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Abstract. We shall show that there exist sofic groups which are not locally embeddable
into finite Moufang loops. These groups serve as counterexamples to a problem and two
conjectures formulated in the paper by M.Vodička, P. Zlatoš (2019).
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1. Introduction

A class K of groupoids has the finite embeddability property (FEP for short) if for

every algebra (G, ·) ∈ K and each nonempty finite subset X ⊆ G there is a finite

algebra (H, ∗) ∈ K extending (X, ·), i.e. X ⊆ H and x ·y = x∗y for all x, y ∈ X such

that x · y ∈ X . A groupoid (G, ·) is locally embeddable into a class of groupoidsM

if for every nonempty finite set X ⊆ G there is (H, ∗) ∈ M such that X ⊆ H and

x · y = x ∗ y for all x, y ∈ X such that x · y ∈ X .

The notion of FEP was firstly introduced by Henkin in [6] for general algebraic sys-

tems and the more general notion of locall embeddability was introduced by Mal’tsev

in [10], [11]. Clearly, class K has FEP if and only if every grupoid in K is locally

embeddable into the class of finite groupoids in K.

There are strong connections between the finite (local) embeddability properties

and sofic groups (originally introduced by Gromov in his work on coarse geometry),
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which are the widest known class of groups satisfying the surjunctivity condition

for group automata over them, see [2]. The notion of a sofic group is given later in

Definition 2.6.

These notions have been intensively studied; we shall mention here just some

papers which motivated our results. Gordon and Glebsky in [5] characterized sofic

groups as the groups which are “approximately locally embeddable” into finite quasi-

groups. Ziman in [17] has shown that the class of all loops with antiautomorphic

inverses, i.e. loops with two-sided inverses satisfying the identity (xy)−1 = y−1x−1,

has the FEP.

The present paper is a direct reaction to the article by Vodička and Zlatoš (see [15])

in which they study local embeddability of groups into finite IP loops (the precise

definition is given in Definition 2.1). The main result of this paper is that the class

of all IP loops has FEP. Known results (including the mentioned ones) lead to some

natural questions and the authors in the discussion in the last part of their paper

formulate some problems and conjectures.

We will give answers to one of their problem, namely Problem 2 and to both

conjectures formulated as follows.

Problem 2. Does the class of all Moufang loops have the FEP?

Conjecture 1. Every group is locally embeddable into finite Moufang loops.

Conjecture 2. A group is sofic if and only if it is locally embeddable into finite

Moufang loops.

We are going to give a negative answer to Problem 2 and Conjecture 1. By

showing that there are sofic groups not locally embeddable into Moufang loops we

will refute one implication in Conjecture 2; the remaining implication remains open.

Thus, it seems to make sense to examine more closely the class of all groups locally

embeddable into finite Moufang loops in the future. Clearly, it is an extension of

the class of all groups locally embeddable into finite groups (LEF groups) studied

by Gordon and Vershik (see [14]), however, it is not clear whether this extension is

proper. And it is still reasonable to expect that all such groups are sofic.
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2. Results

Definition 2.1. An algebra (L, ·, 1,−1) with a binary operation of multiplica-

tion “·”, a distinguished element 1 denoting the unit, and a unary operation −1 of

taking inverses is called an IP loop if it satisfies the identities:

1x = x = x1 and x−1(xy) = y = (yx)x−1.

Then the identitites x−1x = 1 = xx−1 and (x−1)−1 = x easily follow.

The IP loop L is diassociative (DIP loop for short) if for any terms s(x, y), t(x, y),

u(x, y) in just two variables x, y using “·”, 1, −1 the identity

s(tu) = (st)u

is satisfied in L.

Equivalently, the IP loop L is a DIP loop if and only if any IP subloop 〈x, y〉

generated by two elements x, y ∈ L has the operation associative, it means that

〈x, y〉 is a group.

Definition 2.2 ([13]). A loop is called a Moufang loop if it satisfies one (and

therefore all) of the following four equivalent identities:

x(y(xz)) = ((xy)x)z, (xy)(zx) = (x(yz))x,

x(y(zy)) = ((xy)z)y, (xy)(zx) = x((yz)x).

The definition of Moufang loops, the equivalence of their defining identities as well

as the proof of Moufang’s theorem can be found e.g. in [13]. The diassociativity of

Moufang loops is a consequence of a Moufang’s theorem. A short proof of Moufang’s

theorem can be found in [4].

We shall use some graph theoretical notions in the next proof (see [9]). Let G be a

group, S ⊆ G be a finite symmetrical generating set of G not containing the identity

element 1 of G. Let Γ = Γ(G,S) be a Caley graph of the group G with edges colored

by elements of the generating set S. We shall use the distance dist(g, h) between two

elements g, h ∈ G, which is defined as the length of a shortest path in the graph Γ

which connects vertices g, h (in fact, it is the length of a shortest word consisting of

elements of S which can express the group element gh−1 in G, the identity element 1

is by definition expressed as a word of length 0). The function dist is a metric on G.

For a ∈ G we put |a| = dist(1, a).

Denote BΓ(r) = {a ∈ G : |a| 6 r}, for any non-negative integer r, the ball of

radius r. In particular, BΓ(0) = {1}, BΓ(1) = {1} ∪ S. Since set S is finite, BΓ(r)
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is finite for any r. Clearly, a ∈ BΓ(|a|) for any a ∈ G. As dist is a metric on G, for

m,n > 0 and g ∈ BΓ(m), h ∈ BΓ(n) we have g ◦ h ∈ BΓ(m+ n).

The following theorem is our main tool.

Theorem 2.3. Let (G, ◦) be a group with two generators. Then the following

conditions are equivalent:

(i) G is locally embeddable into finite groups;

(ii) G is locally embeddable into finite Moufang loops;

(iii) G is locally embeddable into finite diassociative IP loops.

P r o o f. (i) ⇒ (ii): This is true because every group is a Moufang loop.

(ii) ⇒ (iii): This is also true because it is known that every Moufang loop is a

diassociative IP loop.

(iii) ⇒ (i): Let (G, ◦) be a group with two generators x, y. Assume that G is

locally embeddable into finite DIP loops. Let X = {a1, . . . , an} ⊆ G be a finite set.

We will prove that we can find a finite DIP loop (H ′, ∗′) which is two-generated (that

means that it is a group), X ⊆ H ′ and ai ∗
′ aj = ai ◦ aj for any ai, aj ∈ X such that

ai ◦ aj ∈ X .

The new DIP loop (H ′, ∗′) on two generators will be constructed in the following

way. Let 1 be the identity element of G, S = {x, y, x−1, y−1}. We shall use the

Caley graph Γ = Γ(G,S), the distance dist and the norm |a| of an element a ∈ G

introduced above. Denote

d = max{|a1|, . . . , |an|}.

Then X ⊆ BΓ(d). Let X
′ = BΓ(d). The partial operation restricted from G to the

setX ′ contains all information which is necessary to generate any element b ∈ X ′ as a

group element using generators x, y. The element b ∈ X ′ has |b| = dist(1, b) = k 6 d

and that means that we can write b as a word g1◦. . .◦gk, where gi ∈ S for i = 1, . . . , k.

This is a reduced word (that means that for two consecutive elements we always have

gi ◦ gi+1 6= 1), otherwise it would not be a shortest way to write the element b in the

group G. The elements of the path connecting 1 and b in the Caley graph Γ are

b0 = 1, b1 = g1, b2 = g1◦g2, . . . , bk−1 = g1◦g2◦. . .◦gk−1, bk = b = g1◦g2◦. . .◦gk

and we know that for 0 6 l 6 k − 1, bl, gl+1 ∈ X ′ and also bl ◦ gl+1 = bl+1 ∈ X ′.

The set X ′ ⊆ G is finite and, by assumption, there exits a finite DIP loop (H, ∗)

such that X ′ ⊆ H and a ∗ b = a ◦ b for any a, b ∈ X ′ such that a ◦ b ∈ X ′.

According to our construction of X ′, we can calculate all the elements of X ′, in

particular a1, . . . , an, inside of H , starting from 1 and subsequently multiplied by

elements from the set {x, y, x−1, y−1} ⊆ X ′ and these calculations coincide with

those in G.
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Let H ′ = 〈x, y〉 be the IP subloop of the loop (H, ∗), generated by x, y ∈ H . Then

X ′ ⊆ H ′. As (H, ∗) is a finite DIP loop, (H ′, ∗) is a finite group. Since X ⊆ X ′ ⊆ H ′,

it is a finite group containg X . This shows that the group G is locally embeddable

into finite groups. �

Now we introduce so called Baumslag-Solitar groups which will serve as a coun-

terexample to Problem 2 and both conjectures of Vodička and Zlatoš.

Definition 2.4 ([1]). The Baumslag-Solitar groups are the two-generated groups

BS(m,n) = 〈a, b : a−1bma = bn〉 for |m|, |n| > 1, |m| 6= |n|.

By the results which can be found in [12], Baumslag-Solitar groups are not resid-

ually finite and therefore they are not locally embeddable into finite groups. They

are two-generated and by Theorem 2.3 we have:

Corollary 2.5.

(a) The Baumslag-Solitar groups BS(m,n) for |m|, |n| > 1, |m| 6= |n| are not locally

embeddable into Moufang loops.

(b) The class of Moufang loops does not have the FEP.

This disproves Problem 2 and, at the same time, it means that the answer to

Conjecture 1 is no.

For Conjecture 2 we need to recall some more definitions and results.

Definition 2.6 ([3]). A group G is called sofic if for every finite subset F of G

and every ε > 0 there exist an integer n > 1 and a map ϕ : G → Sn such that

(a) for every g ∈ F \ {e}, dist(ϕ(g), id) > 1− ε, where e is the identity element of G,

(b) for all g1, g2 ∈ F , dist(ϕ(g−1
1 g2), ϕ(g1)

−1ϕ(g2)) < ε,

where dist(σ, τ) denotes the normalized Hamming distance between permutations

σ, τ ∈ Sn, i.e. the number of points not fixed by σ
−1τ , divided by n.

Definition 2.7 ([3], [16]). A group G is amenable if and only if for every finite

set K ⊆ G and every ε > 0 there is a (K, ε)-invariant set, it means a finite set F ⊆ G

such that |KF \ F | < ε|F |. A monotile for a group G is a finite set T ⊆ G such

that G is a disjoint union of right translates of T . We will say that a group G is

monotileably amenable (MTA for short) if for every finite set K ⊆ G and every ε > 0

there is a monotile T for G that is (K, ε)-invariant.

The notion of MTA groups was introduced in [16]. It is known that all amenable

groups are sofic (see e.g. [2], Proposition 7.5.6) which means that all MTA groups

are sofic as well. Weiss in [16] proved that every residually finite amenable group

and every solvable (hence every Abelian, too) group is an MTA group.
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Moreover, Weiss using his methods and a result from [1] showed that specifically

the Baumslag-Solitar group BS(2, 3) is an MTA group, see [16]. Hence, BS(2, 3) is

a two-generated sofic group, which is not locally embeddable into finite groups. By

Theorem 2.3 we have:

Corollary 2.8. The MTA (hence sofic) group BS(2, 3) is not locally embeddable

into finite Moufang loops.

This fact disproves Conjecture 2. In fact, this means more, namely that there are

MTA groups (and amenable groups as well) which are not locally embeddable into

finite Moufang loops.

To describe more counterexamples we need to use some additional tools.

Definition 2.9 ([7], [8]). Let G be a group with presentation G = 〈S | R〉, let

θ : H → G be an injective homomorphism from a subgroup H of G and t be a new

symbol not contained in S. We denote

G∗θ = 〈S, t | R, t−1ht = θ(h) ∀h ∈ H〉

the group called the HNN extension of G relative to θ. The original group G is called

the base group for the construction, the subgroups H and im(θ) are the associated

subgroups. The new generator t is called the stable letter.

The next proposition can be found in [3] as Corollary 3.6.

Proposition 2.10. If K = G∗θ is an HNN extension of a sofic group G relative

to an injective homomorphism θ : H → G, where H is a monotileably amenable

subgroup of G, then K is sofic.

We are going to use this proposition to show that the Baumslag-Solitar groups

BS(m,n) are sofic.

Let G = 〈a〉 ∼= (Z,+), H = 〈am〉 and θ : H → G be defined by

θ(am) = an, it means that for k ∈ Z, θ((am)k) = (an)k.

Then θ is clearly an injective homomorphism and by the definition of HNN extension

we see that

BS(m,n) ∼= G ∗θ .

As we have already mentioned, the Abelian groupH is an MTA group, (Z,+) is sofic

and by Proposition 2.10, G∗θ is sofic. Thus, the Baumslag-Solitar groups BS(m,n)

with |m|, |n| > 1, |m| 6= |n|, are sofic groups which are not locally embeddable into

finite groups and by Theorem 2.3 we have:
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Corollary 2.11. The Baumslag-Solitar groups BS(m,n) with |m|, |n| > 1,

|m| 6= |n| are sofic groups which are not locally embeddable into finite Moufang loops.

3. Final remarks

Our results together with the original problems and conjectures by Vodička and

Zlatoš suggest some challenging questions following up our discussion from the last

section of the introduction:

(1) Is every group locally embeddable into the class of all finite Moufang loops

already sofic?

(2) Does the class of all groups locally embeddable into the class of all finite Moufang

loops coincide with the class of all LEF groups or is it a proper extension of it?

(3) Does the class of all monoassociative IP loops have the FEP?

(4) Is every group locally embeddable into the class of all finite monoassociative IP

loops?

Of course the first alternative from (2) implies (1), however (1) could be true even

if this is not the case. Similarly, (the positive answer to) (3) implies (the positive

answer to) (4), however (4) could be true, even if (3) fails. Moreover, if (4) is true

then the class of all monoassociative IP loops would become a hot candidate for

a minimal variety into the finite members of which all the groups can be locally

embedded.
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