sqrt{-(p+2 \sqrt{p})}$ and $\left\{\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right\}$ be the integral basis as in Section 2. Then:
(i) $\frac{1}{2}\left(3+\alpha^{\prime}\right)=1+\omega_{3}+\omega_{4}$;
(ii) $\frac{1}{2}\left(5-\alpha^{\prime}\right)=3-\omega_{3}-\omega_{4}$;
(iii) $\frac{1}{2}\left(5+\alpha^{\prime}\right)=2+\omega_{3}+\omega_{4}$.

Proof. We prove only one case, the others are similar. If $n \equiv 3(\bmod 4)$, then

$$
\omega_{1}=1, \quad \omega_{2}=\frac{1+\sqrt{p}}{2}, \quad \omega_{3}=\frac{1+\sqrt{p}+\alpha^{\prime}+\beta^{\prime}}{4}, \quad \omega_{4}=\frac{1-\sqrt{p}+\alpha^{\prime}-\beta^{\prime}}{4} .
$$

Therefore $1+\omega_{3}+\omega_{4}=\frac{1}{2}\left(3+\alpha^{\prime}\right)$.

Proposition 4.1. Let $K=\mathbb{Q}\left(\alpha^{\prime}\right)$ be as in Lemma 4.1. The ideals

$$
M=\left\langle 3, \frac{3+\alpha^{\prime}}{2}\right\rangle, \quad P_{1}=\left\langle 3, \frac{5-\alpha^{\prime}}{2}\right\rangle, \quad P_{2}=\left\langle 3, \frac{5+\alpha^{\prime}}{2}\right\rangle
$$

satisfy:
(i) $M=3 \mathbb{Z}+\left(3+3 \omega_{3}\right) \mathbb{Z}+\left(-4+\omega_{2}-3 \omega_{3}\right) \mathbb{Z}+\left(1+\omega_{3}+\omega_{4}\right) \mathbb{Z}$;
(ii) $P_{1}=3 \mathbb{Z}+\left(-17+\omega_{3}\right) \mathbb{Z}+\left(-8+\omega_{2}+\omega_{3}\right) \mathbb{Z}+\left(-3+\omega_{3}+\omega_{4}\right) \mathbb{Z}$;
(iii) $P_{2}=3 \mathbb{Z}+\left(-1+\omega_{3}\right) \mathbb{Z}+\left(\omega_{2}+3 \omega_{3}\right) \mathbb{Z}+\left(2+\omega_{3}+\omega_{4}\right) \mathbb{Z}$.

Proof. Only we comment the proof of assertion (i). Since $1+\omega_{3}+\omega_{4}=\frac{1}{2}\left(3+\alpha^{\prime}\right)$, then $M \subset 3 \mathbb{Z}+\left(3+3 \omega_{3}\right) \mathbb{Z}+\left(-4+\omega_{2}-3 \omega_{3}\right) \mathbb{Z}+\left(1+\omega_{3}+\omega_{4}\right) \mathbb{Z}$. The other statement is obtained by solving a linear equation system. The other assertions are similar.

Corollary 4.1. Let $K=\mathbb{Q}\left(\alpha^{\prime}\right), M, P_{1}$ and P_{2} be as in Proposition 4.1. Then $N(M)=9, N\left(P_{1}\right)=N\left(P_{2}\right)=3$.

Proof. Proposition 4.1 provides an integral basis. Next calculate the discriminant.

Since $N\left(P_{1}\right)=N\left(P_{2}\right)=3$ we have that P_{1} and P_{2} are prime ideals of \mathcal{O}_{K} and $P_{1} \cap \mathbb{Z}=P_{2} \cap \mathbb{Z}=3 \mathbb{Z}$. Also it is clear that $P_{1} \neq P_{2}$ and $M \neq \mathcal{O}_{K}$.

Theorem 4.1. Let $K=\mathbb{Q}\left(\alpha^{\prime}\right)$ with $\alpha^{\prime}=\sqrt{-(p+2 \sqrt{p})}$. Let us consider

$$
M=\left\langle 3, \frac{3+\alpha^{\prime}}{2}\right\rangle, \quad P_{1}=\left\langle 3, \frac{5-\alpha^{\prime}}{2}\right\rangle, \quad P_{2}=\left\langle 3, \frac{5+\alpha^{\prime}}{2}\right\rangle .
$$

Then

$$
3 \mathcal{O}_{K}=M P_{1} P_{2}
$$

Proof. First we show that

$$
P_{1} P_{2}=\left\langle 9,6+3 \omega_{3}+3 \omega_{4}, 9-3 \omega_{3}-3 \omega_{4}, \frac{23+p}{4}+\omega_{2}\right\rangle=\left\langle 3,-\omega_{2}\right\rangle,
$$

where $\left\{1, \omega_{2}, \omega_{3}, \omega_{4}\right\}$ is an integral basis as in Section 2, no matter if $n \equiv 1$ or 3 $(\bmod 4)$.

In our case, $\operatorname{ind}(K)=3$ and $p=4 k+1$ implies that $k=3 m$ for some $m \in \mathbb{Z}$. Since $\frac{1}{4}(23+p)+\omega_{2}=3(2+m)+\omega_{2} \in\left\langle 3,-\omega_{2}\right\rangle$, we have $P_{1} P_{2} \subset\left\langle 3,-\omega_{2}\right\rangle$. Likewise

$$
3=2(9)-3\left(\frac{5+\alpha^{\prime}}{2}\right)-3\left(\frac{5-\alpha^{\prime}}{2}\right)
$$

and

$$
\frac{23+p}{4}=3(2+m)
$$

then

$$
\omega_{2}=\left(\frac{23+p}{4}+\omega_{2}\right)-\left(\frac{23+p}{4}\right) \in P_{1} P_{2}
$$

and therefore, $\left\langle 3,-\omega_{2}\right\rangle \subset P_{1} P_{2}$.
Finally, as $-\omega_{2}=\frac{1}{4}\left(\alpha^{\prime 2}+(p-2)\right)$ then

$$
M P_{1} P_{2}=\left\langle 9,3 \frac{3+\alpha^{\prime}}{2}, 3 \frac{\alpha^{\prime 2}+(p-2)}{4}, \frac{3+\alpha^{\prime}}{2} \frac{\alpha^{\prime 2}+(p-2)}{4}\right\rangle .
$$

The following numbers are in $3 \mathcal{O}_{K}$:

$$
\frac{3+\alpha^{\prime}}{2} \frac{\alpha^{\prime 2}+(p-2)}{4}, \quad 9, \quad 3 \frac{\alpha^{\prime 2}+(p-2)}{4}, \quad 3 \frac{3+\alpha^{\prime}}{2}
$$

so $M P_{1} P_{2} \subseteq 3 \mathcal{O}_{K}$. Since $N\left(M P_{1} P_{2}\right)=N\left(3 \mathcal{O}_{K}\right)=3^{4}$, then $M P_{1} P_{2}=3 \mathcal{O}_{K}$.

In the next result we give an integral basis of some prime ideals that will help us to decompose the ideal M.

Proposition 4.2. Let K be as in Theorem 4.1. If $n \equiv 3(\bmod 4)$ let's consider the ideals $Q_{1}=\left\langle 3, \omega_{2}-\omega_{3}\right\rangle, Q_{2}=\left\langle 3,-\omega_{3}\right\rangle$ and if $n \equiv 1(\bmod 4)$, let's consider the ideals $Q_{1}^{\prime}=\left\langle 3,-1-\omega_{4}\right\rangle, Q_{2}^{\prime}=\left\langle 3,2-\omega_{2}-\omega_{4}\right\rangle$. Then:
(i) $Q_{1}=3 \mathbb{Z}+\left(1-\omega_{3}\right) \mathbb{Z}+\left(\omega_{2}-\omega_{3}\right) \mathbb{Z}+\left(1+\omega_{2}+\omega_{4}\right) \mathbb{Z}$;
(ii) $Q_{2}=3 \mathbb{Z}+\left(2+\omega_{2}-\omega_{3}\right) \mathbb{Z}+\left(\omega_{2}+\omega_{4}\right) \mathbb{Z}-\omega_{3} \mathbb{Z}$;
(iii) $Q_{1}^{\prime}=3 \mathbb{Z}+\left(-1-\omega_{4}\right) \mathbb{Z}+\omega_{3} \mathbb{Z}+\left(3-\omega_{2}-\omega_{4}\right) \mathbb{Z}$;
(iv) $Q_{2}^{\prime}=3 \mathbb{Z}+\left(1-\omega_{4}\right) \mathbb{Z}+\left(2+\omega_{3}\right) \mathbb{Z}+\left(-2+\omega_{2}+\omega_{4}\right) \mathbb{Z}$.

Proof. The proof is similar to the proof of Proposition 4.1.

By Proposition 4.2 it is clear that $N\left(Q_{1}\right)=N\left(Q_{2}\right)=N\left(Q_{1}^{\prime}\right)=N\left(Q_{2}^{\prime}\right)=3$ and therefore $Q_{1}, Q_{2}, Q_{1}^{\prime}, Q_{2}^{\prime}$ are prime ideals.

Theorem 4.2. Let $K=\mathbb{Q}\left(\alpha^{\prime}\right)$ with $\alpha^{\prime}=\sqrt{-(p+2 \sqrt{p})}$ and $Q_{1}, Q_{2}, Q_{1}^{\prime}, Q_{2}^{\prime}$ be as in Proposition 4.2. Then

$$
M= \begin{cases}Q_{1} Q_{2} & \text { if } n \equiv 3(\bmod 4) \\ Q_{1}^{\prime} Q_{2}^{\prime} & \text { if } n \equiv 1(\bmod 4)\end{cases}
$$

Proof. If $n \equiv 3(\bmod 4)$, we show that $Q_{1} Q_{2}=\left\langle 3,1+\omega_{3}+\omega_{4}\right\rangle=M$. First we note that $9,-3 \omega_{3}, 3 \omega_{2}-3 \omega_{3} \in\left\langle 3,1+\omega_{3}+\omega_{4}\right\rangle$. As $n=4 l+3$ for some $l \in \mathbb{Z}$, we have $-\omega_{3}\left(\omega_{2}-\omega_{3}\right)=\left(-3 l^{2}-4 l-2\right)-(1+l) \omega_{2}$. By Proposition 4.1, $\left\{3,3+3 \omega_{3},-4+\omega_{2}-3 \omega_{3}, 1+\omega_{3}+\omega_{4}\right\}$ is an integral basis of M and
$\left(-3 l^{2}-4 l-2\right)-(1+l) \omega_{2}=3 x_{1}+\left(3+3 \omega_{3}\right) x_{2}+\left(-4+\omega_{2}-3 \omega_{3}\right) x_{3}+\left(1+\omega_{3}+\omega_{4}\right) x_{4}$,
where $x_{1}=\frac{1}{3}\left(-3 l^{2}-5 l-3\right), x_{2}=-l-1, x_{3}=-l-1, x_{4}=0 \in \mathbb{Z}$. Therefore $-\omega_{3}\left(\omega_{2}-\omega_{3}\right) \in M$ and $Q_{1} Q_{2} \subseteq M$. Since $N\left(Q_{1} Q_{2}\right)=N(M)=9$ we conclude that $Q_{1} Q_{2}=M$. The factorization $M=Q_{1}^{\prime} Q_{2}^{\prime}$ in the case $n \equiv 1(\bmod 4)$ is similar.

Acknowledgement. We thank the referee for the valuable comments, which improved the presentation of this work.

References

[1] Ş. Alaca, B. K.Spearman, K.S. Williams: The factorization of 2 in cubic fields with index 2. Far East J. Math. Sci. (FJMS) 14 (2004), 273-282.
zbl MR
[2] Ş. Alaca, K. S. Williams: Introductory Algebraic Number Theory. Cambridge University Press, Cambridge, 2004.
zbl MR doi
[3] H. Cohen: A Course in Computational Algebraic Number Theory. Graduate Texts in Mathematics 138. Springer, Berlin, 1993.
zbl MR doi
[4] K. Conrad: Factoring after Dedekind. Available at https://kconrad.math.uconn.edu/blurbs/gradnumthy/dedekindf.pdf, 7 pages.
[5] E. Driver, P. A. Leonard, K. S. Williams: Irreducible quartic polynomials with factorizations modulo p. Am. Math. Mon. 112 (2005), 876-890.
zbl MR doi
[6] H. T. Engstrom: On the common index divisors of an algebraic field. Trans. Am. Math. Soc. 32 (1930), 223-237.
zbl MR doi
[7] J. Guàrdia, J. Montes, E. Nart: Higher Newton polygons in the computation of discriminants and prime ideals decomposition in number fields. J. Théor. Nombres Bordx. 23 (2011), 667-696.
zbl MR doi
[8] J. Guàrdia, J. Montes, E. Nart: Newton polygons of higher order in algebraic number theory. Trans. Am. Math. Soc. 364 (2012), 361-416.
zbl MR doi
[9] K. Hardy, R. H. Hudson, D. Richman, K.S. Williams, N. M. Holtz: Calculation of the Class Numbers of Imaginary Cyclic Quartic Fields. Carleton-Ottawa Mathematical Lecture Note Series 7. Carleton University, Ottawa, 1986.
zbl
[10] R. H. Hudson, K. S. Williams: The integers of a cyclic quartic field. Rocky Mt. J. Math. 20 (1990), 145-150.
[11] L.-C. Kappe, B. Warren: An elementary test for the Galois group of a quartic polynomial. Am. Math. Mon. 96 (1989), 133-137.
zbl MR doi

12] P. Llorente, E. Nart: Effective determination of the decomposition of the rational primes in a cubic field. Proc. Am. Math. Soc. 87 (1983), 579-585.
13] J. Montes: Polígonos de Newton de orden superior y aplicaciones aritméticas: Dissertation Ph.D. Universitat de Barcelona, Barcelona, 1999. (In Spanish.)
[14] B. K. Spearman, K. S. Williams: The index of a cyclic quartic field. Monatsh. Math. 140 (2003), 19-70.
zbl MR doi

Authors' address: Julio Pérez-Hernández, Mario Pineda-Ruelas, Departamento de Matemáticas, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco No. 186, Col. Vicentina, CP 09340, Ciudad de México, Mexico, e-mail: galois60@gmail.com, mpr@xanum. uam.mx.

