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Abstract. We provide a complete description of the perturbation class and the commuting
perturbation class of all generalized quadratic bounded operators with respect to a given
idempotent bounded operator in the context of complex Banach spaces. Furthermore,
we give simple characterizations of the generalized quadraticity of linear combinations of
two generalized quadratic bounded operators with respect to a given idempotent bounded
operator.

Keywords: generalized quadratic operator; perturbation classes problem

MSC 2020 : 47A55, 47B99

1. Introduction

Throughout this paper, X denotes a complex Banach space with dimX > 3, and

B(X) denotes the algebra of all bounded linear operators acting on X .

Given a subset Λ ⊂ B(X), the perturbation class P(Λ) and the commuting per-

turbation class Pc(Λ) of Λ are, respectively, defined by

P(Λ) = {S ∈ B(X) : S + T ∈ Λ for every T ∈ Λ}

and

Pc(Λ) = {S ∈ B(X) : S + T ∈ Λ for every T ∈ Λ commuting with S}.

The perturbation class problem of Λ concerns the study of the components of P(Λ)

and Pc(Λ), and giving a complete characterization of them. Note that in order to

check whether an operator S satisfies the definition of a perturbation class, we have

to study the properties of the sum S + T for T in a family of operators and not just

the action of S, which can be laborious in the general case.
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The concept of perturbation classes has been considered in the general situation

of Banach algebras. Indeed, it is well-known that the perturbation class of the set

of all invertible elements in a Banach algebra is the radical of that algebra; and its

commuting perturbation class is the set of all quasinilpotent elements (see [7], [13]).

For more details on the perturbation classes problem, we refer the interested readers

to [1], [5], [6], [7], [9], [13] and the references therein.

Recall that an operator T ∈ B(X) is said to be algebraic if there exists a nonzero

complex polynomial P such that P (T ) = 0. In particular, when T is annihilated by

a complex polynomial of degree at most two, it is said to be quadratic.

One of the interesting results in [8] asserts that the perturbation class of the set

of all bounded quadratic operators on X is the one-dimensional subspace of scalar

multiples of the identity operator. Afterwards, in [9], the authors establish that

the perturbation class of the set of all bounded algebraic operators, acting on an

infinite-dimensional complex Hilbert space, consists exactly of finite-rank operators

plus scalar multiples of the identity, and its commuting perturbation class is the set

itself. However, the perturbation class of such operators in the context of infinite-

dimensional Banach spaces is not well known.

Since generalized quadratic operators are algebraic, we propose in this paper to

consider the perturbation class problem, as well as the commuting perturbation class

problem, of all generalized quadratic operators with respect to a given idempotent

operator in the setting of complex Banach spaces. Recall that an operator T ∈ B(X)

is said to be generalized quadratic if there exist an idempotent operator Q ∈ B(X)

and a, b ∈ C such that

TQ = QT = T and (T − aQ)(T − bQ) = 0.

In particular, when Q = I, such operator T fulfills (T − aI)(T − bI) = 0, and hence

it becomes a quadratic operator.

Throughout this paper, P ∈ B(X) is a nonzero idempotent operator, and ω(P ) is

the subset of all generalized quadratic operators in B(X) with respect to P , that is,

the set of all operators T ∈ B(X) such that TP = PT = T and (T−aP )(T −bP ) = 0

for some a, b ∈ C.

Generalized quadratic operators are becoming useful tools in various areas of ap-

plied linear algebra and statistics. Several mathematicians investigated the proper-

ties of such operators (see [2], [3], [4]) and paid special attention to the generalized

quadraticity of linear combinations of generalized quadratic matrices (see for instance

[10], [11], [12]).

Recently, in [10], the authors investigated the generalized quadraticity of linear

combinations of two generalized quadratic matrices A and B satisfying (A− a1Q)×

(A − a2Q) = 0 and (B − b1Q)(B − b2Q) = 0 for some idempotent matrix Q and
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a1, a2, b1, b2 ∈ C with a1 6= a2 and b1 6= b2. However, they did not treat the case

when a1 = a2 or b1 = b2. As the second aim of this paper, we generalize and com-

plement their results by considering the infinite-dimensional case and all situations

of generalized quadratic operators.

2. Perturbation class and commuting perturbation class of ω(P )

In the following theorem, we completely characterize the perturbation class and

the commuting perturbation class of ω(P ).

Theorem 2.1. The following assertions hold:

(1) If dim ran(P ) > 3 then

P(ω(P )) = Pc(ω(P )) = CP.

(2) If dim ran(P ) 6 2 then

P(ω(P )) = Pc(ω(P )) = ω(P ).

Before proving this theorem, we need to establish some preliminary results. In

what follows, N2(P ) denotes the set of all square-zero operators N ∈ B(X) such that

NP = PN = N , and I(P ) denotes the set of all idempotent operators Q ∈ B(X)

such that QP = PQ = Q.

Proposition 2.2. We have ω(P ) = (CP +N2(P )) ∪ (CP + CI(P )).

P r o o f. Clearly, we have (CP +N2(P )) ∪ (CP + CI(P )) ⊆ ω(P ).

Let T ∈ ω(P ). Then TP = PT = T and (T − aP )(T − bP ) = 0 for some a, b ∈ C.

If a = b, then the operator N = T − aP belongs to N2(P ) and T = aP + N ∈

CP +N2(P ). Assume that a 6= b. Since TP = T and P 2 = P , we have

(T − aP )2 − (b− a)(T − aP ) = (T − aP )(T − aP − (b − a)P )

= (T − aP )(T − bP ) = 0,

and so (T − aP )2 = (b− a)(T − aP ). Thus

((b− a)−1(T − aP ))2 = (b− a)−1(T − aP ),

and hence the operator Q = (b − a)−1(T − aP ) belongs to I(P ), and we have

T = aP + (b− a)Q ∈ CP + CI(P ). �
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As a consequence of the above proposition, we give a result establishing the close

relationship between a generalized quadratic operator in ω(P ) and the idempotent

operator P . Hence, we extend the corresponding result of [10], Theorem 1.1 to the

infinite-dimensional case.

For an operator T ∈ B(X), we write ker(T ) for its kernel and ran(T ) for its range.

Corollary 2.3. Let T ∈ B(X) be such that T /∈ CP . Then the following asser-

tions are equivalent:

(1) T ∈ CP + CI(P );

(2) T ∈ ω(P ) and there exist a, b ∈ C with a 6= b such that (T − aP )(T − bP ) = 0;

(3) there exist two idempotent operators A,B ∈ B(X) such that T = aA + bB,

A+B = P and AB = BA = 0.

P r o o f. (1)⇒ (2) Suppose that T ∈ CP+CI(P ). Then, from Proposition 2.2 we

have T ∈ ω(P ), and there exist α, β ∈ C such that T = αP+βQ and QP = PQ = Q.

It follows that T − αP = βQ and T − (α + β)P = β(Q − P ), so

(T − αP )(T − (α+ β)P ) = β2Q(Q− P ) = 0.

Since T /∈ CP , we have β 6= 0, and so it suffices to take a = α and b = α+ β.

(2) ⇒ (3) Suppose that T ∈ ω(P ) and there exist a, b ∈ C with a 6= b such that

(T − aP )(T − bP ) = 0. Since P 2 = P , we can write X = ker(P )⊕ ran(P ) where the

direct sum is topological. Furthermore, the closed subspaces ker(P ) and ran(P ) are

T -invariant because TP = PT = T . Now, with respect to the decomposition of X ,

we have P = 0⊕ I and T = 0 ⊕ T1 where T1 = T|ran(P ). On other hand, taking the

restriction on ran(P ) in (T −aP )(T − bP ) = 0, we get that (T1−a)(T1− b) = 0, and

hence ran(P ) = ker(T1− a)⊕ ker(T1− b). Thus, relatively to the new decomposition

X = ker(P )⊕ ker(T1 − a)⊕ ker(T1 − b), we have P = 0⊕ I ⊕ I and T = 0⊕ aI ⊕ bI.

Consider the idempotent operators A,B ∈ B(X) given by

A = 0⊕ I ⊕ 0 and B = 0⊕ 0⊕ I.

Clearly, we have T = aA+ bB, A+B = P and AB = BA = 0.

(3) ⇒ (1) Suppose that there exist two idempotent operators A,B ∈ B(X) such

that T = aA+ bB, A+B = P and AB = BA = 0. Then,

T = a(P − B) + bB = aP + (b− a)B.

Since BP = PB = B, we conclude that T ∈ CP + CI(P ). �
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Let z ∈ X and let f ∈ X∗ be nonzero, whereX∗ denotes the topological dual space.

The symbol z ⊗ f stands for the rank-one operator defined by (z ⊗ f)(x) = f(x)z

for all x ∈ X . Note that z ⊗ f is a quadratic operator, and σ(z ⊗ f) = {0, f(z)}.

Moreover, z ⊗ f is square-zero if and only if f(z) = 0.

Lemma 2.4. Suppose that dim ran(P ) > 3. Let N ∈ N2(P ) be nonzero. Then

there exist two closedN -invariant subspacesX1 and X2 such that ran(P ) = X1⊕X2,

dimX1 = 3 or 4, and

N|X1
=





0 0 0

1 0 0

0 0 0



 or N|X1
=









0 0 0 0

1 0 0 0

0 0 0 0

0 0 1 0









,

respectively.

P r o o f. Note that since NP = PN = N , we have ker(P ) ⊆ ker(N) and ran(P )

is a closed N -invariant subspace. Put Z = ran(P ) and No = N|Z . Then No is

a nonzero square-zero operator.

Consider first the case when No has rank one. Set No = y ⊗ f where y ∈ Z and

f ∈ Z∗ are nonzero and f(y) = 0. Since dimZ > 3, there exist x, z ∈ Z such that

f(x) = 1, f(z) = 0 and {x, y, z} is a linearly independent set. Furthermore, since

Z = Span{x, y, z} + ker(f), there exists a closed subspace X2 ⊆ ker(f) such that

Z = Span{x, y, z} ⊕X2. Clearly, we have N|X2
= 0. If we put X1 = Span{x, y, z},

we get that

N|X1
=





0 0 0

1 0 0

0 0 0



 .

Now, assume that dim ran(No) > 2. Then, there exist x1, x2 ∈ Z such that Nox1

and Nox2 are linearly independent. Since N
2
o = 0, the vectors {x1, Nox1, x2, Nox2}

are linearly independent. Let f1, f2 ∈ Z∗ be such that










f1(x1) = f2(x2) = 0,

f1(Nox1) = f2(Nox2) = 1,

fi(N
k
o xj) = 0 for 1 6 i 6= j 6 2 and 0 6 k 6 1.

Consider the operator Q ∈ B(Z) defined by

Q = x1 ⊗ f1No +Nox1 ⊗ f1 + x2 ⊗ f2No +Nox2 ⊗ f2.

One can easily check that Q2 = Q and NoQ = QNo = Nox1 ⊗ f1No +Nox2 ⊗ f2No.

Thus, Z = ker(I−Q)⊕ker(Q) and ker(Q) is a closed No-invariant subspace. On the

other hand, we verify that ker(I − Q) = Span{x1, Nox1, x2, Nox2}. Consequently,

the desired subspaces are X1 = ker(I −Q) and X2 = ker(Q). �
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Now we give the proof of Theorem 2.1.

P r o o f of Theorem 2.1. (1) Assume that dim ran(P ) > 3. It follows immedi-

ately from Proposition 2.2 that CP ⊆ P(ω(P )) ⊆ Pc(ω(P )). Let us establish that

Pc(ω(P )) ⊆ CP . Let A ∈ Pc(ω(P )). Then T + A ∈ ω(P ) for every T ∈ ω(P )

commuting with A. In particular, for T = 0, we have A ∈ ω(P ), and so

AP = PA = A and (A− aP )(A− bP ) = 0

for some a, b ∈ C. It follows that ker(P ) ⊆ ker(A) and ran(P ) is a closed A-invariant

subspace. Letting Y = ker(P ) and Z = ran(P ), we note that X = Y ⊕ Z because

P 2 = P .

Assume to the contrary that A /∈ CP . Hence, if a = b, then (A − aP )2 = 0 and

A− aP 6= 0. Without loss of generality, we may assume that a = 0. It follows from

Lemma 2.4 that Z is a direct sum of two closed A-invariant subspaces X1 and X2

such that dimX1 = 3 or 4, and

A|X1
=





0 0 0

1 0 0

0 0 0



 or A|X1
=









0 0 0 0

1 0 0 0

0 0 0 0

0 0 1 0









,

respectively. Note that X = Y ⊕X1 ⊕X2 and P = 0 ⊕ I ⊕ I with respect to this

decomposition. Consider the operator T ∈ B(X) given by T|Y = 0, T|X2
= I and

T|X1
=





1 0 0

0 1 0

0 0 2



 or T|X1
=









1 0 0 0

0 1 0 0

0 0 2 0

0 0 0 2









,

respectively. Clearly, we have TP = PT = T and TA = AT . Since (T − P )|Y = 0

and (T − P )|X2
= 0, we have (T − P )(T − 2P )|Y⊕X2

= 0. For the subspace X1, we

have

(T − P )|X1
(T − 2P )|X1

=





0 0 0

0 0 0

0 0 1









−1 0 0

0 −1 0

0 0 0



 = 0

or

(T − P )|X1
(T − 2P )|X1

=









0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

















−1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0









= 0,
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respectively. Thus, (T − P )(T − 2P ) = 0, and so T ∈ ω(P ). As above, we get easily

that (T + A − P )2(T + A − 2P )2 = 0, (T + A − P )2 6= 0, (T + A − 2P )2 6= 0 and

(T +A− P )(T +A− 2P ) 6= 0. Thus, T +A /∈ ω(P ), which is a contradiction.

Suppose that a 6= b. From (A− aP )(A− bP ) = 0, we obtain that

(Ao − aI)(Ao − bI) = 0,

where Ao = A|Z . It follows that Z = ker(Ao − aI)⊕ ker(Ao − bI). Without loss of

generality, we can assume that dimker(Ao − aI) > 2. Let ker(Ao − aI) be a direct

sum of two closed nontrivial subspaces L1 and L2. With respect to the decomposition

X = Y ⊕L1 ⊕L2 ⊕ ker(Ao − bI), we can write A = 0⊕ aI ⊕ aI ⊕ bI. Let S ∈ B(X)

given by

S = 0⊕ 0⊕ 2(a− b)I ⊕ 2(a− b)I.

Clearly, SA = AS. Since P = 0⊕ I ⊕ I ⊕ I, we have S ∈ ω(P ), but

S +A = 0⊕ aI ⊕ (3a− 2b)I ⊕ (2a− b)I

does not belong to ω(P ). This contradiction shows that A ∈ CP .

(2) Assume that dim ran(P ) 6 2. Clearly, we have P(ω(P )) ⊆ Pc(ω(P )) ⊆ ω(P ).

Let T, S ∈ ω(P ) be nonzero. Then, (T+S)P = P (T+S) = T+S, ker(P ) ⊆ ker(T+S)

and ran(P ) is a closed (T + S)-invariant subspace. Since dim ran(P ) 6 2, then

(T + S)|ran(P ) is a quadratic matrix. Thus, there exist α, β ∈ C such that

(T + S − αI)(T + S − βI)|ran(P ) = 0.

It follows from X = ker(P )⊕ ran(P ) that (T +S−αP )(T +S−βP ) = 0, and hence

T + S ∈ ω(P ). This shows that ω(P ) ⊆ P(ω(P )). �

As an immediate consequence of Theorem 2.1, we rediscover the result of [8],

Proposition 2.4 establishing the perturbation class of all quadratic operators in B(X):

Corollary 2.5. Let ω(I) be the set of all quadratic operators in B(X). Then

P(ω(I)) = Pc(ω(I)) = CI.
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3. Generalized quadraticity of linear combinations in ω(P )

We start this section by the following example which shows that ω(P ) is not stable

under linear combinations of square-zero operators in ω(P ).

E x am p l e 3.1. Write X = ker(P ) ⊕ ran(P ), and let ran(P ) be a direct sum

of two closed subspaces X1 and X2 such that dimX1 = 3. Consider the operators

T, S ∈ B(X) given by T| ker(P ) = T|X2
= S| ker(P ) = S|X2

= 0,

T|X1
=





0 0 0

1 0 0

0 0 0



 and S|X1
=





0 0 0

0 0 0

0 1 0



 ,

with respect to an arbitrary basis of X1. Clearly, T and S are square-zero operators,

TP = PT = T , and SP = PS = S. Thus, T, S ∈ ω(P ). However, (T + S)3 = 0 and

(T + S)2 6= 0. Consequently, the operator T + S does not belong to ω(P ).

The following proposition provides necessary and sufficient conditions for the sta-

bility of ω(P ) under linear combinations of two square-zero operators in ω(P ).

Proposition 3.2. Let N,M ∈ N2(P ). Then the following assertions are equiva-

lent:

(1) αN + βM ∈ ω(P ) for all α, β ∈ C;

(2) N +M ∈ ω(P );

(3) there exists c ∈ C such that NM +MN = cP .

P r o o f. (1) ⇒ (2) Is obvious.

(2)⇒ (3) Suppose that N +M ∈ ω(P ). There is no loss of generality in assuming

that N +M 6= 0. Then, there exist a, b ∈ C such that

(N +M − aP )(N +M − bP ) = 0.

Since NP = PN = N and MP = PM = M , it follows that

(3.1) (a+ b)N + (a+ b)M −NM −MN − abP = 0.

Hence, it suffices to show that a + b = 0. Assume to the contrary that a + b 6= 0.

Then, left and right multiplication by N in (3.1) gives

(3.2) (a+ b)NM −NMN − abN = (a+ b)MN −NMN − abN = 0.

This implies that (a + b)NM = (a + b)MN , and hence NM = MN . Thus, equa-

tion (3.2) becomes (a + b)MN − abN = 0. Now, multiplying this equation by M ,
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we get that abNM = 0. Clearly, these two last equations imply that NM = 0, and

so (N +M)2 = 0. It follows from (3.1) that N +M = ab(a+ b)−1P , which leads to

a contradiction with (N +M)2 = 0 and N +M 6= 0.

(3) ⇒ (1) Assume that NM +MN = cP for some c ∈ C. Let α, β ∈ C, and let

λ ∈ C be such that λ2 = αβc. One can easily verify that

(αN + βM − λP )(αN + βM + λP ) = 0,

and so αN + βM ∈ ω(P ). This completes the proof. �

In the commutative case, we reformulate the previous result as follows.

Corollary 3.3. Let N,M ∈ N2(P ) be such that NM = MN . Then the following

assertions are equivalent:

(1) αN + βM ∈ ω(P ) for all α, β ∈ C;

(2) N +M ∈ ω(P );

(3) NM = 0.

P r o o f. (1) ⇒ (2), and (3) ⇒ (1) follow immediately from Proposition 3.2.

(2) ⇒ (3) It follows again from Proposition 3.2 that there exists c ∈ C such that

NM +MN = cP , and so NM = 2−1cP because NM = MN . Now, we have

4−1c2P = (NM)2 = N2M2 = 0,

so c = 0. This finishes the proof. �

In the following proposition, we study the stability of ω(P ) under linear combina-

tions of a square-zero operator and an idempotent operator in ω(P ).

Proposition 3.4. Let N ∈ N2(P ) be nonzero, and let Q ∈ I(P ) be such that

Q /∈ CP . Then the following assertions are equivalent:

(1) αN + βQ ∈ ω(P ) for all α, β ∈ C;

(2) N +Q ∈ ω(P );

(3) there exists c ∈ C such that N −NQ−QN = cP .

P r o o f. (1) ⇒ (2) Is obvious.

(2) ⇒ (3) Suppose that N +Q ∈ ω(P ). Then N +Q 6= 0, and there exist a, b ∈ C

such that (N +Q− aP )(N +Q− bP ) = 0. Since N2 = 0, Q2 = Q, NP = PN = N

and QP = PQ = Q, it follows that

(3.3) −(a+ b)N + (1 − a− b)Q+NQ+QN + abP = 0.
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Assume that 1− a− b 6= 0. Then, left and right multiplication by N in (3.3) gives

(3.4) (1− a− b)NQ+NQN + abN = (1− a− b)QN +NQN + abN = 0.

This implies that (1 − a − b)NQ = (1 − a − b)QN , and so NQ = QN . It follows

from (3.3) that −(a+ b)N + (1− a− b)Q+ 2NQ+ abP = 0. Thus,

(1 − a− b)Q+ abP = (a+ b)N − 2NQ.

But, as ((a + b)N − 2NQ)2 = 0, we get that ((1 − a − b)Q + abP )2 = 0. On

the other hand, since QP = PQ = Q, we have ker(P ) ⊆ ker(Q) and ran(P ) is

a Q-invariant subspace. The assumption Q /∈ CP implies that there exists a nonzero

vector x ∈ ran(P ) such that Qx = 0. Therefore, ((1−a−b)Q+abP )2x = (ab)2x = 0,

and so ab = 0. Hence

((1 − a− b)Q+ abP )2 = ((1− a− b)Q)2 = (1 − a− b)2Q = 0,

which implies that Q = 0, a contradiction. Hence a + b = 1, and so −N + NQ +

QN + abP = 0.

(3)⇒ (1) Assume that N−NQ−QN = ac−1P for some a ∈ C, and let b ∈ C. One

can easily verify that (bN + cQ)2 − c(bN + cQ) + abP = 0, and so bN + cQ ∈ ω(P ).

This completes the proof. �

The following surprising corollary shows that N + Q /∈ ω(P ) for any commuting

N ∈ N2(P ) and Q ∈ I(P ) \ CP .

Corollary 3.5. Let N ∈ N2(P ) be nonzero, and let Q ∈ I(P ) be such that

Q /∈ CP and NQ = QN . Then αN + βQ /∈ ω(P ) for all α, β ∈ C \ {0}.

P r o o f. Suppose on the contrary that there exist α, β ∈ C \ {0} such that

αN + βQ ∈ω(P ). Then, it follows from Proposition 3.4 that there exists c ∈ C

such that

(3.5) N − 2NQ = cP

because NQ = QN . Multiplying equation (3.5) by N , we get that 0 = cN , which

implies that c = 0. Thus, equation (3.5) becomes N − 2NQ = 0. Multiplying

this equation by Q, we obtain that QN = 0, and thus N = 0. This contradiction

completes the proof. �
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We give in the following proposition necessary and sufficient conditions on two

idempotent operators R,S ∈ I(P ) ensuring that the generalized quadraticity of

aR+ bS and that of R+ S are equivalent.

Proposition 3.6. Let R,S ∈ I(P ) be nonzero such that RS 6= SR. Then the

following assertions are equivalent:

(1) aR+ bS ∈ ω(P ) for all a, b ∈ C;

(2) R+ S ∈ ω(P );

(3) there exists c ∈ C such that RS + SR = R + S + cP .

P r o o f. (1) ⇒ (2) Is obvious.

(2) ⇒ (3) Assume that R + S ∈ ω(P ). Then, it follows that (R + S − αP )×

(R+ S − βP ) = 0, and so

(3.6) (1− α− β)R + (1− α− β)S +RS + SR+ αβP = 0.

Hence, right and left multiplication by R in (3.6) gives

(3.7) (1− α− β + αβ)R + (2 − α− β)SR +RSR

= (1− α− β + αβ)R + (2− α− β)RS +RSR = 0.

This implies that (2−α−β)(RS−SR) = 0, and thus 2−α−β = 0 because RS 6= SR.

Then (3.6) becomes −R− S +RS + SR+ αβP = 0, the desired relation.

(3) ⇒ (1) Suppose that RS + SR = R+ S + cP for some scalar c ∈ C. For every

a, b ∈ C, we have

(aR+ bS)2 = a2R+ ab(RS + SR) + b2S

= a2R+ abR+ abS + abcP + b2S

= (a+ b)(aR+ bS) + abcP.

So aR+ bS ∈ ω(P ). This completes the proof. �

In the following proposition, we prove that there are two possible linear combina-

tions of two commuting idempotent operators R,S ∈ I(P ) guarantee their general-

ized quadraticity in ω(P ), namely, R+ S and −R+ S.

Proposition 3.7. Let R,S ∈ I(P )\CP be such that RS = SR and S /∈ CP+CR.

Then, for every nonzero a ∈ C, the following assertions are equivalent:

(1) aR+ S ∈ ω(P );

(2) there exist c1, c2 ∈ {0, 1} such that RS = c1R+c2S−c1c2P and a = 1−2|c1−c2|.
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P r o o f. (1) ⇒ (2) Assume that aR+ S ∈ ω(P ). Then, there exist α, β ∈ C such

that (aR+ S − αP )(aR + S − βP ) = 0, and so

(3.8) a(a− α− β)R + (1− α− β)S + 2aRS + αβP = 0.

Since R(R− P ) = 0, then right multiplication by R− P in (3.8) gives

(3.9) (1− α− β)S(R − P ) + αβ(R − P ) = 0.

Multiplying this equation by (S − P ), we get that αβ(R− P )(S − P ) = 0. We have

two cases:

Case 1. If αβ 6= 0, then (R − P )(S − P ) = 0 and so RS = R + S − P . That is,

RS = c1R+ c2S− c1c2P with c1 = c2 = 1. Now, replacing RS by R+S−P in (3.8)

we obtain that

(a(a− α− β) + 2a)R+ (1 − α− β + 2a)S + (αβ − 2a)P = 0.

Since S /∈ CP + CR and R /∈ CP , then

a(a− α− β) + 2a = 1− α− β + 2a = αβ − 2a = 0.

One gets easily that a = 1.

Case 2. If αβ = 0, then from (3.9) we have (1−α−β)S(R−P ) = 0. If 1−α−β 6= 0,

then SR = S and (3.8) becomes a(a− α− β)R + (1− α− β + 2a)S = 0, and so

a(a− α− β) = 1− α− β + 2a = 0,

which implies that a = −1.

If 1 − α − β = 0, then (3.8) becomes a(a − α − β)R + 2aRS = 0, and so RS =

2−1(1− a)R. Hence

RS = (RS)2 = (2−1(1 − a))2R = 2−1(1 − a)R.

This implies that either a = 1 and RS = 0, or a = −1 and RS = R.

(2) ⇒ (1) We deal with two cases: If c1 6= c2, then a = −1, c1 + c2 = 1 and

c1c2 = 0. It follows that

(−R+ S)2 = R+ S − 2RS = R+ S − 2(c1R+ c2S)

= (2c1 − 1)(−R+ S) = (2c1 − 1)(−R+ S)P.

This means that −R+ S belongs to ω(P ).

If c1 = c2, then a = 1 and c1c2 = c1. It follows that

(R+S)2 = R+S+2RS = R+S+2(c1R+ c2S− c1c2P ) = (2c1+1)(R+S)− 2c1P.

So (R + S − 2c1P )(R+ S − P ) = 0. This completes the proof. �
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