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Abstract. We establish some uniqueness results for meromorphic functions when two

nonlinear differential polynomials P (f)
k∏

i=1
(f (i))ni and P (g)

k∏

i=1
(g(i))ni share a nonzero

polynomial with certain degree and our results improve and generalize some recent results
in Y.-H.Cao, X.-B. Zhang (2012). Also we exhibit two examples to show that the conditions
used in the results are sharp.
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1. Introduction and preliminary results

In this entire paper we mean by meromorphic functions those complex valued

functions which have poles as the only singularities in C. In this paper we use

the standard notations of the value distribution theory (see [8]). We define the

function T (r) by T (r) = max{T (r, f), T (r, g)}. The function S(r) is defined by

S(r) = o(T (r)) as r → ∞ outside of a possible exceptional set of finite linear measure.
If T (r, a) = S(r, f), then we say that a(z) is a small function with respect to f(z).

If f(z0) = z0, then z0 is called a fixed point of f(z).

Let k ∈ N ∪ {0} ∪ {∞}. For a ∈ C ∪ {∞}, we denote by Ek(a; f) the set of all

a-points of f(z), where an a-point of multiplicity m is counted m times if m 6 k and

k + 1 times if m > k. If we have for two meromorphic functions f(z) and g(z) that

Ek(a; f) = Ek(a; g), then we say that f(z) and g(z) share a with weight k. The IM

and CM sharing correspond to the weight 0 and ∞, respectively. If a(z) is a small
function we define that f(z) and g(z) share a(z) IM or a(z) CM or with weight l

depending on whether f(z) − a(z) and g(z) − a(z) share (0, 0) or (0,∞) or (0, l),

respectively.
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The following well known theorem in value distribution theory was posed by Hay-

man (see [8]) and settled by several authors almost at the same time, see [3]–[5].

Theorem A. Let f(z) be a transcendental meromorphic function and n ∈ N.

Then fn(z)f ′(z) = 1 has infinitely many solutions.

To investigate the uniqueness result corresponding to Theorem A, both Fang and

Hua in [6], and Yang and Hua in [16] obtained the following result.

Theorem B. Let f(z) and g(z) be two non-constant entire (or meromorphic)

functions and n ∈ N such that n > 6 (or n > 11, respectively). If fn(z)f ′(z) and

gn(z)g′(z) share 1 CM, then either f(z) = c1e
cz and g(z) = c2e

−cz, c, c1, c2 ∈ C such

that 4(c1c2)
n+1c2 = −1, or f(z) ≡ tg(z) such that tn+1 = 1.

In 2002 Fang and Qiu (see [7]) considered the uniqueness problems of entire or

meromorphic functions having fixed points and they obtained the following result.

Theorem C. Let f(z) and g(z) be two non-constant meromorphic (or entire)

functions and n ∈ N such that n > 11 (or n > 6, respectively). If fn(z)f ′(z) and

gn(z)g′(z) share z CM, then either f(z) = c1e
cz2

and g(z) = c2e
−cz2

, c, c1, c2 ∈ C

such that 4(c1c2)
n+1c2 = −1, or f(z) ≡ tg(z) such that tn+1 = 1.

We now recall the following results due to Xu et al. (see [13]) or Zhang and Li

(see [20]), respectively.

Theorem D. Let f(z) be a transcendental meromorphic function and k ∈ N,

n ∈ N \ {1}. Then fn(z)f (k)(z) takes every finite nonzero value infinitely many

times or has infinitely many fixed points.

Also the following recent results are due to Cao and Zhang, see [4].

Theorem E. Let f(z) and g(z) be two transcendental meromorphic functions

whose zeros are of multiplicities at least k, where k ∈ N. Let n ∈ N such that

n > max{2k − 1, k + 4/k + 4}. If fn(z)f (k)(z) and gn(z)g(k)(z) share z CM, f(z)

and g(z) share ∞ IM, then one of the following two conclusions holds:
(i) fn(z)f (k)(z) ≡ gn(z)g(k)(z);

(ii) f(z) = c1e
cz2

and g(z) = c2e
−cz2

, where c, c1, c2 ∈C such that 4(c1c2)
n+1c2=−1.

Theorem F. Let f(z) and g(z) be two non-constant meromorphic functions

whose zeros are of multiplicities at least k, where k ∈ N. Let n ∈ N such that

n > max{2k − 1, k + 4/k + 4}. If fn(z)f (k)(z) and gn(z)g(k)(z) share 1 CM, f(z)

and g(z) share ∞ IM, then one of the following two conclusions holds:
(i) fn(z)f (k)(z) ≡ gn(z)g(k)(z);

(ii) f(z) = c3e
dz, g(z) = c4e

−dz, where c3, c4, d∈C such that (−1)k(c3c4)
n+1d2k = 1.
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Theorem G. Let f(z) and g(z) be two non-constant meromorphic functions

whose zeros are of multiplicities at least k + 1, where k ∈ N with 1 6 k 6 5. Let

n ∈ N such that n > 10. If fn(z)f (k)(z) and gn(z)g(k)(z) share 1 CM, f (k)(z)

and g(k)(z) share 0 CM, f(z) and g(z) share ∞ IM, then one of the following two

conclusions holds:

(i) f(z) ≡ tg(z), t ∈ C \ {0} such that tn+1 = 1;

(ii) f(z) = c3e
dz, g(z) = c4e

−dz, where c3, c4, d∈C such that (−1)k(c3c4)
n+1d2k = 1.

Now the following questions are inquisitive to any researcher:

Q u e s t i o n 1. Is it possible to reduce the lower bound of n in Theorems E–G?

Q u e s t i o n 2. Is it possible to weaken more the condition “Let f(z) and g(z)

be two non-constant meromorphic functions whose zeros are of multiplicities at least

k + 1, where k ∈ N” in Theorem G?

Q u e s t i o n 3. Does Theorem G hold for k > 6?

Q u e s t i o n 4. Can one further deduce generalized forms of Theorems E–G?

2. Main results and some definitions

Throughout this paper, for the sake of simplicity we use the following notations

n∗
i =

{

0 if ni = 0,

1 if ni 6= 0,
and n∗∗

i =

{

0 if ni = 0,

ni if ni 6= 0,

where ni ∈ N ∪ {0} for i = 1, 2, . . . , k − 1 and k, nk ∈ N. Also we use t =
k
∑

i=1

n∗
i ,

m =
k
∑

i=1

in∗
i , s =

k
∑

i=1

n∗∗
i , m1 =

k
∑

i=1

in∗∗
i and n

∗ = min{i : i ∈ {1, . . . , k} with ni 6= 0}.
In this paper we use P (z) to denote an arbitrary non-constant polynomial of

degree n,

(2.1) P (z) = an(z − c1)
d1(z − c2)

d2 . . . (z − cs1)
ds1 ,

where an ∈ C \ {0} and cj ∈ C (j = 1, 2, . . . , s1) are distinct; d1, d2, . . . , ds1 , n ∈ N

with
s1
∑

i=1

di = n. Let d = max{d1, d2, . . . , ds1} and c be the corresponding zero of P (z)

with multiplicity d. We define

P1(z) = an

s1
∏

i=1
di 6=d

(z − ci)
di = bm2

zm2 + bm2−1z
m2−1 + . . .+ b0,
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where an = bm2
andm2 = n−d. Obviously P (z) = (z−c)dP1(z). We also use P2(z1)

as an arbitrary nonzero polynomial defined by

P2(z1) = an

s1
∏

i=1
di 6=d

(z1 + c− ci)
di = em2

zm2

1 + em2−1z
m2−1
1 + . . .+ e0,

where z1 = z − c and deg(P2) = m2 > 0. Obviously P (z) = zd1P2(z1). Suppose

Γ1 = m3 +m4 and Γ2 = m3 +2m4, where m3 is the number of simple zeros of P1(z)

and m4 is the number of multiple zeros of P1(z). We define k
∗ ∈ N as

(2.2) k∗ =

{

k if P2(z1) ≡ eiz
i
1 6≡ 0,

k + 1 if P2(z1) 6≡ eiz
i
1 6≡ 0

for i ∈ {0, 1, 2, . . . ,m2}. Again we use p(z) to denote a nonzero polynomial defined by

(2.3) p(z) = a(z − z1)
l1(z − z2)

l2 . . . (z − zt1)
lt1 ,

where a ∈ C ∪ {0}, zi ∈ C, i = 1, 2, . . . , t1, are distinct and l1, l2, . . . , lt1 ∈ N such

that either
t1
∑

i=1

li 6 n+ s− 1 or li 6 n− 1 for all i = 1, 2, . . . , t1.

Throughout the paper we consider F(z)=
k
∏

i=1

(f (i)(z))ni and F1(z)=
k
∏

i=1

(f
(i)
1 (z))ni ,

where f1(z) = f(z)− c; G(z) and G1(z) are defined similarly.

Henceforth, we obtain the following results, keeping all the possible answers of

the above questions, into background, which significantly improves and generalizes

Theorems E, F and G.

Theorem 2.1. Let f(z) be a transcendental meromorphic function such that

zeros of f(z)− c are of multiplicities at least k∗, where k∗ is defined in (2.2), and let

a(z) (6≡ 0,∞) be a small function of f(z). Also let n, s, nk ∈ N and ni,Γ1 ∈ N∪ {0},
i = 1, 2, . . . , k− 1. If n > s+Γ1+1/k∗, then P (f(z))F(z)−a(z) has infinitely many

zeros, where P (z) is defined as in (2.1).

Theorem 2.2. Let f(z) and g(z) be two transcendental meromorphic functions

such that zeros of f(z) − c and g(z) − c are of multiplicities at least k, where

k ∈ N. Let P (z) and p(z) be defined as in (2.1) and (2.3), respectively, and let

n,m,m1, k1, s, t, nk ∈ N, ni,Γ2 ∈ N ∪ {0}, i = 1, 2, . . . , k − 1, be such that

n > 4Γ2 + 2m+ 2s+ 1 +
m1

2
+

2

k∗
and k1 =

[ 3 +m1 − s

n+ s+m1 − 2m− 1

]

+ 3.
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If P (f(z))F(z)− p(z), P (g(z))G(z)− p(z) share (0, k1) and f(z), g(z) share (∞, 0),

then one of the following conclusions holds:

(1) f(z) − c ≡ t(g(z) − c) with td0 = 1, where d0 = gcd(d + p : p ∈ {0, 1, . . . ,m2}
with ep 6= 0),

(2) P (f(z))F(z) ≡ P (g(z))G(z).

Theorem 2.3. Let f(z) and g(z) be two transcendental meromorphic functions

such that the zeros of f(z)− c and g(z)− c are of multiplicities at least k∗, where k∗

is defined in (2.2). Let P (z) and p(z) be defined as in (2.1) and (2.3), respectively,

and let n,m,m1, s, t, nk ∈ N, ni,m2,Γ2 ∈ N ∪ {0}, i = 1, 2, . . . , k − 1, be such that

n > 4Γ2 + 2m+ 2s+ 1 +
m1

2
+

2

k∗
and k1 =

[ 3 +m1 − s

n+ s+m1 − 2m− 1

]

+ 3.

Suppose (k − 1)s − m1 < 0 when at least one of n1, n2, . . . , nk−1 is nonzero. If

P (f(z))F(z) − p(z), P (g(z))G(z) − p(z) share (0, k1) and f(z), g(z) share (∞, 0),

then one of the following cases holds:

(1) If P2(z1) ≡ eiz
i
1 6≡ 0 for some i ∈ {0, 1, 2, . . . ,m1} and f (n∗)(z), g(n

∗)(z) share

(0,∞), then f(z)− c ≡ t(g(z)− c), where t ∈ C \ {0} such that td+s+i = 1 for

some i ∈ {0, 1, 2, . . . ,m1}.
(2) If P2(z1) 6≡ eiz

i
1 for i ∈ {0, 1, 2, . . . ,m1}, (f (i)(z))n

∗

i , (g(i)(z))n
∗

i share (0,∞),

where i = 1, 2, . . . , k, and f(z), g(z) share (c, 0), then f(z)− c ≡ t(g(z)− c) for

t ∈ C \ {0} such that td+s = 1.

R em a r k 2.1. Our results generalise Theorems E, F and G in different direc-

tions. For examples we consider P (f(z)) instead of fn(z) and F(z) instead of f (k)(z).

R em a r k 2.2. Let us take d = n, c = 0, P2(z1) = 1 and n∗ = k. Then from

Theorem 2.2 we can easily get a theorem which is the improvement of Theorem E

and Theorem F.

R em a r k 2.3. Let us take d = n, c = 0, P2(z1) = 1 and n∗ = k. Clearly k∗ = k.

Then from Theorem 2.3 we can easily get a theorem which is the improvement of

Theorem G. Consequently Theorem G holds when zeros of f(z) and g(z) are of

multiplicities at least k, where k ∈ N.

R em a r k 2.4. It is easy to see that the condition “Let f(z) and g(z) be two

transcendental meromorphic functions having zeros of multiplicities at least k ∈ N”

in Theorem 2.3 is sharp by the following example.
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E x am p l e 2.1. Let f(z) = c1e
az and g(z) = c2e

−az, where a, c1, c2 ∈ C \ {0}
such that cn+2

1 = −cn+2
2 and n > 14. Note that

F(z) = f ′(z)f ′′(z) = c21a
3e2az and G(z) = g′(z)g′′(z) = −c22a

3e−2az.

Since f(z) and g(z) have no zeros, it follows that the condition “Let f(z) and g(z)

be two transcendental meromorphic functions having zeros of multiplicities at least

k ∈ N” does not hold. Here we see that f(z), g(z) share ∞ CM and f ′(z), g′(z)

share 0 CM. On the other hand we see that

fn(z)f ′(z)f ′′(z)− p(z) = cn+2
1 a3(ea(n+2)z − 1)

and

gn(z)g′(z)g′′(z)− p(z) = −cn+2
2 a3(e−a(n+2)z − 1),

where p(z) = cn+2
1 a3. Clearly fn(z)f ′(z)f ′′(z) − p(z) and gn(z)g′(z)g′′(z) − p(z)

share (0,∞), but f(z) 6≡ tg(z), where t ∈ C \ {0} with tn+2 = 1.

R em a r k 2.5. It is easy to see that the conditions “(f (i)(z))n
∗

i , (g(i)(z))n
∗

i share

(0,∞), where i = 1, 2, . . . , k” and “f(z), g(z) share (c, 0)” in Theorem 2.3 are sharp

by the following example.

E x am p l e 2.2. Let

P (z) = zn((n+2)z−(n+1)), f(z) =
1− hn+1(z)

1− hn+2(z)
and g(z) = h(z)

1− hn+1(z)

1− hn+2(z)
,

where h(z) = ez − 1 and n ∈ N with n > 10. Observe that f(z) and g(z) share

(∞,∞) but f(z) and g(z) do not share the value 0. Note that

f ′(z) =
hn(z)h′(z)((n+ 2)h(z)− hn+2(z)− (n+ 1))

(1− hn+2(z))2

and

g′(z) =
h′(z)(1 + (n+ 1)hn+2(z)− (n+ 2)hn+1(z))

(1− hn+2(z))2
.

This shows that f ′(z) and g′(z) do not share the value 0. Also we observe that

fn+1(z)(f(z) − 1) ≡ gn+1(z)(g(z) − 1), i.e., fn(z)((n + 2)f(z) − (n + 1))f ′(z) ≡
gn(z)((n + 2)g(z)− (n + 1))g′(z). Therefore fn(z)((n + 2)f(z) − (n + 1))f ′(z) and

gn(z)((n + 2)g(z)− (n + 1))g′(z) share (1,∞), but f(z) 6≡ tg(z), where t ∈ C \ {0}
with tn+2 = 1.

R em a r k 2.6. The above example shows that the conclusion (2) in Theorem 2.2

cannot be removed.
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We now explain some definitions and notations which are used in the paper.

Definition 2.1 ([12]). Let p∈N and a∈C∪{∞}. N(r, a; f |> p) (N(r, a; f |> p))

denotes the counting function (reduced counting function) of those a-points of f(z)

whose multiplicities are not less than p. N(r, a; f |6 p) (N(r, a; f |6 p)) denotes

the counting function (reduced counting function) of those a-points of f(z) whose

multiplicities are not greater than p.

Definition 2.2. We denote by N(r, a; f |= k) the reduced counting function of

those a-points of f(z) whose multiplicities are exactly k, where k ∈ N \ {1}.
Definition 2.3 ([18]). For a ∈ C∪ {∞} and p ∈ N, we denote by Np(r, a; f) the

sum N(r, a; f)+N(r, a; f |> 2)+. . .+N(r, a; f |> p). Clearly N1(r, a; f) = N(r, a; f).

Definition 2.4 ([1]). Let f(z) and g(z) be two non-constant meromorphic func-

tions such that f(z) and g(z) share the value 1 IM. Let z0 be a 1-point of f(z) with

multiplicity p, a 1-point of g(z) with multiplicity q. We denote by NL(r, 1; f) the

counting function of those 1-points of f(z) and g(z), where p > q, and by N
(2

E (r, 1; f)

the counting function of those 1-points of f(z) and g(z), where p = q > 2, and each

point in these counting functions is counted only once. In the same way we can

define NL(r, 1; g) and N
(2

E (r, 1; g).

Definition 2.5 ([10]). Let f(z) and g(z) share the value a IM. We denote by

N∗(r, a; f, g) the reduced counting function of those a-points of f(z) whose multi-

plicities differ from the multiplicities of the corresponding a-points of g(z). Clearly

N∗(r, a; f, g) = NL(r, a; f) +NL(r, a; g).

3. Lemmas

By the non-constant meromorphic functions F (z) and G(z), we construct the

functions

(3.1) H(z) =
(F ′′(z)

F ′(z)
− 2F ′(z)

F (z)− 1

)

−
(G′′(z)

G′(z)
− 2G′(z)

G(z)− 1

)

and

(3.2) V (z) =
( F ′(z)

F (z)− 1
− F ′(z)

F (z)

)

−
( G′(z)

G(z)− 1
− G′(z)

G(z)

)

=
F ′(z)

F (z)(F (z)− 1)
− G′(z)

G(z)(G(z)− 1)
.

Lemma 3.1 ([15]). Let f(z) be a non-constant meromorphic function and let

an(z)(6≡ 0), an−1(z), . . . , a0(z) be the small functions of f(z). Then T
(

r,
n
∑

i=0

aif
i
)

=

nT (r, f) + S(r, f).
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Lemma 3.2 ([19]). Let f(z) be a non-constant meromorphic function and

k, p ∈ N, then Np(r, 0; f
(k)) 6 Np+k(r, 0; f) + kN(r,∞; f) + S(r, f).

Lemma 3.3 ([11]). If N(r, 0; f (k) |f 6= 0) denotes the counting function of those

zeros of f (k)(z) which are not the zeros of f(z), where a zero of f (k)(z) is counted

according to its multiplicity, then

N(r, 0; f (k) |f 6= 0) 6 kN(r,∞; f) +N(r, 0; f |< k) + kN(r, 0; f |> k) + S(r, f).

Lemma 3.4 ([17], Theorem 1.24). Let f(z) be a non-constant meromorphic func-

tion and let k ∈ N. If f (k)(z) 6≡ 0, then

N(r, 0; f (k)) 6 N(r, 0; f) + kN(r,∞; f) + S(r, f).

Lemma 3.5 ([17]). Let fj(z), j = 1, 2, 3, be meromorphic and f1(z) be non-

constant. Suppose that
3
∑

j=1

fj(z) ≡ 1 and
3
∑

j=1

N(r, 0; fj) + 2
3
∑

j=1

N(r,∞; fj) <

(λ + o(1))T1(r) as r → ∞, r ∈ I, where I is a set of infinite linear measure, λ < 1

and T1(r) = max
16j63

T (r, fj). Then f2(z) ≡ 1 or f3(z) ≡ 1.

Lemma 3.6 ([8]). Let f(z) be a non-constant meromorphic function and let a1(z),

a2(z) be two small functions of f(z). Then

T (r, f) 6 N(r,∞; f) +N(r, a1; f) +N(r, a2; f) + S(r, f).

Lemma 3.7 ([8]). Suppose that f(z) is a non-constant meromorphic function and

k ∈ N\{1}. If N(r,∞; f)+N(r, 0; f)+N(r, 0; f (k)) = S(r, f ′/f), then f(z) = eaz+b,

where a (6= 0), b ∈ C.

Lemma 3.8. Let f(z) be a transcendental meromorphic function and n, nk ∈ N,

ni ∈ N∪{0} for i = 1, 2, . . . , k−1. Then ϕ(z) = P (f(z))F(z) is non-constant, where

P (z) is defined by (2.1).

P r o o f. If possible, let ϕ(z) be constant. Then N(r, 0;P (f)) = S(r, f) and

N(r,∞; f) = S(r, f). If s1 > 2, by the second fundamental theorem we arrive at

a contradiction.

Next we suppose s1 = 1, i.e., P (z) = an(z − c)n. Therefore ϕ(z) = anf
n
1 (z)F1(z).

Clearly
1

fn+s
1 (z)

≡ an
F1(z)

f s
1 (z)

1

ϕ(z)
.

72



Using Lemma 3.1, we now see that

(n+ s)T (r, f1) 6 T
(

r,
F1

f s
1

)

+ T
(

r,
1

ϕ

)

+O(1) 6
k

∑

i=1

n∗∗
i T

(

r,
f
(i)
1

f1

)

+O(1)

6

k
∑

i=1

n∗∗
i N

(

r,∞;
f
(i)
1

f1

)

+ S(r, f1)

6

k
∑

i=1

n∗∗
i (Ni(r, 0; f1) + iN(r,∞; f1)) + S(r, f1) = S(r, f1),

which is not possible. Consequently ϕ(z) is non-constant. Thus the proof is complete.

�

Lemma 3.9. Let f(z) be a non-constant meromorphic function and n, nk, k ∈ N,

ni ∈ N∪ {0} for i = 1, 2, . . . , k− 1 be such, that n > s. If ϕ(z) = P (f(z))F(z), then

(n− s)T (r, f) 6 T (r, ϕ)− sN(r,∞; f)−N(r, 0;F) + S(r, f).

P r o o f. Note that

N(r,∞;ϕ) = N(r,∞;P (f)) + sN(r,∞; f) +m1N(r,∞; f),

i.e.,

N(r,∞;P (f)) = N(r,∞, ϕ)− sN(r,∞; f)−m1N(r,∞, f) + S(r, f).

Also

m(r, P (f)) = m
(

r,
ϕ

F
)

6 m(r, ϕ) +m
(

r,
1

F
)

+ S(r, f)

= m(r, ϕ) + T (r,F)−N(r, 0;F) + S(r, f)

= m(r, ϕ) +N(r,∞;F) +m(r,F)−N(r, 0;F) + S(r, f)

6 m(r, ϕ) + sN(r,∞; f) +m1N(r,∞; f) +m
(

r,
F
f s

)

+m(r, f s)−N(r, 0;F) + S(r, f)

= m(r, ϕ) + sT (r, f) +m1N(r,∞; f)−N(r, 0;F) + S(r, f).

Now

nT (r, f) = N(r,∞;P (f)) +m(r, P (f))

6 T (r, ϕ) + sT (r, f)− sN(r,∞; f)−N(r, 0;F) + S(r, f),

i.e.,

(n− s)T (r, f) 6 T (r, ϕ)− sN(r,∞; f)−N(r, 0;F) + S(r, f).

Thus the proof is complete. �
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Lemma 3.10. Let f(z) and g(z) be two non-constant meromorphic functions

such that zeros of f(z)− c and g(z)− c are of multiplicities at least k∗, where k∗ is

defined by (2.2). Let n, nk ∈ N and ni ∈ N∪{0}, i = 1, 2, . . . , k−1, be such that n >

2Γ1+2/k∗+s+ t+m. Let F (z) = P (f(z))F(z)/p(z) and G(z) = P (g(z))G(z)/p(z),
where p(z) is a nonzero polynomial and P (z) is defined by (2.1). If f(z), g(z) share

(∞, 0) and H(z) ≡ 0, then one of the following three cases holds:

(1) P (f(z))F(z)P (g(z))G(z) ≡ p2(z), where P (f(z))F(z)− p(z) and P (g(z))G(z)−
p(z) share (0,∞),

(2) (f(z)− c) ≡ t(g(z)− c), td0 = 1, where d0 = gcd(d+ p : p ∈ {0, 1, . . . ,m2} with
ep 6= 0),

(3) P (f(z))F(z) ≡ P (g(z))G(z).

P r o o f. Since H ≡ 0, by integration we get

F ′(z)

(F (z)− 1)2
≡ l

G′(z)

(G(z)− 1)2
,

i.e.,

(P (f(z))F(z)− p(z)

p(z)

)′(P (f(z))F(z)− p(z)

p(z)

)−2

≡ l
(P (g(z))G(z)− p(z)

p(z)

)′(P (g(z))G(z)− p(z)

p(z)

)−2

, l ∈ C \ {0}.

This shows that

P (f(z))F(z)− p(z)

p(z)
and

P (g(z))G(z)− p(z)

p(z)

share (0,∞). Therefore P (f(z))F(z) − p(z) and P (g(z))G(z) − p(z) share (0,∞).

Again by integration we obtain

(3.3)
1

F (z)− 1
≡ bG(z) + a− b

G(z)− 1
,

where a, b ∈ C \ {0} and a 6= 0. We now consider the following cases.

Case 1. Let b 6= 0 and a 6= b. If b = −1, then from (3.3) we have F (z) ≡
−a/(G(z)− a− 1). Therefore N(r, a + 1;G) = N(r,∞;F ) 6 N(r,∞; f) + S(r, f).

So in view of Lemma 3.9 and the second fundamental theorem we get

(n− s)T (r, g) 6 T (r, P (g)G)− sN(r,∞; g)−N(r, 0;G) + S(r, g)

6 T (r,G)− sN(r,∞; g)−N(r, 0;G) + S(r, g)

6 N(r,∞;G) +N(r, 0;G) +N(r, a+ 1;G)

− sN(r,∞; g)−N(r, 0;G) + S(r, g)
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6 N(r, 0;P1(g)) +N(r, 0; g − c) +N(r, 0;G)
+N(r,∞; f)−N(r, 0;G) + S(r, g)

6 N(r,∞; g) + Γ1T (r, g) +
1

k∗
T (r, g) + S(r, g)

6 N(r,∞; g) +
(

Γ1 +
1

k∗

)

T (r, g) + S(r, g)

6

(

Γ1 +
1

k∗
+ 1

)

T (r, g) + S(r, g)

and it is a contradiction as n > Γ1 + 1/k∗ + s+ 1.

If b 6= −1, from (3.3) we obtain that F (z)−(1+1/b) ≡ −a/(b2(G(z) + (a− b)/b)).

So N(r, (b− a)/b;G) = N(r,∞;F ) 6 N(r,∞; f) + S(r, f). Using Lemma 3.9 and

the same argument as used in the case when b = −1 we get a contradiction.

Case 2. Let b 6= 0 and a = b. If b = −1, then from (3.3) we get F (z)G(z) ≡ 1,

i.e., P (f(z))F(z)P (g(z))G(z) ≡ p2(z).

If b 6= −1, from (3.3) we have 1/F (z) ≡ bG(z)/((1 + b)G(z)− 1). Therefore

N(r, 1/(1 + b);G) = N(r, 0;F ). So in view of Lemmas 3.2, 3.9 and the second

fundamental theorem, we get

(n− s)T (r, g) 6 T (r,G)− sN(r,∞; g)−N(r, 0;G) + S(r, g)

6 N(r,∞;G) +N(r, 0;G) +N
(

r,
1

1 + b
;G

)

− sN(r,∞; g)−N(r, 0;G) + S(r, g)

6 N(r, 0;P (g)) +N(r, 0;G) +N(r, 0;F )−N(r, 0;G) + S(r, g)

6 N(r, 0; g − c) +N(r, 0;P1(g)) +N(r, 0; f − c)

+N(r, 0;P1(f)) +N(r, 0;F1) + S(r, g)

6

(

Γ1 +
1

k∗

)

(T (r, f) + T (r, g)) +

k
∑

i=1

n∗
iN(r, 0; f (i)) + S(r, g)

6

k
∑

i=1

n∗
i (Ni+1(r, 0; f) + iN(r,∞; f))

+
(

Γ1 +
1

k∗

)

(T (r, f) + T (r, g)) + S(r, f) + S(r, g)

6

(

Γ1 +
1

k∗

)

(T (r, f) + T (r, g)) + tT (r, f) +mT (r, f) + S(r, g).

We suppose T (r, f) 6 T (r, g) for r ∈ I. So for r ∈ I, we have

(n− s)T (r, g) 6
(

2Γ1 +
2

k∗
+ t+m

)

T (r, g) + S(r, g),

which is a contradiction since n > 2Γ1 + 2/k∗ + s+ t+m.
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Case 3. Let b = 0. From (3.3) we obtain F (z) ≡ (G(z) + a− 1)/a. If a 6= 1, then

we obtain N(r, 1− a;G) = N(r, 0;F ). We can deduce a contradiction similarly as in

Case 2. Therefore a = 1 and so we have F (z) ≡ G(z). This gives

(3.4) fd
1 (z)

(m2
∑

i=0

eif
i
1(z)

)

F1(z) ≡ gd1(z)

(m2
∑

i=0

eig
i
1(z)

)

G1(z).

Let h(z) = f1(z)/g1(z). If h(z) is a constant, by putting f1(z) = hg1(z) in (3.4)

we get

em2
gd+m2

1 (z)(hd+m2−1)+em2−1g
d+m2−1
1 (z)(hd+m2−1−1)+. . .+e0g

d
1(z)(h

d−1) ≡ 0,

which gives hd0 = 1, where d0 = gcd(d + p : p ∈ {0, 1, . . . ,m2} with ep 6= 0).

Thus f1(z) ≡ tg1(z), i.e., f(z) − c ≡ t(g(z) − c), td0 = 1, where d0 = gcd(d + p :

p ∈ {0, 1, . . . ,m2} with ep 6= 0).

If h(z) is not constant, then we must have P (f(z))F(z) ≡ P (g(z))G(z). Thus the
proof is complete. �

Lemma 3.11 ([8], Lemma 3.5). Suppose that F (z) is meromorphic in a domainD

and set f(z) = F ′(z)/F (z). Then for n ∈ N we have

F (n)(z)

F (z)
= fn(z) +

n(n− 1)

2
fn−2(z)f ′(z)

+ anf
n−3(z)f ′′(z) + bnf

n−4(z)(f ′(z))2 + Pn−3(f(z)),

where an = 1
6n(n − 1)(n − 2), bn = 1

8n(n − 1)(n − 2)(n − 3) and Pn−3(f(z)) is

a differential polynomial with constant coefficients, which vanishes identically for

n 6 3 and has degree n− 3 when n > 3.

Lemma 3.12. Let f(z) and g(z) be two transcendental meromorphic functions

such that the zeros of f(z)−c and g(z)−c are of multiplicities at least k, where k ∈ N.

Let n, nk ∈ N and ni ∈ N∪{0} for i = 1, 2, . . . , k−1. Suppose that P (f(z))F(z)−p(z)

and P (g(z))G(z)−p(z) share (0,∞), and f(z), g(z) share (∞, 0), where P (z) and p(z)

are defined in (2.1) and (2.3), respectively. Then P (f(z))F(z)P (g(z))G(z) 6≡ p2(z).

P r o o f. Suppose

(3.5) P (f(z))F(z)P (g(z))G(z) ≡ p2(z).

Since f(z) and g(z) share (∞, 0), from (3.5) we claim that f(z) and g(z) are tran-

scendental entire functions.
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Suppose that P (z) is a non-constant polynomial. For the sake of simplicity we

may assume that P1(z) = an(z − cm2
)m2 , where d + m2 = n. Obviously c 6= cm2

.

By (3.5), we have N(r, c; f) = O(log r) and N(r, cm2
; f) = O(log r). So by the second

fundamental theorem we obtain T (r, f) 6 N(r, c; f) + N(r, cm2
; f) + N(r,∞; f) +

S(r, f) = S(r, f), which is not possible. Therefore P (z)must be of the form an(z−c)n

and so (3.5) reduces to the form

(3.6) a2n(f(z)−c)nF(z)(g(z)−c)nG(z) ≡ p2(z), i.e., fn
1 (z)F1(z)g

n
1 (z)G1(z) ≡ p21(z),

where p1(z) = p(z)/an. We now consider the following two cases.

Case 1. Let deg(p1) ∈ N. Then from (3.6) we see that N(r, 0; fn
1 ) = O(log r) and

N(r, 0; gn1 ) = O(log r). Let

(3.7) F1(z) =
fn
1 (z)F1(z)

p1(z)
and G1(z) =

gn1 (z)G1(z)

p1(z)
.

Then (3.6) reduces to

(3.8) F1(z)G1(z) ≡ 1.

If F1(z) ≡ eG1(z), where e ∈ C \ {0}, then F1(z) must be a constant, which is not

possible by Lemma 3.8. So F1(z) 6≡ eG1(z). Let

(3.9) Φ(z) =
fn
1 (z)F1(z)− p1(z)

gn1 (z)G1(z)− p1(z)
.

Since f1(z) and g1(z) are transcendental entire functions, it follows that f
n
1 (z)F1(z)−

p1(z) 6= ∞ and gn1 (z)G1(z) − p1(z) 6= ∞. Also since fn
1 (z)F1(z) − p1(z) and

gn1 (z)G1(z)− p1(z) share (0,∞), we deduce from (3.9) that

(3.10) Φ(z) ≡ eβ
∗(z),

where β∗ is an entire function. Let f11(z) = F1(z), f21(z) = −eβ
∗(z)G1(z) and

f31(z) = eβ
∗(z), where f11(z) is transcendental. Now from (3.10), we have f11(z) +

f21(z) + f31(z) ≡ 1. Also, by Lemma 3.4 we get

3
∑

j=1

N(r, 0; fj1) + 2

3
∑

j=1

N(r,∞; fj1)

6 N(r, 0;F1) +N(r, 0; eβ
∗

G1) +O(log r) 6 (λ+ o(1))T1(r)

as r → ∞, r ∈ I, λ < 1 and T1(r) = max
16j63

T (r, fj1). So by Lemma 3.5, we

obtain either eβ
∗(z)G1(z) ≡ −1 or eβ

∗(z) ≡ 1. But the only possibility is that
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eβ
∗(z)G1(z) ≡ −1 otherwise F1(z) ≡ G1(z), which is possible. Then gn1 (z)G1(z) ≡

−e−β∗(z)p1(z). Also from (3.6) we obtain fn
1 (z)F1(z) ≡ −eβ

∗(z)p1(z). Therefore

fn
1 (z)F1(z) and gn1 (z)G1(z) share (0,∞). As f1(z) and g1(z) have finitely many

zeros, we can assume that

(3.11) f1(z) = h1(z)e
α(z) and g1(z) = h2(z)e

β(z),

where h1(z), h2(z) are non-constant polynomials and α(z), β(z) are two non-constant

entire functions. Let

α1(z) =
f ′
1(z)

f1(z)
= α′(z) +

h′
1(z)

h1(z)
and β1(z) =

g′1(z)

g1(z)
= β′(z) +

h′
2(z)

h2(z)
.

Now from (3.11) and Lemma 3.11 we have

(3.12) fn
1 (z)F1(z) ≡ hn

1 (z)

k
∏

i=1

(h1(z)(α
′(z))i + Pi−1(α

′(z), h′
1(z)))

nie(n+s)α(z)

and

(3.13) gn1 (z)G1(z) ≡ hn
2 (z)

k
∏

i=1

(h2(z)(β
′(z))i +Qi−1(β

′(z), h′
2(z)))

nie(n+s)β(z),

respectively, where Pi−1(α
′(z), h′

1(z)) and Qi−1(β
′(z), h′

2(z)) are differential polyno-

mials in α′(z), h′
1(z) and β′(z), h′

2(z), respectively. We now consider the following

two subcases.

Subcase 1.1. Let k > 2. First we suppose that both α(z) and β(z) are transcenden-

tal entire functions. Clearly both α1(z) and β1(z) are transcendental meromorphic

functions. Note that S(r, α1) = S(r, f ′
1/f1) and S(r, β1) = S(r, g′1/g1). Moreover,

from (3.6) we have N(r, 0; f
(k)
1 ) = O(log r) and N(r, 0; g

(k)
1 ) = O(log r). From this

and using (3.11), we have

(3.14) N(r,∞; f1) +N(r, 0; f1) +N(r, 0; f
(k)
1 ) = S(r, α1) = S

(

r,
f ′
1

f1

)

and

(3.15) N(r,∞; g1) +N(r, 0; g1) +N(r, 0; g
(k)
1 ) = S(r, β1) = S

(

r,
g′1
g1

)

.

Using (3.14), (3.15) and Lemma 3.7, we get f1(z) = ea
∗z+b∗ and g1(z) = ec

∗z+d∗

,

where a∗ (6= 0), b∗, c∗ (6= 0), d∗ ∈ C, which is possible as zeros of f1(z) and g1(z) are

of multiplicities at least k.
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Next we suppose that both α(z) and β(z) are non-constant polynomials. Since

fn
1 (z)F1(z) ≡ −eβ

∗(z)p1(z) and gn1 (z)G1(z) ≡ −e−β∗(z)p1(z), from (3.12) and (3.13)

we have

(3.16) fn
1 (z)F1(z) ≡ hn

1 (z)

k
∏

i=1

(h1(z)(α
′(z))i + Pi−1(α

′(z), h′
1(z)))

nie(n+s)α(z)

≡ Ap1(z)e
(n+s)α(z)

and

(3.17) gn1 (z)G1(z) ≡ hn
2 (z)

k
∏

i=1

(h2(z)(β
′(z))i +Qi−1(β

′(z), h′
2(z)))

nie(n+s)β(z)

≡ Bp1(z)e
(n+s)β(z),

respectively, where A,B ∈ C \ {0}. Now from (3.6), (3.16) and (3.17) we deduce
that α(z) + β(z) ∈ C, i.e., α′(z) ≡ −β′(z) and so deg(α) = deg(β). Note that

deg(α), deg(β) ∈ N. Since either deg(p1) 6 n + s − 1 or zeros of p1(z) are of

multiplicities at most n− 1 from (3.16) or (3.17) we arrive at a contradiction.

Finally we suppose that one of α(z) and β(z) is transcendental and the other one

is polynomial. For the sake of simplicity we assume that β(z) is a polynomial. In

this case we get a contradiction from (3.17).

Subcase 1.2. Let k = 1. From (3.11) we deduce that

(3.18) fn
1 (z)(f

′
1(z))

n1 ≡ hn
1 (z)(h1(z)α

′(z) + h′
1(z))

n1e(n+n1)α(z)

and

(3.19) gn1 (z)(g
′
1(z))

n1 ≡ hn
2 (z)(h2(z)β

′(z) + h′
2(z))

n1e(n+n1)β(z).

First we suppose that both of α(z) and β(z) are transcendental. Then from (3.6),

(3.18) and (3.19) we get

(3.20) (h1(z)h2(z))
n(h1(z)α

′(z) + h′
1(z))

n1

×(h2(z)β
′(z) + h′

2(z))
n1e(n+n1)(α(z)+β(z)) ≡ p21(z).

Let α(z) + β(z) = γ(z) and s2 = n + n1. We claim that γ(z) 6∈ C. If not, suppose

γ ∈ C. Then α′(z) ≡ −β′(z) and so from (3.20) we have

(3.21) H2n1
(z)(α′(z))2n1 +H2n1−1(z)(α

′(z))2n1−1 + . . .+H0(z) ≡ 0,

whereH0(z), H1(z), . . . , H2n1
(z) (6≡ 0) are polynomials. Since a transcendental entire

function is non-algebraic, from (3.21) we arrive at a contradiction. Hence γ 6∈ C.
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Now (3.20) reduces to

(3.22) (h1(z)h2(z))
n(h1(z)α

′(z) + h′
1(z))

n1

×(h2(z)(γ
′(z)− α′(z)) + h′

2(z))
n1es2γ(z) ≡ p21(z).

We have T (r, γ′) = m(r, s2γ
′) + O(1) = m(r, (es2γ)′/es2γ) = S(r, es2γ). Thus

from (3.22) we get

T (r, es2γ) 6 T
(

r,
p21

(h1h2)n(h1α′ + h′
1)

n1(h2(γ′ − α′) + h′
2)

n1

)

+O(1)

6 n1T (r, α
′) + n1T (r, γ

′ − α′) +O(log r) +O(1)

6 2n1T (r, α
′) + S(r, α′) + S(r, es2γ),

implying that T (r, es2γ) = O(T (r, α′)) and so S(r, es2γ) can be replaced by S(r, α′).

Thus T (r, γ′) = S(r, α′) and so γ′(z) is a small function with respect to α′(z). In

view of (3.22) and by Lemma 3.6, we get

T (r, α′) 6 N(r,∞;α′) +N(r, 0;h1α
′ + h′

1) +N(r, 0;h2(γ
′ − α′) + h′

2) + S(r, α′)

6 O(log r) + S(r, α′)

and it shows that α′(z) is a polynomial and consequently α(z) is a polynomial.

Similarly we can prove that β(z) is also a polynomial. This contradicts that α(z)

and β(z) are both transcendental.

Next suppose that both α(z) and β(z) are polynomials. Since fn
1 (z)F1(z) ≡

−eβ
∗(z)p1(z) and gn1 (z)G1(z) ≡ −e−β∗(z)p1(z), from (3.18) and (3.19), we have

(3.23) fn
1 (z)(f

′
1(z))

n1 ≡ hn
1 (z)(h1(z)α

′(z) + h′
1(z))

n1es2α(z) ≡ A1p1(z)e
s2α(z)

and

(3.24) gn1 (z)(g
′
1(z))

n1 ≡ hn
2 (z)(h2(z)β

′(z) + h′
2(z))

n1es2β(z) ≡ B1p1(z)e
s2β(z),

respectively, where A1, B1 ∈ C \ {0}. Now from (3.6), (3.23) and (3.24) we deduce
that α(z) + β(z) ∈ C, i.e., α′(z) ≡ −β′(z) and so deg(α) = deg(β). Note that

deg(α), deg(β) ∈ N. Since either deg(p1) 6 n + s − 1 or zeros of p1(z) are of

multiplicities at most n− 1, from (3.23) or (3.24) we arrive at a contradiction.

Finally we suppose that one of α(z) and β(z) is transcendental and the other one

is polynomial. For the sake of simplicity we assume that β(z) is a polynomial. In

this case we get a contradiction from (3.24).

Case 2. Let p1(z) ≡ b ∈ C\{0}. Then (3.6) reduces to fn
1 (z)F1(z)g

n
1 (z)G1(z) ≡ b2.

This shows that both f1(z) and g1(z) have no zeros. But this is not possible as zeros

of f1(z) and g1(z) are of multiplicities at least k (> 1). Thus the proof is complete.

�
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Lemma 3.13 ([9]). Let f(z) and g(z) be two non-constant meromorphic func-

tions. Suppose that f(z) and g(z) share (0,∞), (∞,∞); f (k)(z) and g(k)(z) share

(0,∞) for k = 1, 2, . . . , 6. Then f(z) and g(z) satisfy one of the following cases:

(i) f(z) ≡ tg(z), where t ∈ C \ {0},
(ii) f(z) = eaz+b and g(z) = ecz+d, where a, b, c, d ∈ C \ {0} such that ac 6= 0,

(iii) f(z) = a/(1− beα(z)) and g(z) = a/(e−α(z) − b), where a, b ∈ C \ {0}, α is
a non-constant entire function,

(iv) f(z) = a(1− becz) and g(z) = d(e−cz − b), where a, b, c, d ∈ C \ {0}.

Lemma 3.14. Let

Q1(x) = n1(x− 1)(x− 2) . . . (x− k + 1) + 2n2x(x − 2) . . . (x− k + 1)

+ . . .+ knkx(x− 1) . . . (x− k + 2)

and

Q2(x) = x(x − 1)(x− 2) . . . (x− k + 1),

where nk ∈ N, ni ∈ N∪{0}, i = 1, 2, . . . , k− 1, but at least one of n1, n2, . . . , nk−1 is

nonzero. Suppose (k− 1)s−m1 < 0. Then all the roots of the equation (sx−m1)×
Q1(x)− λQ2(x) = 0, where λ ∈ R, lie in the interval (−∞, k − 1).

P r o o f. By the given conditions we have k > 2 and 1 < m1/s < k. Also

we see that m1/s 6= 2, 3, . . . , k − 1. Therefore js − m1 < 0 for j = 1, 2, . . . , k − 1

and ks − m1 > 0. Let f(x) = xn1(x − 1)2n2 . . . (x − k + 1)knk . Then f ′(x) =

xn1−1(x − 1)2n2−1 . . . (x − k + 1)knk−1Q1(x). By Rolle’s theorem, we can say that

each of the (k− 1) intervals (0, 1), (1, 2), . . . , (k− 2, k− 1) contains at least one real

root of the equation f ′(x) = 0.

Let αi, i = 1, 2, . . . , k − 1, be the roots of the equation Q1(x) = 0 such that

i−1 < αi < i for i = 1, 2, . . . , k−1. Then Q1(x) = m1(x−α1)(x−α2) . . . (x−αk−1).

Let F (x) = (sx−m1)Q1(x)−λQ2(x). Now we consider the following three cases.

Case 1. Let sm1 − λ < 0. We now consider the following two subcases.

Subcase 1.1. Suppose k is an odd positive integer. Note that F (−∞) > 0,

F (0) < 0, F (1) > 0, F (2) < 0, F (3) > 0, . . . , F (k − 2) > 0, F (k − 1) < 0. Therefore

each of the intervals (−∞, 0), (0, 1), (1, 2), . . . , (k−2, k−1) contains a real root of the

equation F (x) = 0. Since the equation is of degree k, all its roots are real and simple.

Therefore all the roots of the equation F (x) = 0 lie in the interval (−∞, k − 1).

Subcase 1.2. Suppose that k is an even positive integer. Note that F (−∞) < 0,

F (0) > 0, F (1) < 0, F (2) > 0, F (3) < 0, . . . , F (k − 2) > 0, F (k − 1) < 0. Therefore

each of the intervals (−∞, 0), (0, 1), (1, 2), . . . , (k−2, k−1) contains a real root of the

equation F (x) = 0. Since the equation is of degree k, all its roots are real and simple.

Therefore all the roots of the equation F (x) = 0 lie in the interval (−∞, k − 1).
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Case 2. Let sm1 − λ > 0. We omit the proof since it can be carried out in the

line of the proof of Case 1.

Case 3. Let sm1 − λ = 0. In this case the equation F (x) = 0 is of degree k − 1.

Consequently each of the intervals (0, 1), (1, 2), . . . , (k− 2, k− 1) contains a real root

of the equation F (x) = 0. Since the equation is of degree k − 1, all its roots are

real and simple. Therefore all the roots of the equation F (x) = 0 lie in the interval

(0, k − 1). Thus the proof is complete. �

Lemma 3.15. Let f(z) and g(z) be two transcendental meromorphic functions

such that the zeros of f(z)−c and g(z)−c are of multiplicities at least k, where k ∈ N.

Let n, nk ∈ N and ni ∈ N∪{0}, i = 1, 2, . . . , k−1. Suppose (k−1)s−m1 < 0 when at

least one of n1, n2, . . . , nk−1 is nonzero. Also we assume that f
(n∗)(z), g(n

∗)(z) share

(0,∞) and f(z), g(z) share (∞, 0). Now when (f(z) − c)nF(z) ≡ (g(z) − c)nG(z),
then (f(z)− c) ≡ t(g(z)− c), where t ∈ C \ {0} such that tn+s = 1.

P r o o f. Suppose that

(3.25) fn
1 (z)F1(z) ≡ gn1 (z)G1(z), i.e., fn

1 (z)/g
n
1 (z) ≡ G1(z)/F1(z).

Since f1(z) and g1(z) share (∞, 0), it follows from (3.25) that f1(z) and g1(z)

share (∞,∞) and so (f
(i)
1 (z))n

∗

i and (g
(i)
1 (z))n

∗

i share (∞,∞), where i = 1, 2, . . . , k.

Again since f (n∗)(z) and g(n
∗)(z) share (0,∞), it follows that f

(n∗)
1 (z) and g

(n∗)
1 (z)

share (0,∞). Suppose n∗ = k. Then from (3.25) we have fn
1 (z)(f

(k)
1 (z))nk ≡

gn1 (z)(g
(k)
1 (z))nk , and so f1(z) and g1(z) share (0,∞). Next we suppose n∗ < k.

For the sake of simplicity we assume that n∗ = 1. Let z11 be a zero of f1(z) of

multiplicity p11 (> k). Then z11 is a zero of f
′
1(z) of multiplicity p11 − 1 (> 1).

Since f ′
1(z) and g′1(z) share (0,∞), it follows that z11 is a zero of g

′
1(z) of multiplic-

ity p11 − 1 (> 1). Clearly z11 is a zero of both f
(i)
1 (z) and g

(i)
1 (z) of multiplicity

p11 − i, where i ∈ {1, 2, . . . , k}. Consequently z11 is a zero of both F1(z) and G1(z)

of multiplicity p11s − m1. Note that z11 is a zero of f
n
1 (z)F1(z) of multiplicity

p11(n + s) −m1. Therefore, from (3.25) we see that z11 must be a zero of g1(z) of

multiplicity p11. Hence f1(z) and g1(z) share (0,∞). Let h1(z) = f1(z)/g1(z) and

h2(z) = F1(z)/G1(z). Then h1(z) and h2(z) 6= 0,∞. Now (3.25) yields

(3.26) hn
1 (z)h2(z) ≡ 1.

First we suppose that h1(z) is a non-constant entire function. Clearly h2(z) is

also a non-constant entire function. Let F1(z) = hn
1 (z) and G1(z) = h2(z). Also

from (3.26), we get

(3.27) F1(z)G1(z) ≡ 1.
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Clearly F1(z) 6≡ d0G1(z), d0 ∈ C\{0}, otherwise we have F1 ∈ C\{0} from (3.27) and
so h1 ∈ C \ {0}. Since F1(z) and G1(z) 6= 0,∞, there exist two non-constant entire
functions α(z) and β(z) such that F1(z) = eα(z) and G1(z) = eβ(z). Now from (3.27)

we see that α + β ∈ C and so α′(z) ≡ −β′(z). Note that F ′
1(z) = α′(z)eα(z) and

G′
1(z) = β′(z)eβ(z). This shows that F ′

1(z) and G′
1(z) share (0,∞). Note that

F1(z), G1(z) 6= 0,∞ and F1(z) 6≡ d0G1(z), d0 ∈ C\ {0}. Now in view of Lemma 3.13
we get F1(z) = c1e

az and G1(z) = c2e
−az , a, c1, c2 ∈ C \ {0} with c1c2 = 1. Since

(f1(z)/g1(z))
n = c1e

az it follows that

(3.28) f1(z)/g1(z) = t1e
(a/n)z = t1e

cz,

where c, t1 ∈ C \ {0} such that tn1 = c1 and c = a/n. Also we have

(3.29) F1(z)/G1(z) = c2e
−az.

Let

(3.30) Φ1(z) =
F ′

1(z)

F1(z)
− G′

1(z)

G1(z)
.

Using (3.29), we deduce that

(3.31) Φ1(z) = −a.

Noting g
(0)
1 (z) = g1(z), we calculate from (3.28) that

f
(j)
1 (z) = t1

j
∑

i=0

jCi(e
cz)(j−i)g

(i)
1 (z) = t1e

cz(cjg1(z) + jcj−1g′1(z) +
1
2j(j − 1)cj−2g′′1 (z)

+ . . .+ jcg
(j−1)
1 (z) + g

(j)
1 (z)).

Consequently we have

(f
(j)
1 (z))nj = t

nj

1 ecnjz

(

(g
(j)
1 (z))nj + jnjcg

(j−1)
1 (z)(g

(j)
1 (z))nj−1

+
∑

λ

P1λg
pλ
0

1 (z)(g′1(z))
pλ
1 . . . (g

(j)
1 (z))p

λ
j

)

,

where P1λ ∈ C \ {0} and pλ0 , p
λ
1 , . . . , p

λ
j ∈ N ∪ {0} such that pλi 6 nj, where i =

0, 1, . . . , j − 1, pλj < nj and pλ0 + pλ1 + . . .+ pλj = nj . Therefore

(3.32) F1(z) = ts1e
csz

(

G1(z) + c
k

∑

j=1

jnjg
(j−1)
1 (z)(g

(j)
1 (z))nj−1

k
∏

i=1
i6=j

(g
(i)
1 (z))ni

+
∑

λ

Q1λg
qλ
0

1 (z)(g′1(z))
qλ
1 . . . (g

(k)
1 (z))q

λ
k

)

,
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where Q1λ ∈ C \ {0} and qλ0 , q
λ
1 , . . . , q

λ
k ∈ N ∪ {0} such that qλi 6 s, where i =

0, 1, . . . , k−1, qλk < s and qλ0+qλ1+. . .+qλk = s. It is clear that 0 6 qλ1+2qλ2+. . .+kqλk 6

m1 − 2. Note that

(3.33) F ′
1(z) = ts1e

csz

(

G′
1(z) + c(m1 + s)G1(z)

+
∑

λ

R1λg
rλ
0

1 (z)(g′1(z))
rλ
1 . . . (g

(k)
1 (z))r

λ
k

)

+ csts1e
csz

∑

λ

Q1λg
qλ
0

1 (z)(g′1(z))
qλ
1 . . . (g

(k)
1 (z))q

λ
k ,

where R1λ ∈ C \ {0} and rλ0 , r
λ
1 , . . . , r

λ
k ∈ N ∪ {0} such that rλi 6 s, where i =

0, 1, . . . , k−1, rλk < s and rλ0+rλ1+. . .+rλk = s. It is clear that 0 6 rλ1+2rλ2+. . .+krλk 6

m1 − 1. Now from (3.30), (3.32) and (3.33) we have

(3.34) Φ1(z) =
1

F3(z) + G2
1 (z)

(

H1(z) + c(m1 + s)G2
1 (z)

− c

k
∑

j=1

jnjg
(j−1)
1 (z)(g

(j)
1 (z))nj−1

k
∏

i=1
i6=j

(g
(i)
1 (z))niG′

1(z)

)

,

where H1(z) = F2(z)−G2(z) with

F2(z) = G1(z)

(

∑

λ

R1λg
rλ
0

1 (z)(g′1(z))
rλ
1 . . . (g

(k)
1 (z))r

λ
k

+ cs
∑

λ

Q1λg
qλ
0

1 (z)(g′1(z))
qλ
1 . . . (g

(k)
1 (z))q

λ
k

)

,

G2 = G′
1(z)

∑

λ

Q1λg
qλ
0

1 (z)(g′1(z))
qλ
1 . . . (g

(k)
1 (z))q

λ
k

and

F3(z) = G1(z)

(

c

k
∑

j=1

jnjg
(j−1)
1 (z)(g

(j)(z)
1 )nj−1

k
∏

i=1
i6=j

(g
(i)
1 (z))ni

+
∑

λ

Q1λg
qλ
0

1 (z)(g′1(z))
qλ
1 . . . (g

(k)
1 (z))q

λ
k

)

.

Let zp be a zero of g1(z) with multiplicity p (> k). Then the Taylor expansion of

g1(z) about zp is

(3.35) g1(z) = ap(z − zp)
p + ap+1(z − zp)

p+1 + . . . , ap 6= 0.
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Therefore g
(i)
1 (z) = Niap(z − zp)

p−i + . . ., where Ni = p(p− 1) . . . (p− i + 1). Con-

sequently (g
(i)
1 (z))ni = Nni

i ani
p (z − zp)

pni−ini + . . . and so

G1(z) =

( k
∏

i=1

Nni

i ani

p

)

(z − zp)
ps−m1 + . . .

Note that

(3.36) G2
1 (z) =

( k
∏

i=1

Nni

i ani
p

)2

(z − zp)
2ps−2m1 + . . .

and

(3.37) G′
1(z) = (ps−m1)

( k
∏

i=1

Nni

i ani

p

)

(z − zp)
ps−m1−1 + . . .

Also we see that

k
∏

i=1,
i6=j

(g
(i)
1 (z))ni =

( k
∏

i=1

Nni

i ani

p

)

N
−nj

j a−nj

p (z − zp)
ps−m1−pnj+jnj + . . .

and

g
(j−1)
1 (z)(g

(j)
1 (z))nj−1 = Nj−1apN

nj−1
j anj−1

p (z − zp)
pnj−jnj+1.

Consequently,

g
(j−1)
1 (z)(g

(j)
1 (z))nj−1

k
∏

i=1
i6=j

(g
(i)
1 (z))ni =

1

p− j + 1

( k
∏

i=1

Nni

i ani

p

)

(z − zp)
ps−m1+1 + . . .

and so

(3.38)

k
∑

j=1

jn∗∗
j g

(j−1)
1 (g

(j)
1 )nj−1

k
∏

i=1,
i6=j

(g
(i)
1 (z))niG′

1(z)

= (ps−m1)

( k
∏

i=1

Nni

i ani

p

)2 k
∑

j=1

jn∗∗
j

p− j + 1
(z − zp)

2ps−2m1 + . . .

Also F2(z) = A1(z − zp)
2ps−2m1+1 + . . ., G2(z) = A2(z − zp)

2ps−2m1+1 + . . . and

F3(z) = A3(z−zp)
2ps−2m1+1+ . . ., where A1, A2, A3 are suitable nonzero constants.
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Now from (3.34), (3.36) and (3.38) we have

(3.39) Φ1(zp) =

( k
∏

i=1

Nni

i ani

p

)−2(

c(m1 + s)

( k
∏

i=1

Nni

i ani

p

)2

− c(ps−m1)

( k
∑

j=1

jnj

p− j + 1

)( k
∏

i=1

Nni

i ani

p

)2)

=
a

n

(

m1 + s− (ps−m1)
k

∑

j=1

jnj

p− j + 1

)

.

We now consider the following two cases.

Case 1. Suppose n1 = n2 = . . . = nk−1 = 0. Then from (3.39) we get Φ1(zp) =

cnk(p+ 1)/(p− k + 1) and so from (3.31) we arrive at a contradiction.

Case 2. Suppose that at least one of n1, n2, . . . , nk−1 is nonzero. Then from (3.31)

and (3.39) we have

(ps−m1)

k
∑

i=1

jnj

p− j + 1
− (n+ s+m1) = 0,

i.e.,

(3.40) (ps−m1)Q1(p)− (n+ s+m1)Q2(p) = 0,

where Q1(p) and Q2(z) are as in Lemma 3.14. By Lemma 3.14 we see that the roots

of the equation (px−m1)Q1(x)−(n+s+m1)Q2(x) = 0 lie in the interval (−∞, k−1).

Therefore the roots of the equation (3.40) also lie in the interval (−∞, k − 1) but

this is not possible as zp is a zero of g1 with multiplicity p > k. Thus the only

possibility is that g1(z) has no zeros. Since f1(z) and g1(z) share (0,∞), it follows

that f1(z) and g1(z) have no zeros, which is possible as zeros of f1(z) and g1(z) are of

multiplicities at least k (> 1). Hence h1 ∈ C\{0}. Then from (3.25) we get hn+s
1 = 1

and so f1(z) ≡ tg1(z), i.e., (f(z)− c) ≡ t(g(z)− c), t ∈ C \ {0} with tn+s = 1. Thus

the proof is complete. �

Lemma 3.16. Let f(z) and g(z) be two transcendental meromorphic functions

such that the zeros of f(z)− c and g(z)− c are of multiplicities at least k∗, where k∗

is defined in (2.2). Let n, nk ∈ N and ni ∈ N ∪ {0} for i = 1, 2, . . . , k − 1. Suppose

(k − 1)s−m1 < 0 when at least one of n1, n2, . . . , nk−1 is nonzero. Also we assume

that f(z) and g(z) share (∞, 0). If fd
1 (z)P2(f1(z))F1(z) ≡ gd1(z)P2(g1(z))G1(z), then

one of the following cases holds:

(1) If P2(z1) ≡ eiz
i
1 6≡ 0 for some i ∈ {0, 1, 2, . . . ,m1} and f (n∗)(z), g(n

∗)(z) share

(0,∞), then f(z)− c ≡ t(g(z)− c), where t ∈ C \ {0} such that td+s+i = 1 for

some i ∈ {0, 1, 2, . . . ,m1}.
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(2) If P2(z1) 6≡ eiz
i
1 for i ∈ {0, 1, 2, . . . ,m1}, (f (i)(z))n

∗

i , (g(i)(z))n
∗

i share (0,∞),

where i = 1, 2, . . . , k, and f(z), g(z) share (c, 0), then f(z)− c ≡ t(g(z)− c) for

t ∈ C \ {0} such that td+s = 1.

P r o o f. Suppose

(3.41) fd
1 (z)P2(f1(z))F1(z) ≡ gd1(z)P2(g1(z))G1(z),

i.e.,

(3.42)
P2(f1(z))

P2(g1(z))
≡ gd1(z)G1(z)

fd
1 (z)F1(z)

.

We now consider the following two cases.

Case 1. Suppose P2(z1) ≡ eiz
i
1 6≡ 0 for some i ∈ {0, 1, 2, . . . ,m2}. Then the result

follows from Lemma 3.15.

Case 2. Suppose P2(z1) 6≡ eiz
i
1 where i ∈ {0, 1, 2, . . . ,m2}. For the sake of

simplicity we assume that P2(z1) = em2
zm2

1 +em2−1z
m2−1
1 +. . .+e1z1+e0, em2

, e0 6= 0.

Since f1(z) and g1(z) share (∞, 0), from (3.41) we see that f1(z) and g1(z) share

(∞,∞). Now we prove that f1(z) and g1(z) share (0,∞). Note that P2(0) 6= 0.

Let z12 be a zero of f1(z) of multiplicity r12 (> k + 1). Since f1(z) and g1(z) share

(0, 0), z12 is a zero of g1(z) of multiplicity q12 (> k+1). Clearly z12 is a zero of f
(k)
1 (z)

of multiplicity r12 − k and a zero of g
(k)
1 (z) of multiplicity q12 − k. Since f

(k)
1 (z) and

g
(k)
1 (z) share (0,∞), we have r12 = q12. Therefore f1(z) and g1(z) share (0,∞).

Since f1(z) and g1(z) share (0,∞) and (∞,∞), it follows that f1(z) = eγ(z)g1(z),

where γ(z) is an entire function. Let

h∗
1(z) =

P2(f1(z))

P2(g1(z))
and h∗

2(z) =
fd
1 (z)F1(z)

gd1(z)G1(z)
.

Since F1(z) and G1(z) share (0,∞), we have h2(z) 6= 0,∞. Also from (3.41) we see
that h1(z) 6= 0,∞ and

(3.43) h∗
1(z)h

∗
2(z) ≡ 1.

We now consider the following two subcases.

Subcase 2.1. Suppose h∗
1 ≡ b ∈ C \ {0}. Let b = 1. Then from (3.41) we have

fd
1 (z)F1(z) ≡ gd1(z)G1(z). Then the result follows from Lemma 3.15. Let b 6= 1.

Then we have

(3.44)

m2
∑

i=0

eif
i
1 ≡ b

m2
∑

i=0

eig
i
1.
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Since f1(z) = eγ(z)g1(z), from (3.44) we have

(3.45) em2
gm2

1 (z)(em2γ(z) − b) + . . .+ e1g1(z)(e
γ(z) − b) ≡ e0(b − 1).

Note that g1(z) 6≡ d ∈ C. Then from (3.45) we see that g1(z) has no zero. But this

is impossible because zeros of g1(z) are of multiplicities at least k + 1.

Subcase 2.2. Suppose h∗
1 6∈ C. Then h∗

2 6∈ C. Note that h∗
1(z) 6≡ d∗0h

∗
2(z),

d∗0 ∈ C \ {0}. Since h∗
1(z) and h∗

2(z) 6= 0,∞, then there exist two non-constant
entire functions α∗(z) and β∗(z) such that h∗

1(z) = eα
∗(z) and h∗

2(z) = eβ
∗(z). Now

from (3.43) we see that α∗′(z) ≡ −β∗′(z). Therefore h∗
1
′(z) and h∗

2
′(z) share (0,∞).

Now in view of Lemma 3.13, we get h∗
1(z) = c∗1e

az and h∗
2(z) = c∗2e

−az, where

a, c1, c2 ∈ C \ {0} are such that c1c2 = 1. Therefore we have

(3.46)

m2
∑

i=1

eig
i
1(z)(e

iγ(z) − c∗1e
az) ≡ e0(c

∗
1e

az − 1).

Note that the zeros of (c∗1e
az − 1) are simple. Also from (3.46) we see that zeros of

g1(z) are the zeros of (c
∗
1e

az − 1). Since zeros of g1(z) are of multiplicities at least

k + 1, from (3.46) we arrive at a contradiction. Thus the proof is complete. �

Lemma 3.17. Let f(z) and g(z) be two transcendental meromorphic functions

such that the zeros of f(z)−c and g(z)−c are of multiplicities at least k∗, where k∗ is

defined by (2.2) and F (z) = P (f(z))F(z)/p(z) and G(z) = P (g(z))G(z)/p(z), where
n, nk ∈ N and ni ∈ N∪ {0} for i = 1, 2, . . . , k− 1 are such that n+ s+m1 > 2m+ 1

and P (z) is defined by (2.1). Suppose H(z) 6≡ 0. If F (z) and G(z) share (1, k1)

except for the zeros of p(z), and f(z) and g(z) share (∞, 0), then

N(r,∞; f) 6
k∗t+ k∗Γ1 + 1

k∗(n+ s+m1 − 2m− 1)
(T (r, f) + T (r, g))

+
1

n+ s+m1 − 2m− 1
N∗(r, 1;F,G) + S(r, f) + S(r, g).

P r o o f. Since H(z) 6≡ 0, it follows that F 6≡ G. First we observe that if ∞
is Picard’s exceptional value of f(z), then the result follows immediately. Next

we suppose that ∞ is not Picard’s exceptional value of f(z). Since f(z) and g(z)

share (∞, 0), it follows that ∞ is not Picard’s exceptional value of g(z). We claim
that V (z) 6≡ 0. If possible, suppose V (z) ≡ 0. Then by integration we obtain

1 − 1/F (z) = A0(1 − 1/G(z)), where A0 6= 0, 1. Let zq0 be a pole of f(z) of

multiplicity q0 such that p(zq0) 6= 0. Since f(z) and g(z) share (∞, 0), we suppose

that zq0 is a pole of g(z) of multiplicity r0. Therefore 1/F (zq0) = 0 and 1/G(zq0) = 0
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and so A0 = 1, which is not possible. Hence V (z) 6≡ 0. Note that zq0 is a pole of F (z)

with multiplicity (n+ s)q0 +m1 and a pole of G(z) with multiplicity (n+ s)r0 +m1.

Clearly
F ′(z)

F (z)(F (z)− 1)
= O((z − zq0)

(n+s)q0+m1−1)

and
G′(z)

G(z)(G(z)− 1)
= O((z − zq0)

(n+s)r0+m1−1).

Consequently we have

V (z) = O((z − zq0)
(n+m)t0+k−1),

where t0 = min{q0, r0} > 1. This shows that zq0 is a zero of V (z) of multiplicity at

least n+ s +m1 − 1. Also m(r, V ) = S(r, f) + S(r, g). Thus using Lemma 3.1 and

Lemma 3.3, we see that

(n+ s+m1 − 1)N(r,∞; f)

6 N(r, 0;V ) +O(log r) 6 N(r,∞;V ) + S(r, f) + S(r, g)

6 N(r, 0;F ) +N(r, 0;G) +N∗(r, 1;F,G) + S(r, f) + S(r, g)

6 N(r, 0;P1(f)) +N(r, 0; f1) +

k
∑

i=1

n∗
iN(r, 0; f

(i)
1 | f1 6= 0)

+N(r, 0;P1(g)) +N(r, 0; g1) +

k
∑

i=1

n∗
iN(r, 0; g

(i)
1 | g1 6= 0)

+N∗(r, 1;F,G) + S(r, f) + S(r, g)

6 N(r, 0;P1(f)) +N(r, 0; f1) +

k
∑

i=1

n∗
i (iN(r,∞; f1) +Ni(r, 0; f1))

+N(r, 0;P1(g)) +N(r, 0; g1) +

k
∑

i=1

n∗
i (iN(r,∞; g1) +Ni(r, 0; g1))

+N∗(r, 1;F,G) + S(r, f) + S(r, g)

6 N(r, 0;P1(f)) +N(r, 0; f1) +mN(r,∞; f1) + tN(r, 0; f1)

+N(r, 0;P1(g)) +N(r, 0; g1) +mN(r,∞; g1) + tN(r, 0; g1)

+N∗(r, 1;F,G) + S(r, f) + S(r, g)

6
k∗t+ k∗Γ1 + 1

k∗
(T (r, f) + T (r, g))

+ 2mN(r,∞; f) +N∗(r, 1;F,G) + S(r, f) + S(r, g).

Thus the proof is complete. �
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Lemma 3.18 ([2]). Let f(z) and g(z) be two non-constant meromorphic functions

such that they share (1, k1), where 2 6 k1 6 ∞. Then

N(r, 1; f |= 2) + 2N(r, 1; f |= 3) + . . .+ (k1 − 1)N(r, 1; f |= k1) + k1NL(r, 1; f)

+ (k1 + 1)NL(r, 1; g) + k1N
(k1+1

E (r, 1; g) 6 N(r, 1; g)−N(r, 1; g).

4. Proof of the main theorems

P r o o f of Theorem 2.1. Let F (z) = P (f(z))F(z). Now in view of Lemma 3.9

and using the second theorem for small functions (see [14]), we get

(n− s)T (r, f) 6 T (r, F )− sN(r,∞; f)−N(r, 0;F1) + S(r, f)

6 N(r, 0;F ) +N(r,∞;F ) +N(r, a;F )− sN(r,∞; f)

−N(r, 0;F) + (ε+ o(1))T (r, f)

6 N(r, 0;P1(f)) +N(r, 0; f − c) +N(r, a;F ) + (ε+ o(1))T (r, f)

6 (Γ1 + 1/k∗)T (r, f) +N(r, a;F ) + (ε+ o(1))T (r, f)

for all ε > 0. Take ε < n − s− Γ1 − 1/k∗. Since n > s + Γ1 + 1/k∗, one can easily

say that F − a has infinitely many zeros. Thus the proof is complete. �

P r o o f of Theorem 2.3. Let

F (z) =
P (f(z))F(z)

p(z)
and G(z) =

P (g(z))G(z)
p(z)

.

Then F (z) and G(z) share (1, k1) except for the zeros of p(z) and f(z), g(z)

share (∞, 0).

Case 1. Let H(z) 6≡ 0. Now from (3.1) we observe that

N(r,∞;H) 6 N∗(r,∞; f, g) +N∗(r, 1;F,G) +N(r, 0;F |> 2) +N(r, 0;G |> 2)(4.1)

+N0(r, 0;F
′) +N0(r, 0;G

′) + S(r, f) + S(r, g),

where N0(r, 0;F
′) is the reduced counting function of those zeros of F ′(z) which

are not the zeros of F (z)(F (z) − 1) and N0(r, 0;G
′) is defined similarly. Let z0 be

a simple zero of F (z)−1 but p(z0) 6= 0. Then z0 is a simple zero of G(z)−1 and a zero

of H(z). Therefore N(r, 1;F |= 1) 6 N(r, 0;H) 6 N(r,∞;H)+S(r, f)+S(r, g) and

so from (4.1) we get

N(r, 1;F ) 6 N(r, 1;F |= 1) +N(r, 1;F |> 2)(4.2)

6 N(r,∞; f) +N(r, 0;F |> 2) +N(r, 0;G |> 2) +N∗(r, 1;F,G)

+N(r, 1;F |> 2) +N0(r, 0;F
′) +N0(r, 0;G

′) + S(r, f) + S(r, g).
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Now in view of Lemmas 3.3 and 3.18 we get

N0(r, 0;G
′) +N(r, 1;F |> 2) +N∗(r, 1;F,G)(4.3)

6 N0(r, 0;G
′) +N(r, 1;F |= 2) +N(r, 1;F |= 3) + . . .+N(r, 1;F |= k1)

+N
(k1+1

E (r, 1;F ) +NL(r, 1;F ) +NL(r, 1;G) +N∗(r, 1;F,G)

6 N0(r, 0;G
′) +N(r, 1;G)−N(r, 1;G)

− (k1 − 2)NL(r, 1;F )− (k1 − 1)NL(r, 1;G)

6 N(r, 0;G′ | G 6= 0)− (k1 − 2)NL(r, 1;F )− (k1 − 1)NL(r, 1;G)

6 N(r, 0;G) +N(r,∞; g)− (k1 − 2)N∗(r, 1;F,G)−NL(r, 1;G).

Hence using (4.2), (4.3) and Lemma 3.2, we get from the second fundamental

theorem that

(4.4) T (r, F ) 6 N(r, 0;F ) +N(r,∞;F ) +N(r, 1;F )−N0(r, 0;F
′) + S(r, f)

6 2N(r,∞, f) +N2(r, 0;F ) +N(r, 0;G |> 2) +N(r, 1;F |> 2)

+N∗(r, 1;F,G) +N0(r, 0;G
′) + S(r, f) + S(r, g)

6 3N(r,∞; f) +N2(r, 0;F ) +N2(r, 0;G)

− (k1 − 2)N∗(r, 1;F,G) + S(r, f) + S(r, g)

6 3N(r,∞; f) + 2N(r, 0; f1) +N2(r, 0;P1(f)) +N2(r, 0;F1)

+ 2N(r, 0; g1) +N2(r, 0;P1(g)) +N2(r, 0;G1)

− (k1 − 2)N∗(r, 1;F,G) + S(r, f) + S(r, g)

6 3N(r,∞; f) + (Γ2 +
2

k∗
)(T (r, f) + T (r, g)) +N2(r, 0;F1)

+N2(r, 0;G1)− (k1 − 2)N∗(r, 1;F,G) + S(r, f) + S(r, g)

6 3N(r,∞; f) +
(

Γ2 +
2

k∗

)

(T (r, f) + T (r, g)) +N2(r, 0;F1)

+
k

∑

i=1

n∗∗
i N2(r, 0; g

(i))− (k1 − 2)N∗(r, 1;F,G) + S(r, f) + S(r, g)

6 3N(r,∞; f) +
(

Γ2 +
2

k∗

)

(T (r, f) + T (r, g)) +N2(r, 0;F1)

+

k
∑

i=1

n∗∗
i Ni+2(r, 0; g) +

k
∑

i=1

in∗∗
i N(r,∞; g)

− (k1 − 2)N∗(r, 1;F,G) + S(r, f) + S(r, g)

6 (3 +m1)N(r,∞; f) +
(

Γ2 +
2

k∗

)

(T (r, f) + T (r, g)) +N2(r, 0;F1)

+ sN(r, 0; g)− (k1 − 2)N∗(r, 1;F,G) + S(r, f) + S(r, g).
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Now using Lemmas 3.17 and 3.9 we get from (4.4)

(n− s)T (r, f) 6 T (r, F )− sN(r,∞; f)−N(r, 0;F1) + S(r, f)

6 (3 +m1 − s)N(r,∞; f) +
(

Γ2 +
2

k∗

)

T (r, f) +
(

Γ2 +
2

k∗

)

T (r, g)

+ sN(r, 0; g)− (k1 − 2)N∗(r, 1;F,G) + S(r, f) + S(r, g)

6 2
(k∗t+ k∗Γ1 + 1)(3 +m1 − s)

k∗(n+ s+m1 − 2m− 1)
T (r) +

(

2Γ2 +
4

k∗
+ s

)

T (r) + S(r)

6

(

2
(k∗t+ k∗Γ1 + 1)(3 +m1 − s)

k∗(n+ s+m1 − 2m− 1)
+ 2Γ2 +

4

k∗
+ s

)

T (r) + S(r).

We obtain a similar inequality for g(z). Combining these inequalities we ob-

tain

(n− s)T (r) 6
(

2
(k∗t+ k∗Γ1 + 1)(3 +m1 − s)

k∗(n+ s+m1 − 2m− 1)
+ 2Γ2 +

4

k∗
+ s

)

T (r) + S(r),

i.e.,

(k∗n2 − ((2Γ2 + s+ 2m+ 1−m1)k
∗ + 4)n+A)T (r) 6 S(r),

where

A = k∗(4mΓ2 + 2Γ2 + 4ms+ 2s+ 2sΓ1 + 2ts− 2m1s− 2s2 − 2sΓ2

− 2m1Γ2 − 2m1Γ1 − 6Γ1 − 6t− 2m1t) + 8m− 6m1 − 2s− 2.

Therefore

(4.5) (n−K1)(n−K2)T (r) 6 S(r),

where

K1 =
(2Γ2 + s+ 2m+ 1−m1)k

∗ + 4 +
√
L

2k∗

and

K2 =
(2Γ2 + s+ 2m+ 1−m1)k

∗ + 4−
√
L

2k∗
,

so that L = ((2Γ2 + s+ 2m+ 1−m1)k
∗ + 4)2 − 4k∗A. Note that

L = ((2Γ2 + s+ 2m+ 1−m1)k
∗ + 4)2 − 4k∗A

= (k∗)2(4Γ2
2 + 4m2 + 9s2 +m2

1 + 1− 8mΓ2 + 12sΓ2 + 4m1Γ2

− 4Γ2 + 6sm1 − 12sm− 8st− 8sΓ1 − 4mm1 − 2m1

+ 24t+ 24Γ1 + 8tm1 + 8m1Γ1 + 4m− 6s)

+ 4k∗(4Γ2 + 4s− 4m+ 4 + 4m1) + 16

6 (k∗)2(4Γ2
2 + 4m2 + 9s2 +m2

1 + 1 + 12sΓ2 + 12m1Γ2 + 20Γ2 − 6s

+ 4mm1 + 6sm1 + 28m− 8mΓ2 − 12sm− 8st− 8sΓ1 − 2m1)

+ 16(k∗(Γ2 + s−m+ 1 +m1) + 1)
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6 (k∗)2(36Γ2
2 + 4m2 + 9s2 + 4m2

1 + 1 + 24mΓ2 + 36sΓ2 + 24m1Γ2

+ 12Γ2 + 6ms+ 8mm1 + 4m+ 6sm1 + 6s+ 4m1)

+ k∗(16Γ2 + 6s− 16m+ 16 + 14m1) + 16

+ (k∗)2(8Γ2 + 4m− 24mΓ2 − 24sΓ2 − 6ms− 4m1

− 32Γ2
2 − 8st− 4sΓ1 − 3m2

1 − 12m1Γ2 − 4mm1 − 6s)

6 (k∗(6Γ2 + 2m+ 3s+ 2m1 + 1))2.

Therefore

K1 <
(2Γ2 + s+ 2m+ 1−m1)k

∗ + 4 +
√

(k∗(6Γ2 + 2m+ 3s+ 2m1 + 1))2

2k∗

= 4Γ2 + 2m+ 2s+ 1 +
m1

2
+

2

k∗
.

Since n > 4Γ2 + 2m+ 2s+ 1 +m1/2 + 2/k∗, (4.5) leads to a contradiction.

Case 2. Let H(z) ≡ 0. Now the theorem follows from Lemmas 3.10, 3.12 and 3.16.

�

P r o o f of Theorem 2.2. Using Lemmas 3.10 and 3.12, the theorem can be proved

in the line of the proof of Theorem 2.3. So we omit the details. �
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