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Abstract. If K is the splitting field of the polynomial f(z) = x* + pz? + p and p is a
rational prime of the form 4Jrn27 we give appropriate generators of K to obtain the explicit
factorization of the ideal Ok, where ¢ is a positive rational prime. For this, we calculate
the index of these generators and integral basis of certain prime ideals.
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1. INTRODUCTION

Let K be a number field of degree n and Ok the ring of integers K. We choose
a € Ok such that K = Q(a), and denote by Jdx the discriminant of K and
D(a) the discriminant of the basis {1,q,...,a" 1}. We associate to « the pos-
itive integer ind(a) = /D(a)/dx called the inder of a. We know that dr and
D(a) are related by D(a) = det(C)%§k, where C is the coefficient matrix that
maps the basis 1,q,...,a" ! to some fixed integral basis of K. Since D(a) =
ind(a)?0, then ind(a) = |det(C)|. According to the Theorem 9.1.2 of [2] we have
ind(0) = [Ok : Z[a]], so that [Ok : Z][a]] = |det(C)|. Let p be a positive rational
prime and let P, ..., P, be prime ideals in O such that

pOK :Pfl...Pgeg.

If T # {0} is any ideal of Ok, we denote by N(I) = |Ok /I| the norm of the ideal I.
Moreover, if ai,...,a, is an integral basis of I, then N(I) = \/D(az,...,an)/dk.
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Particularly, N(P;) = |Og/P;| = p/i for i = 1,...,n and some f; € N. If K/Q is
a Galois extension, then e = e;1 = ... = ¢4, f = fi = ... = fg and efg = n. If

G = Gal(K/Q) and o € Ok, we denote the norm of a by N(a) = [] o(«).
oeG
If f(x) =ao+ a1z +...+ap_12" ' + 2" = Irr(a, Z), then N(a) = (—1)"ao.

An old problem in algebraic number theory consists in explicitly giving prime
ideals P; with generators and positive integers e; such that pOx = P;* ... Py If p
is a prime number such that p { ind(«) then we can decompose theoretically pOk as
Dedekind’s theorem ensures. Conrad has a comprehensive exposition of Dedekind’s
theorem in [4].

Theorem 1.1 (Dedekind). Let K = Q(«) be a number field with o € O, p be
a rational prime and f(z) = Irr(o, Q) € Z[z]. Let us consider the natural map
— Z]x] — Fplz], where F, = Z/pZ. Let f(z) = gi(x)*...g.(z)°, where
g1(x),...,g-(x) are distinct irreducible polynomials in Fp[z] and ei,...,e, are
positive integers. For i = 1,...,r let fi(x) be any polynomial of Z[x] such that
fi(z) = gi(x) and deg(f;(x)) = deg(gi(x)). Set

P, = (p, fi(a)).
If pt Ok : Z[a]], then Py,..., P, are distinct prime ideals of Ok with

pOx =P{'...P and N(P;) = pieslfi=)),

T

But if p | ind(«) or p | [Ok : Z[a]] we have the question: can we factorize pOg?
Obviously we can’t factorize pOg using Dedekind’s theorem, unless we could
change « for another o/ € Of such that p { ind(e’) and K = Q(¢’/). Remem-
ber that ind(K) = ged{ind(a): o € Ok, K = Q(a)}, so, if p | ind(K), we can’t
find o’ as we wish.

In cubic number fields K, Llorente and Nart (see [12]) give the factorization of pOg
for any prime p, but don’t give generators of the prime ideal factors. Following
the cubic case, Alaca et al. (see [1]) give the explicit factorization of 20k, where
ind(K) = 2. Guardia et al. (see [7]) build an algorithm to compute generators for
the prime ideals P; and the discriminant of any number field. This algorithm is a
p-adic factorization method based on Newton polygons of higher order. The theory
of Newton polygons of higher order is developed by Montes in [13] and revised in [8].
We suggest the interested reader to delight in reading [7]; we also suggest reading
Chapter 6 in [3], where the reader can find an introduction to this subject and,
especially, a version of Dedekind’s theorem without using the hypothesis p { ind(a).
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In this paper we are interested in getting the factorization of ¢Ok with K = Q(a),
where f(a) =0, f(z) = 2* + px? + p and, for some n € N, p = 4 + n? is a rational
prime. We don’t use Newton polygons; we use explicitly the integral basis of cyclic
quartic fields (see [10]), we calculate the integral basis of some prime ideals and we
make calculation of the index of generators of K. In our case, it is relatively easy
to factorize Ok, when ¢ > 2. For this reason, we start Section 3 by factoring ¢Ox
for any prime ¢ # p such that ¢ # 2 and ¢ 1 n, this includes the first case of the
factorization of ¢ = 3. We finish Section 3 by factoring ¢ = 2. In Section 4 we study
the case when K has index 3 and ¢ = 3.

2. PRELIMINARIES

In this paper we shall consider a quartic field K = Q(«) with

a=y/-30-nP)

and p = 4 + n? € N being a prime number. If f(z) = z* + b2? +d € Z[z] is
irreducible, then the Galois group of f(x) can be V, Cy or D4, where V is the Klein
4-group, C4 is the cyclic group of order 4, and D, is the dihedral group of order 8.
If f(z) = 2* + px® + p with p a prime number and a* + pa? + p = 0, then, according
to Theorem 3 in [11], K = Q(a)/Q is cyclic if and only if p = 4 + n?. Hardy et
al. (see [9]) show that any cyclic quartic field can be expressed in a unique way as

a(\/AD + BVD)),

where A, B,C,D € 7 are such that A is an odd squarefree integer, D = B? + C?
is squarefree, B > 0, C' > 0 and A, D are relatively prime. Hudson and Williams
(see [10]) give an integral basis for the integer ring of K = @( A(D + B\/E)) In
our case, K = Q(«). Since

, n+2 D

o = 5 OH_TQ’

then Q(a’) C Q(a). But Irr(a/, Q) = 2* + 2px? + n?p, so

K=0Q)=0(), o =y/-(p+2p), §=y/~(p-2vp)

where p = 4 + n? is a rational prime. According to the unique theorem in [10], an

integral basis for Ok is as follows: if n =3 (mod 4) then

R Y/ e R/ A

_1_\/5_'_0/_6/
2 ’ 4 ’ B

4

w1 = 1, wo w4
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and if n =1 (mod 4) then

LY/ _ 1+ Vptd=p " _1-ptd+p

w; =1, ws 5 3 1 4 1

In any case 6x = p>, and so p is the only ramified prime.

Theorem 2.1. Let K = Q(«) with

o= —%(p—n\/]_)).

Then pOy = ().

Proof. We have

D 24 4,3
ind(a) = \/ 5(;0 — \/ Z3p — 22n27

then ind(a) # 0 (mod p). Since Irr(e, @) = x* + pz? + p, by Theorem 1.1, pOx =
(p, o)t = (o). U

Since K is a Galois extension, then any prime g # p does not ramify, i.e. e = 1
and fg=4,sowehaveg=1,g=2o0r g =4.

On the other hand, Engstrom in [6] shows that for any quartic number field K,
ind(K) =1,2,3,4,6,12. Sperman and Williams in Theorem A (see [14]) show that,
in the cyclic case, ind(K) assumes all of these values and give necessary and suf-
ficient conditions for each to occur. In our case, according to Theorem A of [14],
ind(K)=1,3.

Theorem 2.2. Let K = Q(a) with p = 4 + n? be a rational prime. Then
ind(K) = 3 if and only if 3 | n.

Proof. By Theorem A of [14], we have that if p = 2 (mod 3), then ind(K) = 1;
and if p = 1 (mod 3), then ind(K) = 3. If ind(K) = 3, then p # 2 (mod 3). Since
p=4+n?>5 then p=1 (mod 3). Therefore n =0 (mod 3). If n = 3t for some
t € 7, we have

p=4+9>=1 (mod 3),

so ind(K) = 3. O

474



3. FACTORING ¢ # p
Let ¢ € N be a rational prime number. To use Dedekind’s theorem to factor-
ize qOk in Ok where K = Q(a) = Q(a’), we need that ind(a) # 0 (mod ¢) or
ind(a/) £ 0 (mod q), but if
ind(a) = 2?n?, ind(a’) = 2%n,
then we can factorize any prime q # 2, ¢ # p and ¢ { n.

Theorem 3.1. Let K = Q(«) and ¢ be a rational prime such that ¢ # 2 and
gtn. Then:

(1) If (%) = —1, then qO = (q,a* + pa® + p) is a prime ideal of Ok.
(2) Ifp =1 (mod q) for some t € Z and (=Z2) = —1, then

q
@Ok = (q,0* + a1a + ao){q, a® + bya + by),
where a1, ag,b1,bg € Z satisfy
a* 4+ pr? 4+ p = (2% + a17 + ag) (2 + bz + by) (mod q).
(3) If p=1t2 (mod q) for some t € Z and (%_Qt) =1, then
90K = (¢, + ao)(q, a + bo) (g, & + a1) (g, & + by),

where a1, ag,b1,bg € Z satisfy

a* + pr? 4+ p = (z+ao)(z + bo)(x + a1)(x + by) (mod q).

Proof. We prove only the first assertion, the others are similar. As ind(«a) #Z 0
(mod ¢), we can use Dedekind’s theorem. Since

-

2_4
(p p):_l,
q

then

so by Theorem 3 (iv) in [5], we have that 2* +pz?+p is irreducible in F,[z]. Therefore
0Ok = (q,a" + pa® + p). =
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Note that if 3 { n, then ind(K) = 1. By (1) above, we have 30k = (3). If ¢ | n,
then ind(a) = ind(e/) = 0 (mod ¢). So we need to find new generators that satisfy
the hypothesis of Theorem 1.1.

Proposition 3.1. Let K = Q(o') be with o/ = /—(p+2y/p) and ' =

V—(p—2y/p). Then:
(i) Q) =0Q(«/ +t8’) for allt € Z;
(i) ind(a/ +tB') = 25(4t — n(1 —2))(t? — 1 — tn)2.

Proof. Since o/, 8 € Q(<), then Q(a/+¢8") C Q(’). By Theorem 2 (iii) in [11]
we have that
h(z) = z* + 2p(1 + t*)2? + p(4t — n(1 — t%))?

is irreducible in Q[z]. Since h(a’ +t8") = 0, then h(z) = Irr(o’ +t5’, Q). Therefore
[Q(a' +t5") : Q] = 4 and so Q(a’) = Q(a/ +tF").

For the second assertion we know that ind(a/ + tf') = /D(a/ +t3')/dx and
D(a/ +t8) = N(W (! +t5')), where h'(x) is the derivative of h(x). Since

W (! +18) = 4o +t8) (0 +18')2 + p(1 +12)) = 4(a’ +18') (26> — 2 — 2tn) /5,

then N(h/(o/ +t8')) = 4%p(4t — n(1 — 2))%(2t% — 2 — 2tn)*p>.
Thus
ind(a/ +t8') = 25(4t — n(1 — t?))(t* — 1 — tn)>.

O

We note that if ¢ | n, then ¢ | ind(a/ +¢8’) if and only if ¢ |t —1, ¢ | tor ¢ | t+ 1.

Theorem 3.2. Let K = Q(c’) and ¢ be a rational prime such that q¢ # 2,3 and
q|n. If0; =o' + 20, then:

(1) If ¢ = 5,7 (mod 8), then qOx = {(q,0% + a101 + ao){q, 03 + b101 + by), where
ai, aop, bl, bope”Z satisfy

x* +10px? + p(8 +3n)? = (2 + a1x + ag)(2® 4+ bz + by) (mod q).

(2) If ¢ = 1,3 (mod 8), then qOx = (q,th + ao)(q, 01 + bo)(q, 01 + a1)(q, 01 + b1),
where a1, ag,b1,bg € Z satisfy

x* +10p2? + p(8 4+ 3n)% = (x + ao)(x + bo)(x + a1)(z + by) (mod gq).

476



Proof. We note that for 6, it follows that K = Q(¢;) and ind(6;) # 0 (mod q).
The proof is similar to that of Theorem 3.1. O

Now we factorize ¢ = 2 no matter what ind(K) is.

Proposition 3.2. Let K = Q(/) as in Proposition 3.1. Then:

(i) Q(e/) =Q(F) with 6 = (1 +');
(ii) ind(0) = n, where p = 4 +n? = 4k + 1.

Proof. First note that @(#) C Q(a’). Let us consider
h(z) = z* — 223 + 2(k + 1)2% — (2k + 1)z + k2.

By Theorem 2 (iii) in [11],

N 3 ) 3 ko,
h(o+3) =at+ (=5 +20+ D)+ (-5 - 5 +?)
is irreducible in Q[z]. Therefore h(x) is irreducible. Since h(f) = 0, we have

Irr(6, Q) = o* — 223 + 2(k + )2 — 2k + 1)z + &?

and Q(a’) = Q(H). For the assertion (ii) remember that

1-3p
4 2 1—

P 2

1-— —1 2

2 1-p 231’ (p . )
p 5 1 <

1-3p (p—12 14+10p+5p> 1+45p+3p> —p°
2 4 8 16
so D(0) = n?p?. Therefore ind(0) = \/n2p3/p3 = n. 0

As a consequence of (ii) above we have 2 { ind(6).

Theorem 3.3. Let K be as in Proposition3.1 and § = 1(1+¢/). Then20g = (2).

Proof. Note that Irr() = 2* — 223 +2(k + 1)2® — 2k + Dz + k> =2 + 2+ 1
(mod 2) and z* + z + 1 is irreducible in Fy[x]. Therefore by Dedekind’s theorem
20k = (2,6 + 6+ 1). Finally N((2,6* + 6 + 1)) = 2%, N((2)) = N(2) = 2* and
(2) € (2,0* +0 +1), 50 20k = (2,0* + 0 + 1) = (2) is principal. O
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4. FACTORING 3 WITH ind(K) =3

In Section 3 we obtained the factorization of 3Ok in the case ind(K) = 1. Re-
member that 3 | n if and only if ind(K) = 3. If 3 is a common index divisor of K,
we can’t use Dedekind’s theorem. We find new generators.

Lemma 4.1. Let K = Q(«) with o/ = \/—(p + 2,/p) and {w1, w2, ws,ws} be the
integral basis as in Section 2. Then:
(i) 33+ ) =1+ ws+wy;
(i) $(6— o) =3 — w3 —wy;

(111) %(5 + O/) =2+ w3 + w4.

Proof. We prove only one case, the others are similar. If n =3 (mod 4), then

_ 14D

1+ \pta +p " 11— \p+a =p
5 = = :

w1 =1, wo 1 ) 4 1

w3

Therefore 1+ w3 4+ ws = (3 + o). O

Proposition 4.1. Let K = Q(c/) be as in Lemma 4.1. The ideals

M:<3,3—;O/>, P1:<3,5_a/>, P2:<375+o/>

satisfy:

(i) M=3Z+ (3+3ws)Z+ (—4 + w3z —3w3)Z + (1 + w3 +w4)Z;
(ll) P =37+ (—17+0J3)Z + (—8 + wa +OJ3)Z + (—3 + w3 +0J4)Z,‘
(i) Po =324 (14 ws)Z + (w2 + 3ws3)Z + (2 + w3 + w4)Z.

Proof. Only we comment the proof of assertion (i). Since 1+ws+ws = 3(3+a’),
then M C 37+ (34 3w3)Z + (—4+w2 —3w3)Z + (1 +ws +w4)Z. The other statement
is obtained by solving a linear equation system. The other assertions are similar. [

Corollary 4.1. Let K = Q(«'), M, P, and P, be as in Proposition 4.1. Then
N(M)=9, N(P) = N(P) =3.

Proof. Proposition 4.1 provides an integral basis. Next calculate the discrimi-
nant. O
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Since N(P;) = N(P2) = 3 we have that P; and P, are prime ideals of Ok and
PiNZ=P,N7Z=3Z. Also it is clear that P, # P, and M # Ok.

Theorem 4.1. Let K = Q(a’) with o/ = \/—(p+ 2,/p). Let us consider
3+d 5—a 5+d
W) n (), n (b 25

Then
30k = MP Ps.

Proof. First we show that
23
fua:<&6+&@+&%9—&%—3m,—%£+wﬁ=4&—w%
where {1, w9, ws,w,s} is an integral basis as in Section 2, no matter if n = 1 or 3
(mod 4).

In our case, ind(K) = 3 and p = 4k + 1 implies that k = 3m for some m € Z.
Since $(23 4 p) +ws = 3(2+m) + w2 € (3, —w2), we have P; P, C (3, —ws). Likewise

3:2(9)_3(54—&’)_3(5—2@)

2
and
%:p=3@+mL
then
wr= (Bt re) - (B1F) e

and therefore, (3, —w3) C P Ps.

Finally, as —ws = +(a/2 + (p — 2)) then

3+a _a?+(p—-2) 3+ ?+(p-2
MH&:GM .3 f ) > f >>

The following numbers are in 30k

3+a %+ (p-2)
2 4 ’

a?+(p—2) 33—!—0/
) 2 ?

9, 3

SO MP1P2 Q 30]{ Since N(M.Plpg) = N(3OK) = 34, then MPl.PQ = 30]{ O

479



In the next result we give an integral basis of some prime ideals that will help us
to decompose the ideal M.

Proposition 4.2. Let K be as in Theorem 4.1. If n = 3 (mod 4) let’s consider
the ideals Q1 = (3,w2 —ws), Q2 = (3, —ws3) and if n = 1 (mod 4), let’s consider the
ideals Q) = (3, —1 — w4), Q4 = (3,2 — wa — wy). Then:

(i) Q1 =37+ (1 —w3)Z + (w2 —w3)Z + (1 + wa +w4)Z;
(il) Q2=374+ (24 ws —w3)Z + (wo + w4)Z — w3Z;
(i) Q) =3Z+ (-1 —wa)Z +wsZ + (3 —wa —w4)Z;
(iv) Q=32+ (1 —wa)Z + (24 w3)Z + (—2 + w2 + wa4)Z.

Proof. The proof is similar to the proof of Proposition 4.1. O

By Proposition 4.2 it is clear that N(Q1) = N(Q2) = N(Q}) = N(Q3) = 3 and
therefore Q1, Q2, Q}, Q% are prime ideals.

Theorem 4.2. Let K = Q(o/) with o/ = \/—(p+2/p) and Q1, Q2, Q}, Q5 be
as in Proposition 4.2. Then

M Q1Q2 if n =3 (mod 4),
B Q1Q5 if n=1 (mod 4).

Proof. If n = 3 (mod 4), we show that Q1Q2 = (3,1 + w3 + w4) = M. First
we note that 9, —3ws, 3ws — 3ws € (3, 1 + w3 + w4). As n = 41 + 3 for some
| € 7, we have —w3(ws — w3) = (=31%> — 4l — 2) — (1 + l)ws. By Proposition 4.1,
{3,3+4 3ws, —4 4+ wa — 3ws, 1 + w3 + w4} is an integral basis of M and

(—312 — 41— 2) — (1 —l—l)(UQ =3r1+ (3+3W3)J)2 + (—4+w2 —3&)3)1‘3 + (1 “+ w3 —|—w4)x4,
where z; = %(—?)l2 —51—-3), 20 = -l —1, 23 = -l —1, 24 = 0 € Z. Therefore

—w3(ws —w3) € M and Q1Q2 C M. Since N(Q1Q2) = N(M) = 9 we conclude that
Q1Q2 = M. The factorization M = Q} Q) in the case n = 1 (mod 4) is similar. O
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