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Abstract. In the present paper, we prove the existence and uniqueness of weak solution
to a class of nonlinear degenerate elliptic p-Laplacian problem with Dirichlet-type boundary
condition, the main tool used here is the variational method combined with the theory of
weighted Sobolev spaces.
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1. INTRODUCTION

Let © C RY (V > 2) be an open bounded domain and p € (1,00). Our aim is
to prove the existence and uniqueness of weak solutions for the nonlinear degenerate
elliptic problem
(L1) —div(w|Vu— OW)P 2 (Vu— O(w))) + a(u) = f i %,

' u =0 on 0,

where w is a measurable positive function defined on €2, « is a nondecreasing continu-
ous real function defined on R and © is a continuous function defined from R to RY,
the datum f is in L*°.

In general, the Sobolev spaces W*P(Q) without weights occur as spaces of solu-
tions for elliptic and parabolic partial differential equations. For degenerate partial
differential equations, i.e. equations with various types of singularities in the coeffi-
cients, it is natural to look for solutions in weighted Sobolev spaces (see [3], [4], [8],
9], [11], [14]).
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In this paper, using the variational method, we prove in the first part the existence
of weak solutions to problem (1.1); we assume that © is a Lipschitz function with
Lipschitz constant satisfying a suitable condition (see assumption (Hy4) below). In the
second part, we will prove two lemmas which will be used in the proof of uniqueness
part. In the particular case when © = 0, the existence and uniqueness of weak solu-
tions to problem (1.1) are treated by several authors (see for example [2], [3], [4], [5]).

In recent years, the study of partial differential equations and variational problems
has received considerable attention in many models coming from various branches
of mathematical physics, such as elastic mechanics, electrorheological fluid dynamics
and image processing, etc. Degenerate phenomena appear in the area of oceanogra-
phy, turbulent fluid flows, induction heating and electrochemical problems (see for
example [6], [10], [13]). As models examples of applications for problem (1.1), we
state the following two models:

Model 1. Filtration in a porous medium. The filtration phenomena of fluids
in porous media are modeled by equation

(1.2 %0 — Gab(er))(Vp + ),

where p is the unknown pressure, ¢ volumetric moisture content, k& the hydraulic con-
ductivity of the porous medium, a the heterogeneity matrix and —e is the direction
of gravity.

Model 2. Fluid flow through porous media. This model is governed by
equation

00
(1.3) 5 ~ div([Vie() — K(0)e[*(Vip(8) — K(9)e)) = 0,
where 6 is the volumetric content of moisture, K (6) the hydraulic conductivity, ¢(6)
the hydrostatic potential and e is the unit vector in the vertical direction.

Our paper is divided into three sections, organized as follows: In Section 2, we
present some preliminaries on weighted Sobolev spaces and some basic tools to prove
Theorem 3.2. In Section 3, we introduce the assumptions and we give the definition
of weak solution of problem (1.1), we finish this section by proving the main result.
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2. PRELIMINARIES AND NOTATIONS

In this section, we give some notations and definitions and state some results which
will be used in this work.

Let w be a measurable positive and a.e. finite function defined on RY. Further,
we suppose that the following integrability conditions are satisfied:
(Hy) we LL (Q) and w™ /=D ¢ L1 (Q),
(He) w=* € LL (Q), where s € (N/p,00) N (1/(p — 1), 00].
We define the weighted Lebesgue space LP (2, w) by

loc

LP(Q,w) = {u: Q — R: u is measurable and / |u|Pw(z) de < oo}
Q

endowed with the norm

1/p
ol = o0 = ( [ firtorac) ™
The weighted Sobolev space is defined by
WLP(Q,w) = {u € L? and |Vu| € LP(Q,w)}
with the norm

lullipe = lullp + IVullpw ¥ ue W (Q,w).

In the following, the space Wol’p(Q,w) denotes the closure of C§° in WhHP(Q,w)

endowed by the norm
1/p
||u||W01'p(Q7w) = (/Q [Vu|Pw(z) da:) .

Let s be a real number such that s satisfies hypothesis (Hz). We define the following
critical exponents:

S .
. Np b if N > p.,

Pt = forp< N, ps=-o<p, pi={ (I+s)N—ps
N-—p 1+s .
o0 1fN<p5

for almost all xz € Q.

Proposition 2.1 ([9]). Let Q C RY be an open set of RY, and let hypothesis (H;)
be satisfied. Then we have
LP(Q,w) = Lige ().
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Proposition 2.2 ([9]). Let hypothesis (H;) be satisfied. The space
(WP (Q,w)l|ullpw)
is a separable and reflexive Banach space.

Proposition 2.3 ([9]). Assume that hypotheses (Hy) and (Hy) hold. Then we
have the continuous embedding

WhP(Q,w) — WP (Q, w).
Morover, we have the compact embedding
WhP(Q,w) s L"(Q),
where 1 < r < p} for all z € Q.

Proposition 2.4 (Hardy-type inequality, see [9]). There exist a weight function w
on § and a parameter q, 1 < q < 0o, such that the inequality

(2.1) (/Q w(x)|u(x)|qu)1/q < C(/Qw(x)|Vu|pda:>l/p

holds for every u € Wol’p(Q, w) with a constant C > 0 inependent of u and, moreover,
the embedding
Wy P (Q,w) < LYQ,w)

expressed by inequality (2.1) is compact.
Given a constant k > 0, we define the cut function 7T: R — R as
s if |s] <k,
Ti(s) = min(k, max(s, —k)) = ¢ k  if s >k,
-k if s < —k.

For a function u = wu(z) defined on €2, we define the truncated function Tyu as
follows: For every x € €, the value of (T,u) at x is just Tx(u(x)).

Definition 2.5 ([12]). Let Y be a reflexive Banach space and let P be an operator
from Y to its dual Y’. We say that P is monotone if

(Pu—Pv,u—v) 20 VYu,veV.

Theorem 2.6 ([12]). Let Y be a reflexive real Banach space and P: Y — Y’ be
a bounded operator, hemi-continuous, coercive and monotone on space Y. Then the
equation Pu = h has at least one solution u € Y for each h € Y.
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Lemma 2.7 ([1]). For £,n € RY and 1 < p < 0o we have

1 p_l P p—2 _
plfl plnl < [EPTE(E —m).

Lemma 2.8. Fora>0,b>0 and 1 < p < oo we have

(a+b)P < 2P71(aP + bP).

Lemma 2.9 ([7]). Let p, p' be two real numbers such that p > 1, p’ > 1 and
1/p+1/p’ = 1. We have

IEP=2¢— P~ 2n)P" < CU(E—n)(|E[P~2E— n|P~2n)) P2 (|€]P + nP)—P/2 ve,n e RY,

where f=2ifl<p<2and f=9p ifp>2.

Remark 2.10. Hereinafter, C;, i € {1,2,...} is a positive constant.

3. ASSUMPTIONS AND MAIN RESULT

In this section, we will introduce the concept of weak solution to problem (1.1) and
we will state the existence and uniqueness results for this type of solutions, firstly
and in addition to hypotheses (H;) and (Hs) listed earlier, we suppose the following
assumptions:

(H3) « is a nondecreasing continuous real function defined on R, surjective and
such that «(0) = 0 and there exists a positive constant A; such that |a(x)| <
Ap|z[P~! for all z € R.

(Hy) © is a continuous function from R to RY such that ©(0) = 0 and for all real
numbers z, y we have |©(z) — O(y)| < Az|z — y|, where A3 is a real constant
such that 0 < Ay < %C”l and C is the constant given in Proposition 2.4.

(Hs) [ e L=(9).

Definition 3.1. A function u € W, *(Q,w) is called a weak solution to prob-
lem (1.1) if

(3.1) /Qo.)|Vu—@(u)|p*2(Vu—@(u))Vg0dx+/Q

a(u)apdx:/ﬂfgodx

for all o € Wy P(,w).

117



Our main result of this work is the following theorem.

Theorem 3.2. Let hypotheses (Hy), (Hz), (Hs), (Hy) and (Hs) be satisfied. Then
problem (1.1) has a unique weak solution.

Proof.  Ezistence part. Let the operator T: Wy P(Q,w) — (WoP(Q,w))
(where (W, *(Q,w))" is the dual space of W, (9, w)) and let T = A — L, where for
all u, p € Wy (Q,w)

(Au, @) = /Qw|Vu—@(u)|p*2(Vu—@(u))V<pdx—l—/Q a(u)pdr = (Aru, @)+ (Asu, )

and

(L) = | foda.

The proof of the existence part of Theorem 3.2 is divided into several steps.
Step 1. The operator T is bounded. One hand, we use Holder’s inequality, hy-
pothesis (Hy), Lemma 2.8 and Proposition 2.4. We have for any u, ¢ € Wol’p(Q, w),

(Al < [ wiTu=OwPVelds
<272 [ w(val ™ + [0Vl da
<272 [ WV + 57 )|Vl da
< 2”*2/90.)(|Vu|p71+)\§71Cp71|Vu|p*1)|Vg0|dx

<22\t 4 1)/ w|VulP~ V| de
Q

(r—1)/p 1/p
<Gy </ w|VulP dx) (/ w|Vpl? dx>
Q Q

-1
< CO||u||€ngP(Q7w) H<10|‘W01’p(ﬂ,w)’

where Cy = 2°=2(A5"'CP~! 4+ 1). This implies that A; is bounded.
One the other hand, using again Holder’s inequality, hypothesis (Hs) and Propo-
sition 2.4, we get

— — —1
(A ) <0 [ [l do < Al el < Mol g 1ol

where C7, Cy are two constants of compact embedding given by Proposition 2.3.
This allows us to deduce that A is bounded. Finally, by Holder’s inequality, we get
immediately the boundedness of L. Hence, T' is bounded.
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Step 2. The operator T is hemi-continuous. Let {un}nen C Wy (Q,w) and u €
WP (Q,w) such that u, — u strongly in Wy ?(Q,w). Firstly, we will prove that A,
is continuous on W, * (2, w). Indeed, we have for ¢ € W, (9, w),

(Arun, — Aru, @) = / W(|Vn — O (un) P2 (Vu, — O(uy))
Q
— |Vu — O(u)|P~%(Vu — O(u))) Ve dr.

Set
Fyn = [Vitn — O(un)P~2(Vy — O(u)) € L7 (Q,w)",

Fy = |Vu—0(u)[P*(Vu — 6(u)) € L (,w)",
where 1/p+ 1/p’ = 1. Then, we have by Hélder’s inequality
(Avun — Aru, @) < |Fon = Follyrr o) 19l » (.0 -

This implies that

||A1un - Alu”(WOl’p(Q,w))/ = sup |<A1un — Alu, gO>| < ||F9’n — FOHLT’/(Q,w)'
lellr(o,w <1

Since u, — u strongly in Wol’p(Q,w), then
Fyn — Fp in L¥ (Q,w)V.

Consequently,
Aju, — Aju in (WP (Q,w))".

This implies that A; is continuous on VVO1 P(Q,w). Secondly, applying hypothe-
sis (Hs), we get immediately the continuity of As. Therefore T' is hemi-continuous
on WP (Q,w).

Step 8. The operator T is coercive. For any u € Wol’p(Q, w) we have

= w u — ’ll,p72 u — u udar alu)uar — uax.
<mwf4|v o) 3(V GUWd+A()d Afd

On the one hand, we have by application of hypothesis (Hs) that

/ a(u)udz > 0.
Q

And, by Hélder’s inequality and Proposition 2.3, there exists a positive constant Cj
such that

/ fudx < C3||f||p’||u||wg”’(ﬂ,w)'
Q
This implies that

(3.2) (Tu,u) > (Ayu, u) — Cs| fllp l[ullyrr -
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On the other hand, using Lemma 2.7, we obtain that
(Aru,u) = / w|Vu — O (u)[P~2(Vu — O(u))Vu dx
Q
1 1
> —/ w|Vu — 0 (u)|P de — —/ w|O(u)|P dz.
pJa pJa
Lemma 2.8 allows us to deduce that

|V |p_

Ou) + O] < [Vu = O(u)[” + [O(u)[".

2P1

Then

[Vul” = [0(u)]” < [Vu = O(u)”

p—1

Consequently,

1 1
(v > [ I—)w(m,_1|w|p—2|e<u>|p) dz

11
Pdy — P
>~ o 1/(,u|Vu| dzx /w|u| dz

11
> ——_1/w|Vu|pdx——2Cp/w|Vu|pdx
P27 Jo p Q

1,1
> = (55 — 247 Jull?
p\2r~!

Wi P(Qw)’

So, the choice of constant Ay in (Hy) gives the existence of a positive constant Cy
such that

(3.3) (Aru,u) > C4H“H;/(}>P(Q,w)'

Then, inequality (3.2) becomes

(Tu,u) 2 Cillully o gy = Cll ol o

Therefore
(Tu, u)

W — 00 as HuHWOl’p(Q,w) — Q.
0 W

This allows us to conclude that T is coercive.
Step 4. The operator T is monotone. In this step, it suffices to prove that A is
monotone. Firstly, we have by application of hypothesis (Hs) that
(Asu — Agv,u —v) = / (a(u) — a(@)(u—v)de >0 Yu,ve WP (Q,uw).
Q
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It remains to show that (A;u — Ajv,u —v) > 0 . Indeed, we have

(Atu — Ayv,u —v) = (Au,u) + (Ao, v) — (Aju, vy — (Ao, u)
2 C ( ) — CQTQ('U,, U)
2 min(Co, Cy)(T1(u,v) — Ta(u,v)),

where Cy and Cy are the two constants got in the proof of boundedness and coer-
civeness of operator T' and

Ta(u,v) = [lully

Wl p(Q w) + HU”p

Wl p(Q w)’

TQ(U’) U) ||U||W1 P Q W)H’UHWl p(Q w) + ||UHW1 P(Q w ||u||W01’p(Q7w)'
Then (Aju— Ajv,u—v) > min(C’O,C'4)[(Hqu S ||1;|‘P i, w))(HuHWJ”’(Q,w) _
H1)||Wé,p(Q w))] > 0. This implies that A; is monotone. Therefore T is monotone.

Hence, by Theorem 2.6, there exists a weak solution to problem (1.1).
Uniqueness part. We firstly need the following two lemmas.

Lemma 3.3. Let hypotheses (H1), (Hs), (Hs), (Hs) and (Hs) be satisfied. If u is
a weak solution of problem (1.1), then there exists a positive constant /3 such that

for all k > 0 we have
M

meas{|u| > k} < BT

where M = || f|| Lo (q)-
Proof. Choosing ¢ = Tj(u) in equality (3.1), we obtain

/mwhemwﬁwm—mwwnmmwe/
Q

Q

a@ﬂ@@zéﬂwwx
Since [, a(u)Ti(u)dz > 0, then
/Qw|Vu —0O)|P3(Vu — O(u))VT(u) dx
- /u|<k“"w — O()*%(Vu — O(w)Vude < k| fll1~()-
It may be obtained similarly as (3.3), there exists a constant 5 > 0 such that

/ w|Vu — O (w)[P~2(Vu — O(u))Vudz > w|VulP dz.
lu|<k

lul<k

Therefore

k
/ Wl Vul? dz < ZJ1 7] 1.
|ul<k B
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As VTi(u) = Vuxqju <k}, then

k
/ VT (@) de < [\ fl] o ),
o B

where Y p is the characteristic function of the measurable set B C R . This implies
that for all £ > 0,

1 M
z Py < 2
k/Qw|VTk(u)| dr < 7.

where M = || f|| (). Noting that {|u| > k} = {|Tk(u)| > k}, by Markov inequality
we have

[Tk ()2 v () )P _ M
k = Bkt
This completes the proof. ([

meas{|u| > k} < (

Lemma 3.4. Let hypotheses (Hy), (Hz), (Hs), (Hy) and (Hs) be satisfied. If u is
a weak solution of problem (1.1), then

1
(1) lim lim — w|Vu — 0 (u)|[P~2?|Vu — O(u)|Vudzr = 0,
h—oo k—0 k {h<|u|<k+h}
1
(2) lim lim — w|VulP dx = 0,
h=00 k=0 K J(h < ju|<kth}
1
(3) lim lim _/ |V — O(u)|? de = 0.
h—=00 k=0 K J{h<|u|<k+h}

Proof. (1) Let k and h be two real numbers such that 0 < k < h. Taking
¢ = Ti(u — Th(u)) in equality (3.1), we get

(3.4) /Qw(|Vu —O(u)|[P"3(Vu — 0()))VTi(u — Th(u)) dz

+ /Q a(w)Ti(u — Th(u))de = /Qka(u — Th(u)) da.

Firstly, we have

/ a(w)Ty(u — Th(u)) de = / o(u)Tx(u — hsign(u)) dz,
Q

{Jul>h}
and

sign(u) x{ju>hy = sign(u — hsign(w))X{ju>ny = sign(Tk(u — hsign(u)))x{ju/>h}
then

/ a(w)Ti(u — Th(uw))dz > 0.
Q
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Therefore, equality (3.4) becomes

w(|Vu — O (uw)|P~2(Vu — 0(u)))VTk(u — Th(u)) dz < k‘/ |f| dx.

/{h<|ugh+k} {lul>h}

By Lemma 3.3, we deduce that meas{|u| > h} tends to zero as h goes to infinity, so

lim |f]dz = 0.

h=00 J{|u|>h}

This implies that

1
lim lim — w|Vu — O ()P ?|Vu — O(u)|Vudz = 0.
h=00 k=0 kK J(h<u|<ktn}

(2) By using Lemma 2.7 and Lemma 2.8, we have
1 2 72
}—7|Vu|p— }—j|®(u)|p < |Vu —0u) P~ Vu — ©(u)|Vu.

We use hypothesis (Hs) and we get

1 205

p2p*1| ulP — 7|u|p < |[Vu— O(w)[P~2|Vu — O(u)|Vu.

This implies that

1

2 p
—_1/ w|Vu|pdx—ﬁ/ w|u|pdx</ w|Vu — 0 (u)[P~2|Vu — O(u)|Vu dz,
p2P=2 Jor P Jar ar

where Q' = {h < |u| < h + k}, and by using Proposition 2.4, we obtain
1

—71/ w|VulP dz — / w|Vul? dz
p2P= Jan on

< / |Vt — ©(w)[P2|Vu — O (u)|Vu da.
Qh

k

2XBCP

Then, by hypothesis (Hy), there exists a positive constant Cs such that

J

This allows us to deduce that

w|VulP dz < C5/

w|Vu — O (u)[P~2|Vu — O(u)|Vu da.
24

h
k

1
lim lim

— / w|VulP dz = 0.

123



(3) We have by Lemma 2.7
1 1 o
]—)|Vu —O(u)P — ;|@(u)|p < |[Vu — 0(w)|P~*|Vu — O(u)|Vu.
Then

1
—/ w|Vu — 0(u)|Pdz
bJa

h
k

1
g/ w|Vu—6(u)|p_2|Vu—6(u)|Vuda:+];/ O da
ar ar

k

p
S/ w|Vu—@(u)|p_2|Vu—@(u)|Vuda:+%/ wlulP dz
Qr Qr

k k

X cr
< / w|Vu — O(u)[P~?|Vu — O(u)|Vudz + -2 / w|VulP dz.
on on

k

We apply the previous results (1) and (2) and we get that
o1
lim lim — w|Vu — O(u)|Pdz = 0.
h—oo0 k—0 k {h<|u|<k+h}

O

Now, let u and v be two weak solutions of degenerate elliptic problem (1.1) and
let h, k be two positive real numbers such that 1 < £ < h. For the solution u, we take
¢ = Ti(u—Tp(v)) in equality (3.1), and for the solution v, we take ¢ = Ty (v—Tx(u))
as test function. We have

/ a(u)Ty(u — Th(v))de + / w(|Vu —0(u)[P~2(Vu — (u))) VT (u — Th(v)) do
Q Q

_ /ka(u—Th(v))dx
Q
and
/ a(0)Te(v — Tn(u)) dz + / W([V0 = BW)P2(Vo — O(0)))VTk (v — Th(u)) da
Q Q

= /ka(’U—Th(’U,))dJ).
Q

We divide the two equalities above by k£ and we pass to the limit where £ — 0 and
h — co. We find by applying Dominated Convergence Theorem that

(3.5) la(u) — a(v)| + lim lim %I(k;; h) =0,

h—o0 k—0
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where
Z(k;h) = /Qw(|Vu —Ou)P2(Vu — 0(u)) VT (u — Th(v) da
+ / w(|Vo — 0@)[P~2(Vv — 0(v)))VTk(v — Th(u)) dz.
Q

We will prove that
1
lim lim EI(k; h) > 0.

h—o0 k—0

We consider the following decomposition:

b Qa(h) = {|ul < hs o] > ht,

{
{lul > hsfv] > h}

and

Zi(k;h) = /Q‘(h) w(|Vu — 9(u)|p_2(Vu —0(w)))VT(u — Th(v))de

+ / w(|Vo — 0)|[P~3(Vv — O(v))VTk(v — Th(u)) dz
Q;(h)

for i =1,...,4. Firstly, we have

T = [ (Va0 (Tu= o)

— Vo —0@)|P"%(Vv — O(v)))VTk(u —v)dx

=T (k; h) + I3 (ks D),

where
QL) = {Ju— vl < ks ful < hs [o] < B},
zin) = | ¥ = B (T~ 00)
~ V0= O) P2 (Vo — 0(0))a(uiv) d,
zin) = | (1T O (T~ 6(w)
~ Vo — O(0)|P2 (Vo — O(v))) W (u; v) de
and

Dy(u;v) = (Vu—0(u)) — (Vo —0(v));  VYo(u;v) = O(u) — O(v).
We prove that
lim lim %Il(k; h) =0.

h—o0 k—0
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For this, we divide the proof into two cases according to the value of p.
Case (1 < p < 2): Let € > 0. We apply Young’s inequality and we find

2(k; = w uw—O0(w)|P2(Vu — 0(u
Il(k,h)<p,/ﬂf(l) [([Vu = 0(w)[P~*(Vu — O(u)))

— (IVv = O@)P2(Vv — O)| do

1
+— w|©(u) — O(v)|P dz.
P Jak )

We apply Lemma 2.9 and hypothesis (H4) and get
2 Cr
|Z2(k; h)| < eC6Zi (ks h) + —k‘p
which implies that
1
(3.6) hm |Il (ks h)| < eCg ]11;% EIll(k;h).

If ]lin%) k=Tl (k,h) = 0, the above inequality (3.6) becomes
—

N . —
1112%) %Il (k,h) =0, ie. lim lim kIl(k h) = 0.

h—o0 k—0

If 0 < lim k=71 (k, h) < oo, we take
k—0

1
= hlimgoo b 2Z; (k. h)

n (3.6), we deduce that
lim lim k‘Il (k,h) =0.

h—o0 k—0
It follows that
lim lim kIl(k h) > 0.

h—o0 k—0

If Jim k~1Z}(k, h) = oo, we have by using hypothesis (Hy) that

|3 (k; h)| < kg /Qk(l) w||Vu — O ()P~ (Vu — 8(u)) = [Vo — 0(v)[P*(Vo — O(v))|
< ko /Q;(l) w([Vu = O@W)P~! + Vo — O() P~ da.

Consequently, |
HTEN <0 [ (Fu= 0 + 70~ 6P ds.
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On the other hand, for the solution u we take ¢ = Tj(u) in equality (3.1) and we find

/ (Vi — Ow)P2(Vau — O(w)))Vaudz < kCs.
{lu|<k}

This implies that

/ w|Vu — O(u)P do < kCs + cg/ w|O(w)|P dz < kCs + C1ok? < CykP.
{lul<k}

{lul<k}

Similarly, we prove that
/ w|Vv — 0(v)|P dz < Cr2kP.
{lul<k}
Therefore
1 1
—|112(k3, h)| < /\2013(]1 + k?)p, i.e. lim —|1-12(k3, h)| < Ao CahP.
k k—0 k
Thus, it follows that
li 1Il(lc h) + li l12(k h) =
o N o L\ ) = 00
Then

h—o0 k—0

1
lim lim El'l(k,h) = 0.
Case (p > 2): We use Young’s inequality to deduce

Cuse(k+h) | Cas

i .
ok e e>0

1
ZIZE (k. h)] <
k

Then, we take ¢ = k/h? and obtain

T
il 2y (k h) = 0.

Consequently,

1
R P
P A () 20

Secondly, we have
To(ks ) = / W[ Vv — O()P2(Vo — O(0))VTi(v — u) da
Q2(h)

+ / w|Vu — O(u)|[P~2(Vu — O(u)) VT (u — hsign(v)) dz
Q2 (h)

i= T, (k; h) + I3 (ks ),
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where

Iy (ks h) = /Q " w|Vo — 0O(v)[P~2(Vv — O(v)) VT (v — u) dz

_ /Q w|Vo— ()P (Vo — O(v)) Vo da

,
ik

B /Q w[Vo = 6(v)[P~(Vv - 6(v)) Vudz,

h,k

T2(k;h) = / w|Vu — 0 (u)|[P~2(Vu — O(u)) VT (u — hsign(v)) da
Q2(h)

_ / w|Vu — O(w)P2(Vu — O(u))Vudz

hyk

and
| < h;lv| > hylv—u| <k}
| < h;lv] > h;lu — hsign(v)| < k}.

On one hand, since w is a positive function, then, applying Lemmas 2.7 and 2.8,
we get
T2(k;h) = 0.

In the same manner, we prove that

/ W Vo — O)[P2(Vo — O(u)) Vo dae > 0
92,1

h,k

On the other hand, by Holder’s inequality, we have

‘/ “'W— ()P (Vo = ©(u)) Vude

(r=1)/p 1/p
< (/ w|Vv — O(v)|P dx) (/ w|Vu|pda:> .
Q21 Q21

h,k h,k

Hence, by application of Lemma 3.4, we get

1
lim lim — w|Vv — O(v)[P~%(Vv — O(u))Vudz = 0.

h—oc0 k—0 Qi 1
Then
Jim Jim 2730 h) >
Therefore
Jim Jim 2,0 1) >
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Finally, in the same manner, we show that

lim lim %(Ig(k; h) + Ta(k; h)) > 0.

h—o0 k—0

Hence 1
lim lim EI(k; h) > 0.

h—o0 k—0

Therefore, inequality (3.5) becomes
lle(u) — a(w)[lx < 0.

This implies that
u=1v a.e.in .

This completes the proof of Theorem 3.2. O
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