# ON $(n, m)$ - $A$-NORMAL AND $(n, m)$ - $A$-QUASINORMAL SEMI-HILBERTIAN SPACE OPERATORS 

Samir Al Mohammady, Sid Ahmed Ould Beinane, Sid Ahmed Ould Ahmed Mahmoud, Sakaka

Received November 30, 2019. Published online June 4, 2021.
Communicated by Laurian Suciu


#### Abstract

The purpose of the paper is to introduce and study a new class of operators on semi-Hilbertian spaces, i.e. spaces generated by positive semi-definite sesquilinear forms. Let $\mathcal{H}$ be a Hilbert space and let $A$ be a positive bounded operator on $\mathcal{H}$. The semiinner product $\langle h \mid k\rangle_{A}:=\langle A h \mid k\rangle, h, k \in \mathcal{H}$, induces a semi-norm $\|\cdot\|_{A}$. This makes $\mathcal{H}$ into a semi-Hilbertian space. An operator $T \in \mathcal{B}_{A}(\mathcal{H})$ is said to be $(n, m)$ - $A$-normal if $\left[T^{n},\left(T^{\sharp A}\right)^{m}\right]:=T^{n}\left(T^{\sharp A}\right)^{m}-\left(T^{\sharp A}\right)^{m} T^{n}=0$ for some positive integers $n$ and $m$.


Keywords: semi-Hilbertian space; $A$-normal operator; ( $n, m$ )-normal operator; $(n, m)$ quasinormal operator

MSC 2020: 54E40, 47B99

## 1. Introduction and preliminaries

Throughout this paper, let $(\mathcal{H},\langle\cdot \mid \cdot\rangle)$ be a complex Hilbert space equipped with the norm $\|\cdot\|$. Let $\mathcal{B}(\mathcal{H})$ denote the $C^{*}$-algebra of all bounded linear operators on $\mathcal{H}$ and let $\mathcal{B}(\mathcal{H})^{+}$be the cone of positive operators of $\mathcal{B}(\mathcal{H})$ defined as

$$
\mathcal{B}(\mathcal{H})^{+}:=\{A \in \mathcal{B}(\mathcal{H}):\langle A h \mid h\rangle \geqslant 0 \forall h \in \mathcal{H}\} .
$$

For every $T \in \mathcal{B}(\mathcal{H})$ its range is denoted by $\mathcal{R}(T)$, its null space by $\mathcal{N}(T)$, and its adjoint by $T^{*}$. If $\mathcal{M}$ is a linear subspace of $\mathcal{H}$, then $\overline{\mathcal{M}}$ stands for its closure in the norm topology of $\mathcal{H}$. We denote the orthogonal projection onto a closed linear subspace $\mathcal{M}$ of $\mathcal{H}$ by $P_{\mathcal{M}}$. The positive operator $A \in \mathcal{B}(\mathcal{H})$ defines a positive semidefinite sesquilinear form $\langle\cdot \mid \cdot\rangle_{A}: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{C}$ given by $\langle h \mid k\rangle_{A}=\langle A h \mid k\rangle$. Note that $\langle\cdot \mid \cdot\rangle_{A}$ defines a semi-inner product on $\mathcal{H}$, and the semi-norm induced by it is
given by $\|h\|_{A}=\sqrt{\langle h \mid h\rangle_{A}}$ for every $h \in \mathcal{H}$. Observe that $\|h\|_{A}=0$ if and only if $h \in \mathcal{N}(A)$. Then $\|\cdot\|_{A}$ is a norm if and only if $A$ is injective, and the semi-normed space $\left(\mathcal{H},\|\cdot\|_{A}\right)$ is a complete space if and only if $\mathcal{R}(A)$ is closed.

The above semi-norm induces a semi-norm on the subspace $\mathcal{B}^{A}(\mathcal{H})$ of $\mathcal{B}(\mathcal{H})$ consisting of all $T \in \mathcal{B}(\mathcal{H})$ so that for some $c>0$ and for all $h \in \mathcal{H},\|T h\|_{A} \leqslant c\|h\|_{A}$. Indeed, if $T \in \mathcal{B}^{A}(\mathcal{H})$, then

$$
\|T\|_{A}:=\sup \left\{\frac{\|T h\|_{A}}{\|h\|_{A}}, h \notin \mathcal{N}(A)\right\} .
$$

For $T \in \mathcal{B}(\mathcal{H})$, an operator $S \in \mathcal{B}(\mathcal{H})$ is called an $A$-adjoint operator of $T$ if for every $h, k \in \mathcal{H}$ we have $\langle T h \mid k\rangle_{A}=\langle h \mid S k\rangle_{A}$, that is, $A S=T^{*} A$. If $T$ is an $A$-adjoint of itself, then $T$ is called an $A$-selfadjoint operator.

Generally, the existence of an $A$-adjoint operator is not guaranteed. The set of all operators that admit $A$-adjoints is denoted by $\mathcal{B}_{A}(\mathcal{H})$. An application of the Douglas theorem (see [13]) shows that

$$
\begin{aligned}
\mathcal{B}_{A}(\mathcal{H}) & =\left\{T \in \mathcal{B}(\mathcal{H}): \mathcal{R}\left(T^{*} A\right) \subseteq \mathcal{R}(A)\right\} \\
& =\{T \in \mathcal{B}(\mathcal{H}): \exists c>0:\|A T x\| \leqslant c\|A x\| \forall x \in \mathcal{H}\} .
\end{aligned}
$$

Note that $\mathcal{B}_{A}(\mathcal{H})$ is a subalgebra of $\mathcal{B}(\mathcal{H})$, which is neither closed nor dense in $\mathcal{B}(\mathcal{H})$. Moreover, the inclusions $\mathcal{B}_{A}(\mathcal{H}) \subseteq \mathcal{B}^{A}(\mathcal{H}) \subseteq \mathcal{B}(\mathcal{H})$ hold with equality if $A$ is one-to-one and has a closed range. If $T \in \mathcal{B}_{A}(\mathcal{H})$, the reduced solution of the equation $A X=T^{*} A$ is a distinguished $A$-adjoint operator of $T$, which is denoted by $T^{\sharp A}$. Note that $T^{\sharp A}=A^{\dagger} T^{*} A$ in which $A^{\dagger}$ is the Moore-Penrose inverse of $A$. It was observed that the $A$-adjoint operator $T^{\sharp A}$ satisfies

$$
A T^{\sharp A}=T^{*} A, \quad \mathcal{R}\left(T^{\sharp A}\right) \subseteq \overline{\mathcal{R}(A)}
$$

and

$$
\mathcal{N}\left(T^{\sharp A}\right)=\mathcal{N}\left(T^{*} A\right) .
$$

For $T, S \in \mathcal{B}_{A}(\mathcal{H})$, it is easy to see that $\|T S\|_{A} \leqslant\|T\|_{A}\|S\|_{A}$ and $(T S)^{\sharp_{A}}=S^{\sharp_{A}} T^{\sharp_{A}}$.
Notice that if $T \in \mathcal{B}_{A}(\mathcal{H})$, then $T^{\sharp A} \in \mathcal{B}_{A}(\mathcal{H}),\left(T^{\sharp A}\right)^{\sharp A}=P_{\overline{\mathcal{R}(A)}} T P_{\overline{\mathcal{R}(A)}}$ and $\left(\left(T^{\sharp A}\right)^{\sharp A}\right)^{\sharp A}=T^{\sharp A}$. (For more detail on the concepts cited above see [5], [4], [6].)

In [17] it was observed that if $T \in \mathcal{B}_{A}(\mathcal{H})$ is such that $T A=A T$, then $T^{\sharp A}=P T^{*}$. For an arbitrary operator $T \in \mathcal{B}_{A}(\mathcal{H})$, we can write

$$
\operatorname{Re}_{A}(T):=\frac{1}{2}\left(T+T^{\sharp A}\right) \quad \text { and } \quad \operatorname{Im}_{A}(T):=\frac{1}{2 \mathrm{i}}\left(T-T^{\sharp A}\right) .
$$

The concept of $n$-normal operators as a generalization of normal operators on Hilbert spaces has been introduced and studied by Jibril (see [15]) and Alzuraiqi et al. (see [3]). The class of $n$-power normal operators is denoted by $[n \mathbf{N}]$. An operator $T$ is called n-power normal if $\left[T^{n}, T^{*}\right]=0$ (equivalently $T^{n} T^{*}=T^{*} T^{n}$ ). Very recently, several papers have appeared on $n$-normal operators. We refer the interested reader to [12], [11], [16] for the complete details.

In [1] and [2], the authors introduced and studied the classes of $(n, m)$-normal powers and $(n, m)$-power quasinormal operators as follows: An operator $T \in \mathcal{B}(\mathcal{H})$ is said to be $(n, m)$-power normal if $T^{n}\left(T^{m}\right)^{*}=\left(T^{m}\right)^{*} T^{n}$ and it is said to be $(n, m)$ power quasinormal if $T^{n}\left(T^{*}\right)^{m} T=\left(T^{*}\right)^{m} T T^{n}$ where $n, m$ are two nonnegative integers. We refer the interested reader to [11] for the complete details on $(n, m)$ power normal operators.

The classes of normal, $(\alpha, \beta)$-normal, and $n$-power quasinormal operators, isometries, partial isometries, unitary operators etc. on Hilbert spaces have been generalized to semi-Hilbertian spaces by many authors in many papers. (See, for more details, [5]-[7], [9], [10], [14], [17], [18], [21].)

An operator $T \in \mathcal{B}_{A}(\mathcal{H})$ is said to be
(1) $A$-normal if $T^{\sharp_{A}} T=T T^{\sharp_{A}}$ (see [17]),
(2) $(\alpha, \beta)$ - $A$-normal if $\beta^{2} T^{\sharp_{A}} T \geqslant_{A} T T^{\sharp_{A}} \geqslant_{A} \alpha^{2} T^{\sharp} T$ for $0 \leqslant \alpha \leqslant 1 \leqslant \beta$ (see [9]),
(3) $(A, n)$-power-quasinormal if $T^{n}\left(T^{\sharp_{A}} T\right)=\left(T T^{\sharp_{A}}\right) T^{n}$ (see [14]),
(4) an $A$-isometry if $T^{\sharp A} T=P_{\overline{\mathcal{R}(A)}}$ (see [5]),
(5) A-unitary if $T^{\sharp A} T=\left(T^{\sharp A}\right)^{\sharp A} T^{\sharp A}=P_{\overline{\mathcal{R}}(A)}$, i.e. $T$ and $T^{\sharp A}$ are $A$-isometries (see [5]).
From now on, $A$ denotes a positive operator on $\mathcal{H}$, i.e. $A \in \mathcal{B}(\mathcal{H})^{+}$.
This paper is devoted to the study of some new classes of operators on semiHilbertian spaces called $(n, m)$ - $A$-normal operators and ( $n, m$ )- $A$-quasinormal operators. Some properties of these classes are investigated.

## 2. $(n, m)$ - $A$-NORMAL OPERATORS

In this section, the class of $(n, m)$ - $A$-normal operators as a generalization of the classes of $A$-normal operators is introduced. In addition, we study several properties of members of this class of operators.

Definition 2.1. Let $T \in \mathcal{B}_{A}(\mathcal{H})$. We say that $T$ is $(n, m)$ - $A$-normal if

$$
\begin{equation*}
\left[T^{n},\left(T^{\sharp A}\right)^{m}\right]:=T^{n}\left(T^{\sharp A}\right)^{m}-\left(T^{\sharp_{A}}\right)^{m} T^{n}=0 \tag{2.1}
\end{equation*}
$$

for some positive integers $n$ and $m$. The set of all operators which are $(n, m)-A$ normal is denoted by $[(n, m) \mathbf{N}]_{A}$.

Remark2.1. We make the following observations:
(1) Every $A$-normal operator is an $(n, m)$ - $A$-normal for all $n, m \in \mathbb{N}$.
(2) If $n=m=1$, every ( 1,1 )- $A$-normal operator is an $A$-normal operator.
(3) If $T \in[(1, m) \mathbf{N}]_{A}$ then $T \in[(n, m) \mathbf{N}]_{A}$ and if $T \in[(n, 1) \mathbf{N}]_{A}$ then $T \in[(n, m) \mathbf{N}]_{A}$.
(4) If $T \in[(n, m) \mathbf{N}]_{A}$ then $T \in[(2 n, m) \mathbf{N}]_{A} \cap[(n, 2 m) \mathbf{N}]_{A} \cap[(2 n, 2 m) \mathbf{N}]_{A}$.

Remark 2.2. In the following example we present an operator that is ( $n, m$ ) - $A$ normal for some positive integers $n$ and $m$ but is not an $A$-normal operator.

Example 2.1. Let $T=\left(\begin{array}{rr}2 & 0 \\ 1 & -2\end{array}\right)$ and $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$ be operators acting on two-dimensional Hilbert space $\mathbb{C}^{2}$. A simple calculation shows that $T^{\sharp A}=\left(\begin{array}{rr}2 & 2 \\ 0 & -2\end{array}\right)$. Moreover, $T^{\sharp_{A}} T \neq T T^{\sharp_{A}}$ and $T^{\sharp_{A}} T^{2}=T^{2} T^{\sharp_{A}}$. Therefore $T$ is a ( 2,1 )-A-normal but not an $A$-normal operator.

In [17], Theorem 2.1 it was observed that if $T \in \mathcal{B}_{A}(\mathcal{H})$ then $T$ is $A$-normal if and only if

$$
\|T h\|_{A}=\left\|T^{\sharp A} h\right\|_{A} \forall h \in \mathcal{H} \quad \text { and } \quad \mathcal{R}\left(T T^{\sharp A}\right) \subseteq \overline{\mathcal{R}(A)} .
$$

In the following theorem, we generalize this characterization to $(n, m)$ - $A$-normal operators.

Theorem 2.1. Let $T \in \mathcal{B}_{A}(\mathcal{H})$. Then $T$ is an ( $n, m$ )- $A$-normal operator for some positive integers $n$ and $m$ if and only if $T$ satisfies the conditions:

$$
\begin{gather*}
\left\langle\left(T^{\sharp A}\right)^{m} h \mid\left(T^{\sharp A}\right)^{n} h\right\rangle_{A}=\left\langle\left( T^{n} h\left|T^{m} h\right\rangle_{A} \quad \forall h \in \mathcal{H},\right.\right.  \tag{1}\\
\mathcal{R}\left(T^{n}\left(T^{\sharp}\right)^{m}\right) \subseteq \overline{\mathcal{R}(A)} . \tag{2}
\end{gather*}
$$

Proof. Assume that $T$ is an $(n, m)-A$-normal operator and we need to proof that $T$ satisfies the conditions (1) and (2). In fact, we have

$$
\begin{aligned}
\left\langle\left[T^{n},\left(T^{\sharp A}\right)^{m}\right] h \mid h\right\rangle_{A}=0 & \Rightarrow\left\langle T^{n}\left(T^{\sharp A}\right)^{m} h \mid h\right\rangle_{A}-\left\langle\left(T^{\sharp A}\right)^{m} T^{n} h \mid h\right\rangle_{A}=0 \\
& \Rightarrow\left\langle\left(T^{\sharp A}\right)^{m} h \mid T^{* n} A h\right\rangle-\left\langle A\left(T^{\sharp A}\right)^{m} T^{n} h \mid h\right\rangle=0 \\
& \Rightarrow\left\langle\left(T^{\sharp A}\right)^{m} h \mid\left(T^{\sharp A}\right)^{n} h\right\rangle_{A}-\left\langle T^{n} h \mid T^{m} h\right\rangle_{A}=0 \\
& \Rightarrow\left\langle\left(T^{\sharp A}\right)^{m} h \mid\left(T^{\sharp A}\right)^{n} h\right\rangle_{A}=\left\langle T^{n} h \mid T^{m} h\right\rangle_{A} .
\end{aligned}
$$

Moreover, the condition $\left[T^{n},\left(T^{\sharp A}\right)^{m}\right]=0$ implies that $T^{n}\left(T^{\sharp_{A}}\right)^{m}=\left(T^{\sharp A}\right)^{m} T^{n}$. Therefore

$$
\mathcal{R}\left(T^{n}\left(T^{\sharp A}\right)^{m}\right)=\mathcal{R}\left(\left(T^{\sharp A}\right)^{m} T^{n}\right) \subseteq \mathcal{R}\left(T^{\sharp A}\right) \subseteq \overline{\mathcal{R}(A)} .
$$

Conversely, assume that $T$ satisfies the conditions (1) and (2) and we prove that $T$ is an $(n, m)$ - $A$-normal operator. From the condition (1), a simple computation shows that

$$
\begin{aligned}
\left\langle\left(T^{\sharp A}\right)^{m} h\right| & \left.\left(T^{\sharp A}\right)^{n} h\right\rangle_{A}-\left\langle T^{n} h \mid T^{m} h\right\rangle_{A}=0 \\
& \Rightarrow\left\langle T^{n}\left(T^{\sharp A}\right)^{m} h \mid h\right\rangle_{A}-\left\langle\left(T^{\sharp A}\right)^{m} T^{n} h \mid h\right\rangle_{A}=0 \\
& \Rightarrow\left\langle\left[T^{n},\left(T^{\sharp A}\right)^{m}\right] h \mid h\right\rangle_{A}=0,
\end{aligned}
$$

which implies that $\mathcal{R}\left(\left[T^{n},\left(T^{\sharp_{A}}\right)^{m}\right]\right) \subseteq \mathcal{N}(A)$.
On the other hand, since the condition (2) holds, it follows that

$$
\mathcal{R}\left(\left[T^{n},\left(T^{\sharp A}\right)^{m}\right]\right) \subseteq \overline{\mathcal{R}(A)}=\mathcal{N}(A)^{\perp}
$$

We deduce that $\left[T^{n},\left(T^{\sharp A}\right)^{m}\right]=0$ which means that the operator $T$ is $(n, m)-A$ normal.

Remark 2.3. If $n=m=1$, then Theorem 2.1 coincides with Theorem 2.1 of [17].
The following proposition discusses the relation between ( $n, m$ )- $A$-normal operators and ( $m, n$ )- $A$-normal operators.

Proposition 2.1. Let $T \in \mathcal{B}_{A}(\mathcal{H})$ be such that $\mathcal{N}(A)^{\perp}$ is an invariant subspace of $T$. Then the following statements are equivalent.
(1) $T$ is an ( $n, m$ )-A-normal operator.
(2) $T$ is an $(m, n)$-A-normal operator.

Proof. (1) $\Rightarrow(2)$ Assume that $T$ is an $(n, m)-A$-normal operator. It follows that

$$
T^{n}\left(T^{\sharp A}\right)^{m}-\left(T^{\sharp A}\right)^{m} T^{n}=0 .
$$

Then

$$
\begin{aligned}
T^{n}\left(T^{\sharp A}\right)^{m}- & \left(T^{\sharp A}\right)^{m} T^{n}=0 \\
& \Rightarrow\left[\left(T^{\sharp A}\right)^{\sharp A}\right]^{m}\left(T^{n}\right)^{\sharp A}-\left(T^{n}\right)^{\sharp A}\left[\left(T^{\sharp A}\right)^{\sharp A}\right]^{m}=0 \\
& \Rightarrow\left(P_{\overline{\mathcal{R}(A)}} T P_{\overline{\mathcal{R}(A)}}\right)^{m}\left(T^{n}\right)^{\sharp A}-\left(T^{n}\right)^{\sharp A}\left(P_{\overline{\mathcal{R}(A)}} T P_{\overline{\mathcal{R}(A)}}\right)^{m}=0 \\
& \Rightarrow P_{\overline{\mathcal{R}(A)}}\left(T^{m}\left(T^{n}\right)^{\sharp A}-\left(T^{n}\right)^{\sharp A} T^{m}\right)=0 .
\end{aligned}
$$

This means that $\left(T^{m}\left(T^{n}\right)^{\sharp A}-\left(T^{n}\right)^{\sharp A} T^{m}\right) h \in \mathcal{N}(A)$ for all $h \in \mathcal{H}$.
On the other hand, this fact and $\mathcal{R}\left(T^{\sharp A n}\right) \subset \mathcal{R}\left(T^{\sharp A}\right) \subset \overline{\mathcal{R}(A)}$ and the assumption that $\mathcal{N}(A)^{\perp}$ is an invariant subspace for $T$ imply that $\left(T^{m}\left(T^{n}\right)^{\sharp_{A}}-\left(T^{n}\right)^{\sharp_{A}} T^{m}\right) h \in$ $\overline{\mathcal{R}(A)}$ for all $h \in \mathcal{H}$. Consequently, $\left(T^{m}\left(T^{n}\right)^{\sharp_{A}}-\left(T^{n}\right)^{\sharp_{A}} T^{m}\right) h=0$ for all $h \in \mathcal{H}$. Therefore $\left[T^{m},\left(T^{\sharp A}\right)^{n}\right]=0$. Hence $T^{\sharp A}$ is an $(m, n)$ - $A$-normal operator.
$(2) \Rightarrow(1)$ By the same way hence we omit it.

It is well known that if $T \in \mathcal{B}_{A}(\mathcal{H})$ is $A$-normal, then $T^{n}$ is $A$-normal. In the following theorem, we extend this result to an $(n, m)-A$-normal operator as follows.

Theorem 2.2. Let $T \in \mathcal{B}_{A}(\mathcal{H})$. If $T$ is an ( $n, m$ )- $A$-normal operator then the following statements hold:
(i) $T^{j}$ is $A$-normal where $j$ is the least common multiple of $n$ and $m$, i.e. $j=\operatorname{LCM}(n, m)$,
(ii) $T^{n m}$ is an $A$-normal operator.

Proof. (i) Assume that $T$ is $(n, m)$ - $A$-normal that is $T^{n}\left(T^{\sharp A}\right)^{m}=\left(T^{\sharp A}\right)^{m} T^{n}$. Let $j=p n$ and $j=q m$. By computation we get

$$
\begin{aligned}
T^{j}\left(T^{j}\right)^{\sharp A} & =T^{p n}\left(\left(T^{\sharp A}\right)^{q m}=\left(T^{n}\right)^{p}\left(\left(T^{\sharp A}\right)^{m}\right)^{q}\right. \\
& =\underbrace{T^{n} \ldots T^{n}}_{p \text {-times }} \underbrace{\left(T^{\sharp A}\right)^{m} \ldots\left(T^{\sharp A}\right)^{m}}_{q \text {-times }} \\
& =\underbrace{\left(T^{\sharp A}\right)^{m} \ldots\left(T^{\sharp A}\right)^{m}}_{q \text {-times }} \underbrace{T^{n} \ldots T^{n}}_{p \text {-times }} \\
& =\left(T^{\sharp A}\right)^{q m} T^{n p}=\left(T^{q m}\right)^{\sharp_{A}} T^{n p}=\left(T^{j}\right)^{\sharp A} T^{j},
\end{aligned}
$$

which means that $T^{j}$ is $A$-normal.
(ii) This statement is proved in the same way as the statement (i).

Proposition 2.2. Let $T \in \mathcal{B}_{A}(\mathcal{H}), X=T^{n}+\left(T^{\sharp_{A}}\right)^{m}, Y=T^{n}-\left(T^{\sharp_{A}}\right)^{m}$ and $Z=T^{n}\left(T^{\sharp A}\right)^{m}$. The following statements hold:
(1) $T$ is $(n, m)$-A-normal if and only if $[X, Y]=0$.
(2) If $T \in[(n, m) \mathbf{N}]_{A}$, then $[Z, X]=[Z, Y]=0$.
(3) $T \in[(n, m) \mathbf{N}]_{A}$ if and only if $\left[T^{n}, X\right]=0$.
(4) $T \in[(n, m) \mathbf{N}]_{A}$ if and only if $\left[T^{n}, Y\right]=0$.

Proof. (1)

$$
\begin{aligned}
{[X, Y]=X Y-Y X=0 \Leftrightarrow } & \left(\left(T^{n}+\left(T^{\sharp A}\right)^{m}\right)\left(T^{n}-\left(T^{\sharp A}\right)^{m}\right)\right) \\
& \quad-\left(\left(T^{n}-\left(T^{\sharp_{A}}\right)^{m}\right)\left(T^{n}+\left(T^{\sharp_{A}}\right)^{m}\right)\right)=0 \\
\Leftrightarrow & T^{2 n}-T^{n}\left(T^{\sharp A}\right)^{m}+\left(T^{\sharp_{A}}\right)^{m} T^{n}-\left(T^{\sharp_{A}}\right)^{2 m} \\
& \quad-T^{2 n}-T^{n}\left(T^{\sharp_{A}}\right)^{m}+\left(T^{\sharp_{A}}\right)^{m} T^{n}-\left(T^{\sharp}\right)^{2 m}=0 \\
\Leftrightarrow & T^{n}\left(T^{\sharp A}\right)^{m}-\left(T^{\sharp}\right)^{m} T^{n}=0 \\
\Leftrightarrow & {\left[T^{n},\left(T^{\sharp_{A}}\right)^{m}\right]=0 . }
\end{aligned}
$$

Hence $[X, Y]=0$ if and only if $T$ is $(n, m)$ - $A$-normal.
Proofs of the statements (2), (3) and (4) are straightforward.

Proposition 2.3. Let $T, V \in \mathcal{B}_{A}(\mathcal{H})$ be such that $\mathcal{N}(A)^{\perp}$ is an invariant subspace for both $T$ and $V$. If $T$ is an $(n, m)$ - $A$-normal operator and $V$ is an $A$-isometry, then $V T V^{\sharp_{A}}$ is an ( $n, m$ )-A-normal operator.

Proof. Since $V$ is an $A$-isometry then $V^{\sharp_{A}} V=P_{\overline{\mathcal{R}(A)}}$. Moreover from the fact that $\mathcal{N}(A)^{\perp}$ is an invariant subspace for $T$ we have $P_{\overline{\mathcal{R}}(A)} T=T P_{\overline{\mathcal{R}}(A)}$ which implies that $T^{\sharp A} P_{\overline{\mathcal{R}(A)}}=P_{\overline{\mathcal{R}(A)}} T^{\sharp A}$ since $P_{\overline{\mathcal{R}}(A)}^{\sharp A}=P_{\overline{\mathcal{R}(A)}}$. In a similar way we have

$$
V P_{\overline{\mathcal{R}}(A)}=P_{\overline{\mathcal{R}}(A)} V \quad \text { and } \quad V^{\sharp A} P_{\overline{\mathcal{R}}(A)}=P_{\overline{\mathcal{R}}(A)} V^{\sharp A} .
$$

It is easy to check that

$$
\begin{aligned}
\left(V T V^{\sharp A}\right)^{j}= & \underbrace{\left(V T V^{\sharp A}\right)\left(V T V^{\sharp A}\right) \ldots\left(V T V^{\sharp A}\right)}_{j \text {-times }} \\
= & \left(V T P_{\overline{\mathcal{R}(A)}} T V^{\sharp A}\right) \ldots\left(V T V^{\sharp A}\right) \\
= & P_{\overline{\mathcal{R}(A)}} V T^{2} V^{\sharp A} \ldots\left(V T V^{\sharp A}\right) \\
& \vdots \\
= & P_{\overline{\mathcal{R}(A)}} V T^{j} V^{\sharp A} .
\end{aligned}
$$

The same arguments yield

$$
\begin{aligned}
\left(V T V^{\sharp A}\right)^{\sharp A}= & \underbrace{}_{\left.j T V^{\sharp A}\right)^{\sharp A}\left(V T V^{\sharp A}\right)^{\sharp A} \ldots\left(V T V^{\sharp A}\right)^{\sharp A}} \\
= & \left(P_{\overline{\mathcal{R}(A)}} V P_{\overline{\mathcal{R}(A)}} T^{\sharp A} V^{\sharp A}\right) \ldots\left(P_{\overline{\mathcal{R}(A)}} V P_{\overline{\mathcal{R}(A)}} T^{\sharp A} V^{\sharp A}\right) \\
& \vdots \\
= & P_{\overline{\mathcal{R}(A)}} V\left(T^{\sharp A}\right)^{j} V^{\sharp A} .
\end{aligned}
$$

From the above calculation, we deduce that

$$
\begin{align*}
&\left\langle\left\{\left(V T V^{\sharp A}\right)^{\sharp A}\right\}^{m} h \mid\left\{\left(V T V^{\sharp A}\right)^{\sharp A}\right\}^{n} h\right\rangle_{A}  \tag{2.2}\\
&=\left\langle P_{\overline{\mathcal{R}(A)}} V\left(T^{\sharp A}\right)^{m} V^{\sharp A} h \mid P_{\overline{\mathcal{R}(A)}} V\left(T^{\sharp A}\right)^{n} V^{\sharp A} h\right\rangle_{A} \\
&=\left\langle\left(T^{\sharp A}\right)^{m} V^{\sharp A} h \mid\left(T^{\sharp A}\right)^{n} V^{\sharp A} h\right\rangle_{A} .
\end{align*}
$$

It is also easy to show that
(2.3) $\left\langle\left(V T V^{\sharp A}\right)^{n} h \mid\left(V T V^{\sharp_{A}}\right)^{m} h\right\rangle_{A}=\left\langle P_{\overline{\mathcal{R}(A)}} V T^{n} V^{\sharp_{A}} h \mid P_{\overline{\mathcal{R}(A)}} V T^{m} V^{\sharp_{A}} h\right\rangle_{A}$

$$
=\left\langle T^{n} V^{\sharp A} h \mid T^{m} V^{\sharp A} h\right\rangle_{A} .
$$

Since $T$ is $(n, m)$ - $A$-normal, by combining (2.2) and (2.3) we have

$$
\left\langle\left\{\left(V T V^{\sharp A}\right)^{\sharp A}\right\}^{m} h \mid\left\{\left(V T V^{\sharp_{A}}\right)^{\sharp A}\right\}^{n} h\right\rangle_{A}=\left\langle\left(V T V^{\sharp_{A}}\right)^{n} h \mid\left(V T V^{\sharp_{A}}\right)^{m} h\right\rangle_{A} \quad \forall h \in \mathcal{H} .
$$

On the other hand, we have

$$
\begin{aligned}
\mathcal{R}\left(\left(V T V^{\sharp A}\right)^{n}\left\{\left(V T V^{\sharp A}\right)^{\sharp A}\right\}^{m}\right) & =\mathcal{R}\left(P_{\overline{\mathcal{R}(A)}} V T^{n} V^{\sharp A} P_{\overline{\mathcal{R}(A)}} V\left(T^{\sharp A}\right)^{m} V^{\sharp A}\right) \\
& =\mathcal{R}\left(P_{\overline{\mathcal{R}(A)}} V T^{n}\left(T^{\sharp A}\right)^{m} V^{\sharp A}\right) \\
& \subseteq \mathcal{R}\left(P_{\overline{\mathcal{R}(A)}}\right) \subseteq \overline{\mathcal{R}(A)} .
\end{aligned}
$$

In view of Theorem 2.1, it follows that $V T V^{\sharp A}$ is $(n, m)-A$-normal operator.

Proposition 2.4. Let $T \in \mathcal{B}_{A}(\mathcal{H})$ and $S \in \mathcal{B}_{A}(\mathcal{H})$ be such that $T S=S T$ and $S T^{\sharp_{A}}=T^{\sharp_{A}} S$. If $T$ is ( $n, n$ )-A-normal, the following statements hold:
(1) If $S$ is an $A$-self adjoint, then $T S$ is an $(n, n)$ - $A$-normal operator.
(2) If $S$ is an $A$-normal operator, then $T S$ is an $(n, n)$ - $A$-normal operator.

Proof. (1) Let $h \in \mathcal{H}$, under the assumption that $S$ is $A$-self-adjoint ( $A S=S^{*} A$ ) and the statement (1) of Theorem 2.1 we have

$$
\begin{aligned}
\left\langle(T S)^{\sharp_{A} n} h \mid(T S)^{\sharp_{A} n} h\right\rangle_{A} & =\left\langle(S)^{\sharp_{A} n}(T)^{\sharp A n} h \mid(S)^{\sharp_{A} n}(T)^{\sharp_{A} n} h\right\rangle_{A} \\
& =\left\langle A(S)^{\sharp_{A} n}(T)^{\sharp_{A} n} h \mid(S)^{\sharp_{A} n}(T)^{\sharp_{A} n} h\right\rangle \\
& =\left\langle\left(S^{*}\right)^{n} A(T)^{\sharp_{A} n} h \mid(S)^{\sharp_{A} n}(T)^{\sharp_{A} n} h\right\rangle \\
& =\left\langle A(S)^{n}(T)^{\sharp_{A} n} h \mid(S)^{\sharp_{A} n}(T)^{\sharp_{A} n} h\right\rangle \\
& =\left\langle A(T)^{\sharp_{A} n} S^{n} h \mid(S)^{\sharp_{A} n}(T)^{\sharp_{A} n} h\right\rangle \\
& =\left\langle(T)^{\sharp_{A} n} S^{n} h \mid A(S)^{\sharp_{A} n}(T)^{\sharp_{A} n} h\right\rangle \\
& =\left\langle(T)^{\sharp_{A} n} S^{n} h \mid(T)^{\sharp_{A} n} S^{n} h\right\rangle_{A} \\
& =\left\langle T^{n} S^{n} h \mid T^{n} S^{n} h\right\rangle_{A} \\
& =\left\langle(T S)^{n} h \mid(T S)^{n} h\right\rangle_{A} .
\end{aligned}
$$

On the other hand, we have

$$
\mathcal{R}\left((T S)^{n}(T S)^{\sharp A n}\right)=\mathcal{R}\left(T^{n} T^{\sharp_{A} n} S^{n} S^{\sharp A^{n} n}\right) \subseteq \overline{\mathcal{R}(A)} .
$$

This means that $T S$ is an $(n, n)$ - $A$-normal operator by Theorem 2.1.
(2) Let $S$ be an $A$-normal operator then $S S^{\sharp A}=S^{\sharp A} S$ and because $T$ is an ( $n, n$ )- $A$ normal operator we get the relations

$$
\begin{aligned}
& \left\langle(S T)^{\sharp A n} h \mid(S T)^{\sharp A n} h\right\rangle_{A}=\left\langle S^{\sharp} A^{n} T^{\sharp_{A} n} h \mid S^{\sharp A_{A} n} T^{\sharp A n} h\right\rangle_{A} \\
& =\left\langle A S^{\sharp A n} T^{\sharp A n} h \mid S^{\sharp A n} T^{\sharp A n} h\right\rangle \\
& =\left\langle S^{* n} A T^{\sharp A^{n}} h \mid S^{\sharp A_{A} n} T^{\sharp A_{A} n} h\right\rangle \\
& =\left\langle T^{\sharp A n} h \mid S^{n} S^{\sharp A n} T^{\sharp A n} h\right\rangle_{A} \\
& =\left\langle T^{\sharp_{A} n} h \mid\left(S^{\sharp_{A}}\right)^{n} S^{n} T^{\sharp}{ }_{A} n h\right\rangle_{A} \\
& =\left\langle S^{n} T^{\sharp A n} h \mid S^{n} T^{\sharp A n} h\right\rangle_{A} \\
& =\left\langle T^{\sharp A n} S^{n} h \mid T^{\sharp A n} S^{n} h\right\rangle_{A} \\
& =\left\langle T^{n} S^{n} h \mid T^{n} S^{n} h\right\rangle_{A} \quad(\text { since } T \text { is }(n, n) \text { - } A \text {-normal) } \\
& =\left\langle(T S)^{n} h \mid(T S)^{n} h\right\rangle_{A} .
\end{aligned}
$$

On the other hand, based on the $(n, n)$ - $A$-normality of $T$ we get the inclusion

$$
\mathcal{R}\left((T S)^{n}(T S)^{\sharp A n}\right)=\mathcal{R}\left(T^{n} S^{n} T^{\sharp_{A} n} S^{\sharp A n}\right) \subseteq \mathcal{R}\left(T^{n} T^{\sharp A n}\right) \subseteq \overline{\mathcal{R}(A)} .
$$

From the items (1) and (2) of Theorem 2.1, the operator $T S$ is an $(n, n)-A$ normal operator.

In the following proposition, we study the relation between the classes $[(2, m) \mathbf{N}]_{A}$ and $[(3, m) \mathbf{N}]_{A}$.

Proposition 2.5. Let $T \in \mathcal{B}_{A}(\mathcal{H})$ be such that $T \in[(2, m) \mathbf{N}]_{A} \cap[(3, m) \mathbf{N}]_{A}$ for some positive integer $m$, then $T \in[(n, m) \mathbf{N}]_{A}$ for all positive integers $n \geqslant 4$.

Proof. It is obvious from Definition 2.1 that if $T \in[(2, m) \mathbf{N}]_{A}$ then $T \in$ $[(4, m) \mathbf{N}]_{A}$. However, $T \in[(2, m) \mathbf{N}]_{A} \cap[(3, m) \mathbf{N}]_{A}$ implies that $T \in[(5, m) \mathbf{N}]_{A}$.

Assume that $T \in[(n, m) \mathbf{N}]_{A}$ for $n \geqslant 5$, that is,

$$
T^{n}\left(T^{\sharp A}\right)^{m}=\left(T^{\sharp A}\right)^{m} T^{n} .
$$

Then we have

$$
\begin{aligned}
{\left[T^{n+1},\left(T^{\sharp A}\right)^{m}\right] } & =T^{n+1}\left(T^{\sharp A}\right)^{m}-\left(T^{\sharp A}\right)^{m} T^{n+1} \\
& =T\left(T^{\sharp A}\right)^{m} T^{n}-\left(T^{\sharp A}\right)^{m} T^{n+1} \\
& =T\left(T^{\sharp A}\right)^{m} T^{2} T^{n-2}-\left(T^{\sharp A}\right)^{m} T^{n+1} \\
& =T^{3}\left(T^{\sharp A}\right)^{m} T^{n-2}-\left(T^{\sharp A}\right)^{m} T^{n+1} \\
& =\left(T^{\sharp A}\right)^{m} T^{n+1}-\left(T^{\sharp A}\right)^{m} T^{n+1}=0 .
\end{aligned}
$$

This means that $T \in[(n+1, m) \mathbf{N}]_{A}$. The proof is complete.

Proposition 2.6. Let $T \in \mathcal{B}_{A}(\mathcal{H})$. If $T \in[(n, m) \mathbf{N}]_{A} \cap[(n+1, m) \mathbf{N}]_{A}$, then $T \in[(n+2, m) \mathbf{N}]_{A}$ for some positive integers $n$ and $m$. In particular $T \in[(j, m) \mathbf{N}]_{A}$ for all $j \geqslant n$.

Proof. Let $T \in[(n, m) \mathbf{N}]_{A} \cap[(n+1, m) \mathbf{N}]_{A}$, then it follows that

$$
T^{n}\left(T^{\sharp A}\right)^{m}-\left(T^{\sharp A}\right)^{m} T^{n}=0 \quad \text { and } \quad T^{n+1}\left(T^{\sharp A}\right)^{m}-\left(T^{\sharp A}\right)^{m} T^{n+1}=0 .
$$

Note that

$$
\begin{aligned}
{\left[T^{n+2},\left(T^{\sharp A}\right)^{m}\right] } & =T^{n+2}\left(T^{\sharp A}\right)^{m}-\left(T^{\sharp A}\right)^{m} T^{n+2} \\
& =T T^{n+1}\left(T^{\sharp A}\right)^{m}-\left(T^{\sharp A}\right)^{m} T^{n+2} \\
& =T\left(T^{\sharp A}\right)^{m} T^{n+1}-\left(T^{\sharp A}\right)^{m} T^{n+2} \\
& =T T^{n}\left(T^{\sharp A}\right)^{m} T-\left(T^{\sharp A}\right)^{m} T^{n+2} \\
& =\left(T^{\sharp A}\right)^{m} T^{n+2}-\left(T^{\sharp A}\right)^{m} T^{n+2}=0 .
\end{aligned}
$$

Hence $T \in[(n+2, m) \mathbf{N}]_{A}$. By repeating this process we can prove that $T \in[(j, m) \mathbf{N}]_{A}$ for all $j \geqslant n$.

Proposition 2.7. Let $T \in \mathcal{B}_{A}(\mathcal{H})$. If $\left.T \in[(n, m) \mathbf{N}]_{A} \cap(n+1, m) \mathbf{N}\right]_{A}$ is one-toone, then $T \in[(1, m) \mathbf{N}]_{A}$.

Proof. Let $T \in[(n, m) \mathbf{N}]_{A} \cap[(n+1, m) \mathbf{N}]_{A}$, then it follows that,

$$
T^{n}\left(T\left(T^{\sharp A}\right)^{m}-\left(T^{\sharp A}\right)^{m} T\right)=0 .
$$

Since $T$ is one-to-one, then so is $T^{n}$ and it follows that $T\left(T^{\sharp A}\right)^{m}-\left(T^{\sharp A}\right)^{m} T=0$. Therefore $T \in[(1, m) \mathbf{N}]_{A}$.

Proposition 2.8. Let $T \in \mathcal{B}_{A}(\mathcal{H})$. The following statements are equivalent.
(1) If $T \in[(n, 2) \mathbf{N}]_{A} \cap[(n, 3) \mathbf{N}]_{A}$ for some positive integer $n$, then $T \in[(n, m) \mathbf{N}]_{A}$ for all positive integers $m \geqslant 4$.
(2) If $T \in[(n, m) \mathbf{N}]_{A} \cap[(n, m+1) \mathbf{N}]_{A}$, then $T \in[(n, m+2) \mathbf{N}]_{A}$ for some positive integers $n$, $m$. In particular $T \in[(n, j) \mathbf{N}]_{A}$ for all $j \geqslant m$.

Proof. The proof follows by applying Proposition 2.1 and Proposition 2.5.

Proposition 2.9. Let $T \in \mathcal{B}_{A}(\mathcal{H})$. If $T \in[(n, m) \mathbf{N}]_{A} \cap[(n, m+1) \mathbf{N}]_{A}$ is such that $T^{\sharp_{A}}$ is one-to one, then $T \in[(n, 1) \mathbf{N}]_{A}=[n \mathbf{N}]_{A}$.

Proof. Since $T \in[(n, m) \mathbf{N}]_{A} \cap[(n, m+1) \mathbf{N}]_{A}$, it follows that

$$
\left(T^{\sharp_{A}}\right)^{m}\left(T^{n} T^{\sharp_{A}}-T^{\sharp A} T^{n}\right)=0 .
$$

If $T^{\sharp A}$ is one-to-one, then so is $\left(T^{\sharp_{A}}\right)^{m}$ and we obtain $T^{n} T^{\sharp_{A}}-T^{\sharp_{A}} T^{n}=0$. Consequently $T \in[(n, 1) \mathbf{N}]_{A}$.

In [19], Theorem 2.4 it was proved that if $T$ is $(n, m)$-power normal such that $T^{m}$ is a partial isometry, then $T$ is $(n+m, m)$-power normal. In the following theorem we extend this result to $(n, m)$ - $A$-normal operators.

Theorem 2.3. Let $T \in \mathcal{B}_{A}(\mathcal{H})$ be ( $n, m$ )-A-normal for some positive integers $n$ and $m$. The following statements hold:
(1) If $n \geqslant m$ and $T^{m}\left(T^{\sharp_{A}}\right)^{m} T^{m}=T^{m}$, then $T \in[(n+m, m) \mathbf{N}]_{A}$.
(2) If $m \geqslant n$ and $\left(T^{\sharp_{A}}\right)^{n} T^{n}\left(T^{\sharp_{A}}\right)^{n}=\left(T^{\sharp_{A}}\right)^{n}$, then $T \in[(n, m+n) \mathbf{N}]_{A}$.

Proof. (1) Under the assumption that $T^{m}\left(T^{\sharp A}\right)^{m} T^{m}=T^{m}$, it follows that

$$
T^{m}\left(T^{\sharp A}\right)^{m} T^{n}=T^{n} \quad \text { and } \quad T^{n}\left(T^{\sharp A}\right)^{m} T^{m}=T^{n} \quad \text { for } n \geqslant m,
$$

which means that $T^{n}\left(T^{\sharp_{A}}\right)^{m} T^{m}=T^{m}\left(T^{\sharp A}\right)^{m} T^{n}$. Since $T$ is $(n, m)-A$ normal, we get

$$
\left(T^{\sharp}\right)^{m} T^{n+m}=T^{n+m}\left(T^{\sharp A}\right)^{m} .
$$

So, $T \in[(m+n, m) \mathbf{N}]_{A}$.
(2) In same way, under the assumption $\left(T^{\sharp A}\right)^{n} T^{n}\left(T^{\sharp A}\right)^{n}=\left(T^{\sharp A}\right)^{n}$, it follows that $\left(T^{\sharp A}\right)^{n} T^{n}\left(T^{\sharp A}\right)^{m}=\left(T^{\sharp_{A}}\right)^{m} \quad$ and $\quad\left(T^{\sharp_{A}}\right)^{m} T^{n}\left(T^{\sharp_{A}}\right)^{n}=\left(T^{\sharp_{A}}\right)^{m} \quad$ for $m \geqslant n$,
which means that $\left(T^{\sharp A}\right)^{n} T^{n}\left(T^{\sharp_{A}}\right)^{m}=\left(T^{\sharp_{A}}\right)^{m} T^{n}\left(T^{\sharp_{A}}\right)^{n}$. Since $T$ is ( $n, m$ )-A normal, we get

$$
\left(T^{\sharp}\right)^{m+n} T^{n}=T^{n}\left(T^{\sharp A}\right)^{n+m} .
$$

So, $T \in[(n, m+n) \mathbf{N}]_{A}$ and the proof is complete.
Proposition 2.10. Let $T \in \mathcal{B}_{A}(\mathcal{H})$ be an ( $n, m$ )- $A$-normal operator for some positive integers $n$ and $m$. Then $T$ satisfies the relation $T^{2 n}\left(T^{\sharp A}\right)^{2 m}=\left(T^{n}\left(T^{\sharp_{A}}\right)^{m}\right)^{2}$.

Proof. Since $T$ is an ( $n, m$ )-A-normal operator, it follows that

$$
T^{2 n}\left(T^{\sharp A}\right)^{2 m}=T^{n} T^{n}\left(T^{\sharp A}\right)^{m}\left(T^{\sharp A}\right)^{m}=\underbrace{T^{n}\left(T^{\sharp A}\right)^{m}} \underbrace{T^{n}\left(T^{\sharp A}\right)^{m}}=\left(T^{n}\left(T^{\sharp A}\right)^{m}\right)^{2} .
$$

The idea of the following proposition is inspired by [20].

Proposition 2.11. Let $T \in \mathcal{B}_{A}(\mathcal{H})$ be such that $A T=T A$. If $T$ is an n-normal operator, then $T$ is an $(n, m)$ - $A$-normal operator for $m \in \mathbb{N}$.

Proof. Indeed, since $T^{n}$ is normal and $T^{m} T^{n}=T^{n} T^{m}$, it follows from the Fuglede theorem (see [14]) that $T^{* m} T^{n}=T^{n} T^{* m}$. Taking in consideration that under the assumptions we have $P_{\overline{\mathcal{R}(A)}} T=T P_{\overline{\mathcal{R}(A)}}$ and $T^{\sharp A}=P_{\overline{\mathcal{R}(A)}} T^{*}$. Then

$$
\begin{aligned}
{\left[T^{n},\left(T^{\sharp A}\right)^{m}\right] } & =T^{n}\left(T^{\sharp A}\right)^{m}-\left(T^{\sharp A}\right)^{m} T^{n} \\
& =T^{n}\left(P_{\overline{\mathcal{R}(A)}} T^{*}\right)^{m}-\left(P_{\overline{\mathcal{R}(A)}} T^{*}\right)^{m} T^{n} \\
& =P_{\overline{\mathcal{R}(A)}}\left[T^{n}, T^{* m}\right]=0 .
\end{aligned}
$$

Therefore $T$ is $(n, m)$ - $A$-normal.

Corollary 2.1. Let $T \in \mathcal{B}_{A}(\mathcal{H})$ be such that $A T=T A$. If $T$ is an ( $n, m$ )-normal operator, then $T$ is a $(j, r)$ - $A$-normal operator where $r \in \mathbb{N}$ and $j$ is the least common multiple of $n$ and $m$.

Proof. Since $T$ is $(n, m)$-normal, it was observed in [11], Lemma 4.4 that $T^{j}$ is a normal operator where $j=L C M(n, m)$. By applying Proposition 2.11 we get that $T$ is a $(j, r)-A$-normal operator.

## 3. $(n, m)$ - $A$-QUASINORMAL OPERATORS

In [8] the author has introduced the class of $(n, m)$ - $A$-quasinormal operators as follows. An operator $T \in \mathcal{B}_{A}(\mathcal{H})$ is said to be $(n, m)$ - $A$-quasinormal if $T$ satisfies

$$
\left[T^{n},\left(T^{\sharp A}\right)^{m} T\right]:=T^{n}\left(T^{\sharp A}\right)^{m} T-\left(T^{\sharp A}\right)^{m} T T^{n}=0
$$

for some positive integers $n$ and $m$. This class of operators is denoted by $[(n, m) \mathbf{Q N}]_{A}$.
Remark 3.1. Clearly, the class of $(n, m)-A$-quasinormal operators includes the class of $(n, m)$ - $A$-normal one, i.e. the following inclusion holds

$$
[(n, m) \mathbf{N}]_{A} \subset[(n, m) \mathbf{Q N}]_{A} .
$$

We give an example to show that there exists an $(n, m)$ - $A$-quasinormal operator which is not ( $n, m$ )-A-normal for some positive integers $n$ and $m$.

Example 3.1. Let $T$ be a unilateral shift, that is, if $\mathcal{H}=l^{2}$, the matrix

$$
T=\left(\begin{array}{cccc}
0 & 0 & 0 & \ldots \\
1 & 0 & 0 & \ldots \\
0 & 1 & 0 & \ldots \\
\ldots & \ldots & \ldots & \ldots
\end{array}\right) \text { and } A=I_{l^{2}} \text { (the identity operator). }
$$

It is easily verified that $\left[T^{2}, T^{\sharp A}\right] \neq 0$ and $\left[T^{2}, T^{\sharp_{A}} T\right]=0$. So that $T$ is not a $(2,1)$ - $A$-normal operator but it is a $(2,1)-A$-quasinormal operator.

The following theorem gives a characterization of ( $n, m$ )- $A$-quasinormal operators.

Theorem 3.1. Let $T \in \mathcal{B}_{A}(\mathcal{H})$. Then $T$ is an ( $n, m$ )-A-quasinormal operator for some positive integers $n$ and $m$ if and only if $T$ satisfies the following conditions:

$$
\begin{gather*}
\left\langle\left(T^{\sharp A}\right)^{m} T h \mid\left(T^{\sharp A}\right)^{n} h\right\rangle_{A}=\left\langle T^{n} T h \mid T^{m} h\right\rangle_{A} \quad \forall h \in \mathcal{H},  \tag{1}\\
\mathcal{R}\left(T^{n}\left(T^{\sharp A}\right)^{m} T\right) \subseteq \overline{\mathcal{R}(A)} . \tag{2}
\end{gather*}
$$

Proof. We omit the proof, since the techniques are similar to those of Theorem 2.1.

Remark 3.2. Theorem 3.1 is an improved version of [8], Lemma 4.4.

Proposition 3.1. Let $T \in \mathcal{B}_{A}(\mathcal{H})$ and $S \in \mathcal{B}_{A}(\mathcal{H})$ be ( $n, m$ )- $A$-normal operators. Then their product $S T$ is an $(n, m)$-A-normal operator if the conditions $S T=T S$, $S T^{\sharp A}=T^{\sharp A} S$ and $T S^{\sharp_{A}}=S^{\sharp A} T$ are satisfied.

Proof. It is

$$
\begin{aligned}
(T S)^{n}\left((T S)^{\sharp_{A}}\right)^{m}(T S) & =T^{n} S^{n}\left(T^{\sharp_{A}}\right)^{m}\left(S^{\sharp A}\right)^{m} T S=T^{n}\left(T^{\sharp_{A}}\right)^{m} T S^{n}\left(S^{\sharp A}\right)^{m} S \\
& =\left(T^{\sharp_{A}}\right)^{m} T T^{n}\left(S^{\sharp_{A}}\right)^{m} S S^{n}=\left((T S)^{\sharp_{A}}\right)^{m}(T S)(T S)^{n} .
\end{aligned}
$$

Therefore $T S$ is an ( $n, m$ )- $A$-quasinormal operator.
Remark 3.3. Proposition 3.1 is an improved version of [8], Proposition 4.5.

Proposition 3.2. Let $T \in \mathcal{B}_{A}(\mathcal{H})$. If $T \in[(n, m) \mathbf{Q N}]_{A} \cap[(n+1, m) \mathbf{Q N}]_{A}$, then $T \in[(n+2, m) \mathbf{Q N}]_{A}$.

Proof. Assume that $T \in[(n, m) \mathbf{Q N}]_{A} \cap[(n+1, m) \mathbf{Q N}]_{A}$, it follows that

$$
T^{n+1}\left(T^{\sharp_{A}}\right)^{m} T-\left(T^{\sharp_{A}}\right)^{m} T T^{n+1}=0 \quad \text { and } \quad T^{n}\left(T^{\sharp_{A}}\right)^{m} T-\left(T^{\sharp_{A}}\right)^{m} T T^{n}=0 .
$$

On the other hand, we have

$$
\begin{aligned}
T^{n+2}\left(T^{\sharp A}\right)^{m} T-\left(T^{\sharp A}\right)^{m} T T^{n+2} & =T\left(T^{\sharp A}\right)^{m} T T^{n+1}-\left(T^{\sharp A}\right)^{m} T T^{n+2} \\
& =T^{n+1}\left(T^{\sharp A}\right)^{m} T T-\left(T^{\sharp A}\right)^{m} T T^{n+2} \\
& =\left(T^{\sharp A}\right)^{m} T T^{n+2}-\left(T^{\sharp A}\right)^{m} T T^{n+2}=0 .
\end{aligned}
$$

In [19] it was proved that if $T \in[(n, m) \mathbf{Q N}]$ such that $T^{m}$ is a partial isometry, then $T \in[(n+m, m) \mathbf{Q N}]$ for $n \geqslant m$. We extend this result to the class of $[(n, m) \mathbf{Q N}]_{A}$ as follows.

Theorem 3.2. Let $T \in \mathcal{B}_{A}(\mathcal{H})$ be such that $T \in[(n, m) \mathbf{Q N}]$ for some positive integers $n$ and $m$. If $T^{m}\left(T^{\sharp A}\right)^{m} T^{m}=T^{m}$ for $n \geqslant m$, then $T \in[(n+m, m) \mathbf{Q N}]_{A}$.

Proof. (1) Assume that $T^{m}$ satisfies $T^{m}\left(T^{\sharp A}\right)^{m} T^{m}=T^{m}$ for $m \geqslant n$, then we have

$$
\begin{equation*}
T^{m}\left(T^{\sharp A}\right)^{m} T T^{m-1}=T^{m} . \tag{3.1}
\end{equation*}
$$

Multiplying (3.1) from the left by $T^{n-m}$ and from the right by $T$ we get

$$
\begin{equation*}
T^{n}\left(\left(T^{\sharp A}\right)^{m} T\right) T^{m}=T^{n+1} . \tag{3.2}
\end{equation*}
$$

Multiplying (3.1) from the right by $T^{n-m+1}$ we get

$$
\begin{equation*}
T^{m}\left(\left(T^{\sharp A}\right)^{m} T\right) T^{n}=T^{n+1} . \tag{3.3}
\end{equation*}
$$

Combining (3.2), (3.3) and using the fact that $T \in[(n, m) \mathbf{Q N}]$ we obtain

$$
T^{n+m}\left(\left(T^{\sharp A}\right)^{m} T\right)=\left(\left(T^{\sharp A}\right)^{m} T\right) T^{n+m} .
$$

Therefore $T \in[(n+m, m) \mathbf{Q N}]_{A}$ as required.
Proposition 3.3. Let $T \in \mathcal{B}_{A}(\mathcal{H}), n$ and $m$ positive integers. The following statements hold:
(1) If $T \in[(n, m) \mathbf{Q N}]_{A} \cap[(n+1, m) \mathbf{Q N}]_{A}$ such that $T$ is one-to-one, then $T \in[(1, m) \mathbf{Q N}]_{A}$.
(2) If $T \in[(n, m) \mathbf{Q N}]_{A} \cap[(n, m+1) \mathbf{Q N}]_{A}$ such that $T^{*}$ is one-to-one and
$\overline{\left.\mathcal{R}\left(T^{\sharp}\right)^{m} T\right)}=\overline{\mathcal{R}(A)}$, then $T \in[(n, 1) \mathbf{N}]_{A}$.

Proof. (1) Under the assumption $T \in[(n, m) \mathbf{Q N}]_{A} \cap[(n+1, m) \mathbf{Q N}]_{A}$, it follows that

$$
T^{n}\left(T\left(T^{\sharp_{A}}\right)^{m} T-\left(T^{\sharp A}\right)^{m} T T\right)=0 .
$$

If $T$ is injective, then so is $T^{n}$ and we have $T\left(T^{\sharp_{A}}\right)^{m} T-\left(T^{\sharp_{A}}\right)^{m} T T=0$. Hence, $T \in[(1, m) \mathbf{Q N}]_{A}$.
(2) Since $T \in[(n, m) \mathbf{Q N}]_{A} \cap[(n, m+1) \mathbf{Q N}]_{A}$, we have

$$
\begin{aligned}
& T^{n}\left(T^{\sharp_{A}}\right)^{m+1} T-\left(T^{\sharp_{A}}\right)^{m+1} T T^{n}=0 \\
& \Rightarrow T^{n} T^{\sharp_{A}}\left(T^{\sharp_{A}}\right)^{m} T-T^{\sharp_{A}}\left(T^{\sharp_{A}}\right)^{m} T T^{n}=0 \\
& \Rightarrow\left(T^{n} T^{\sharp_{A}}-T^{\sharp_{A}} T^{n}\right)\left(T^{\sharp_{A}}\right)^{m} T=0 \\
& \Rightarrow\left(T^{n} T^{\sharp_{A}}-T^{\sharp_{A}} T^{n}\right) \equiv 0 \quad \text { on } \overline{\mathcal{R}\left(\left(T^{\sharp_{A}}\right)^{m} T\right)}=\overline{\mathcal{R}(A)} .
\end{aligned}
$$

On the other hand, since $T \in \mathcal{B}_{A}(\mathcal{H})$, we have $T(\mathcal{N}(A)) \subseteq \mathcal{N}(A)$. Moreover, by the assumption that $T^{*}$ is injective we obtain $\mathcal{N}\left(T^{\sharp_{A}}\right)=\mathcal{N}(A)$. If $h \in \mathcal{N}(A)$ it follows from the above observation that

$$
\left(T^{n} T^{\sharp_{A}}-T^{\sharp_{A}} T^{n}\right) h=T^{n} T^{\sharp_{A}} h-T^{\sharp_{A}} T^{n} h=0 .
$$

Consequently, $\left(T^{n} T^{\sharp_{A}}-T^{\sharp} T^{n}\right)=0$ on $\mathcal{H}$. Therefore $T \in[(n, 1) \mathbf{N}]_{A}$.
Proposition 3.4. Let $T \in \mathcal{B}_{A}(\mathcal{H})$ be such that $T \in[(2, m) \mathbf{Q N}]_{A} \cap[(3, m) \mathbf{Q N}]_{A}$ for some positive integer $m$, then $T \in[(n, m) \mathbf{Q N}]_{A}$ for all positive integers $n \geqslant 4$.

Proof. We prove the assertion by using the mathematical induction. Since $T \in$ $[(2, m) \mathbf{Q N}]_{A} \cap[(3, m) \mathbf{Q N}]_{A}$, it follows immediately that

$$
T^{4}\left(T^{\sharp A}\right)^{m} T-\left(T^{\sharp A}\right)^{m} T T^{4}=0 \quad \text { and } \quad T^{5}\left(T^{\sharp A}\right)^{m} T-\left(T^{\sharp A}\right)^{m} T T^{5}=0 .
$$

Now assume that the result is true for $n \geqslant 5$, that is,

$$
T^{n}\left(T^{\sharp A}\right)^{m} T-\left(T^{\sharp A}\right)^{m} T T^{n}=0,
$$

then

$$
\begin{aligned}
T^{n+1}\left(T^{\sharp A}\right)^{m} T-\left(T^{\sharp A}\right)^{m} T T^{n+1} & =T\left(T^{\sharp A}\right)^{m} T T^{n}-\left(T^{\sharp A}\right)^{m} T T^{n+1} \\
& =T^{3}\left(T^{\sharp A}\right)^{m} T T^{n-2}-\left(T^{\sharp A}\right)^{m} T T^{n+1} \\
& =\left(T^{\sharp A}\right)^{m} T T^{n+1}-\left(T^{\sharp A}\right)^{m} T T^{n+1}=0 .
\end{aligned}
$$

Therefore $T \in[(n+1, m) \mathbf{Q N}]_{A}$. The proof is complete.

Now we discuss the ( $n, m$ )- $A$-quasinormality of an operator under some commutation conditions on its real and imaginary part.

Theorem 3.3. Let $T \in \mathcal{B}_{A}(\mathcal{H})$ be such that $\mathcal{R}\left(T^{m-1}\right)$ is dense. If $T A=A T$. Then the following statements are equivalent.
(1) $T \in[(n, m) \mathbf{Q N}]_{A}$.
(2) $C_{m, A}$ commutes with $\operatorname{Re}_{A}\left(T^{n}\right)$ and $\operatorname{Im}_{A}\left(T^{n}\right)$, where $C_{m, A}=\sqrt{\left(T^{\sharp}\right)^{m} T^{m}}$.

Proof. Since $T$ is ( $n, m$ )- $A$-quasinormal, it follows that

$$
T^{n}\left(T^{\sharp A}\right)^{m} T=\left(T^{\sharp A}\right)^{m} T T^{n} .
$$

Hence,

$$
T^{n}\left(T^{\sharp A}\right)^{m} T^{m}=\left(T^{\sharp A}\right)^{m} T^{m} T^{n} .
$$

From the conditions that $T A=A T$ and $\mathcal{N}(A)^{\perp}$ is an invariant subspace for $T$, we observe that

$$
T P_{\overline{\mathcal{R}}(A)}=T P_{\overline{\mathcal{R}}(A)}, \quad T^{\sharp A} P_{\overline{\mathcal{R}}(A)}=T^{\sharp A} P_{\overline{\mathcal{R}}(A)} \quad \text { and } \quad T^{\sharp A}=P_{\overline{\mathcal{R}}(A)} T^{*} .
$$

Therefore, $C_{m, A}$ is a nonnegative definite operator and by elementary calculation we get

$$
C_{m, A}^{2} \operatorname{Re}_{A}\left(T^{n}\right)=\operatorname{Re}_{A}\left(T^{n}\right) C_{m, A}^{2}
$$

Consequently,

$$
C_{m, A} \operatorname{Re}_{A}\left(T^{n}\right)=\operatorname{Re}_{A}\left(T^{n}\right) C_{m, A}
$$

In a similar way we can prove that $C_{m, A} \operatorname{Im}_{A}\left(T^{n}\right)=\operatorname{Im}_{A}\left(T^{n}\right) C_{m, A}$. Conversely, assume that $C_{m, A} \operatorname{Re}_{A}\left(T^{n}\right)=\operatorname{Re}_{A}\left(T^{n}\right) C_{m, A}$ and $C_{m, A} \operatorname{Im}_{A}\left(T^{n}\right)=\operatorname{Im}_{A}\left(T^{n}\right) C_{m, A}$. Then

$$
C_{m, A}^{2} \operatorname{Re}_{A}\left(T^{n}\right)=\operatorname{Re}_{A}\left(T^{n}\right) C_{m, A}^{2} \quad \text { and } \quad C_{m, A}^{2} \operatorname{Im}_{A}\left(T^{n}\right)=\operatorname{Im}_{A}\left(T^{n}\right) C_{m, A}^{2}
$$

Hence

$$
C_{m, A}^{2}\left(\operatorname{Re}_{A}\left(T^{n}\right)+\operatorname{im}_{A}\left(T^{n}\right)\right)=\left(\operatorname{Re}_{A}\left(T^{n}\right)+\operatorname{imm}_{A}\left(T^{n}\right)\right) C_{m, A}^{2}
$$

and therefore

$$
C_{m, A}^{2} T^{n}=T^{n} C_{m, A}^{2}
$$

On the other hand, we have

$$
\begin{aligned}
C_{m, A}^{2} T^{n}=T^{n} C_{m, A}^{2} & \Leftrightarrow\left(T^{\sharp A}\right)^{m} T^{m} T^{n}-T^{n}\left(T^{\sharp A}\right)^{m} T^{m}=0 \\
& \Leftrightarrow\left(\left(T^{\sharp A}\right)^{m} T T^{n}-T^{n}\left(T^{\sharp A}\right)^{m} T\right) T^{m-1}=0 \\
& \Leftrightarrow\left(T^{\sharp A}\right)^{m} T T^{n}-T^{n}\left(T^{\sharp A}\right)^{m} T=0 \quad\left(\overline{\mathcal{R}\left(T^{m-1}\right)}=\mathcal{H}\right) .
\end{aligned}
$$

Therefore $T \in[(n, m) \mathbf{Q N}]_{A}$.

Theorem 3.4. Let $T \in \mathcal{B}_{A}(\mathcal{H})$ be such that $\mathcal{R}\left(T^{m-1}\right)$ is dense and $T A=A T$. If $T$ satisfies the conditions
(i) $B_{m, A}$ commutes with $\operatorname{Re}_{A}\left(T^{m}\right)$ and $\operatorname{Im}_{A}\left(T^{m}\right)$,
(ii) $C_{m, A}^{2} T^{n}=T^{n} B_{m, A}^{2}$, where $B_{m, A}=\sqrt{T^{m}\left(T^{\sharp}\right)^{m}}$.

Then $T$ is an ( $m, m$ )-A-quasinormal operator.
Proof. Since

$$
B_{m, A} \operatorname{Re}_{A}\left(T^{m}\right)=\operatorname{Re}_{A}\left(T^{m}\right) B_{m, A} \quad \text { and } \quad B_{m, A} \operatorname{Im}_{A}\left(T^{m}\right)=\operatorname{Im}_{A}\left(T^{m}\right) B_{m, A}
$$

it follows that

$$
\left\{\begin{array}{l}
B_{m, A}^{2} T^{m}+B^{2}\left(T^{m}\right)^{\sharp A}=T^{m} B_{m, A}^{2}+\left(T^{m}\right)^{\sharp A} B_{m, A}^{2}, \\
B_{m, A}^{2} T^{m}-B_{m, A}^{2}\left(T^{m}\right)^{\sharp A}=T^{m} B_{m, A}^{2}-\left(T^{m}\right)^{\sharp_{A}} B_{m, A}^{2} .
\end{array}\right.
$$

This gives

$$
B_{m, A}^{2} T^{m}=T^{m} B_{m, A}^{2}=C_{m, A}^{2} T^{m}
$$

On the other hand, we have

$$
\begin{aligned}
B_{m, A}^{2} T^{m}=C_{m, A}^{2} T^{m} & \Rightarrow T^{m}\left(T^{\sharp A}\right)^{m} T^{m}-\left(T^{\sharp A}\right)^{m} T^{m} T^{m}=0 \\
& \Rightarrow\left(T^{m}\left(T^{\sharp A}\right)^{m} T-\left(T^{\sharp A}\right)^{m} T T^{m}\right) T^{m-1}=0 \\
& \Rightarrow T^{m}\left(T^{\sharp A}\right)^{m} T-\left(T^{\sharp A}\right)^{m} T T^{m}=0 \quad \text { on } \overline{\mathcal{R}\left(T^{m-1}\right)}=\mathcal{H} .
\end{aligned}
$$

Therefore $T^{m}\left(T^{\sharp A}\right)^{m} T-\left(T^{\sharp A}\right)^{m} T T^{m}=0$ and $T$ is an $(m, m)$ - $A$-quasinormal operator.

Proposition 3.5. Let $T \in \mathcal{B}_{A}(\mathcal{H})$ be ( $n, m$ )- $A$-quasinormal, then

$$
\left(T^{\sharp A}\right)^{2 m} T^{2 n}=\left(\left(T^{\sharp A}\right)^{m} T^{n}\right)^{2} .
$$

Proof. Since $T$ is ( $n, m$ )- $A$-quasinormal, it follows that

$$
T^{n}\left(T^{\sharp_{A}}\right)^{m} T=\left(T^{\sharp A}\right)^{m} T T^{n} .
$$

On the other hand, we have

$$
\begin{aligned}
\left(T^{\sharp A}\right)^{2 m} T^{2 n} & =\left(T^{\sharp A}\right)^{m}\left(T^{\sharp A}\right)^{m} T^{n} T^{n}=\left(T^{\sharp A}\right)^{m}\left(T^{\sharp A}\right)^{m} T T^{n} T^{n-1} \\
& =\left(T^{\sharp A}\right)^{m} T^{n}\left(T^{\sharp A}\right)^{m} T^{n}=\left(\left(T^{\sharp A}\right)^{m} T^{n}\right)^{2} .
\end{aligned}
$$

## References

[1] E. H. Abood, M. A. Al-loz: On some generalization of normal operators on Hilbert space. Iraqi J. Sci. 56 (2015), 1786-1794.
[2] E. H. Abood, M. A. Al-loz: On some generalizations of ( $n, m$ )-normal powers operators on Hilbert space. J. Progressive Res. Math. (JPRM) 7 (2016), 1063-1070.
[3] S. A. Alzuraiqi, A. B. Patel: On n-normal operators. Gen. Math. Notes 1 (2010), 61-73. zbl
[4] M. L.Arias, G. Corach, M. C. Gonzalez: Metric properties of projections in semi-Hilbertian spaces. Integral Equations Oper. Theory 62 (2008), 11-28.
[5] M. L.Arias, G. Corach, M. C. Gonzalez: Partial isometries in semi-Hilbertian spaces. Linear Algebra Appl. 428 (2008), 1460-1475.
[6] M. L. Arias, G. Corach, M. C. Gonzalez: Lifting properties in operator ranges. Acta Sci. Math. 75 (2009), 635-653.
zbl MR doi
zbl MR doi
[7] H. Baklouti, K. Feki, O. A. M. Sid Ahmed: Joint normality of operators in semi-Hilbertian spaces. Linear Multilinear Algebra 68 (2020), 845-866.
zbl MR
[8] V. Bavithra: $(n, m)$-power quasi normal operators in semi-Hilbertian spaces. J. Math. Informatics 11 (2017), 125-129.
[9] A. Benali, O. A. M. Sid Ahmed: $(\alpha, \beta)$-A-normal operators in semi-Hilbertian spaces. Afr. Mat. 30 (2019), 903-920.
zbl MR doi

10] C. Chellali, A. Benali: Class of $(A, n)$-power-hyponormal operators in semi-Hilbertian space. Func. Anal. Approx. Comput. 11 (2019), 13-21.
zbl MR
[11] M. Chō, J. E. Lee, K. Tanahashic, A. Uchiyamad: Remarks on $n$-normal operators. Filomat 32 (2018), 5441-5451.

MR doi
[12] M. Chō, B. Načevska: Spectral properties of n-normal operators. Filomat 32 (2018), 5063-5069.

MR doi
[13] R. G. Douglas: On majorization, factorization, and range inclusion of operators in Hilbert space. Proc. Am. Math. Soc. 17 (1966), 413-415.
zbl MR doi
[14] S. H. Jah: Class of $(A, n)$-power quasi-normal operators in semi-Hilbertian spaces. Int. J. Pure Appl. Math. 93 (2014), 61-83.
zbl doi
[15] A. A. S. Jibril: On n-power normal operators. Arab. J. Sci. Eng., Sect. A, Sci. 33 (2008), 247-251.
zbl MR
[16] J.S. I. Mary, P. Vijaylakshmi: Fuglede-Putnam theorem and quasi-nilpotent part of n-normal operators. Tamkang J. Math. 46 (151-165).
[17] A. Saddi: A-normal operators in semi-Hilbertian spaces. Aust. J. Math. Anal. Appl. 9 (2012), Article ID 5, 12 pages.
zbl MR doi
zbl MR
[18] O.A.M.Sid Ahmed, A.Benali: Hyponormal and $k$-quasi-hyponormal operators on semi-Hilbertian spaces. Aust. J. Math. Anal. Appl. 13 (2016), Article ID 7, 22 pages. zbl MR
[19] O.A.M.Sid Ahmed, O.B.Sid Ahmed: On the classes ( $n, m$ )-power $D$-normal and ( $n, m$ )-power $D$-quasi-normal operators. Oper. Matrices 13 (2019), 705-732.
zbl MR doi
[20] O. B. Sid Ahmed, O. A. M. Sid Ahmed: On the class of $n$-power $D$-m-quasi-normal operatos on Hilbert spaces. Oper. Matrices 14 (2020), 159-174.
zbl MR doi
[21] L. Suciu: Orthogonal decompositions induced by generalized contractions. Acta Sci. Math. 70 (2004), 751-765.

Authors' address: Samir Al Mohammady, Sid Ahmed Ould Beinane, Sid Ahmed Ould Ahmed Mahmoud, Jouf University, Mathematics Department, College of Science, P.O.Box 2014, Sakaka, Saudi Arabia, e-mail: senssar@ju.edu.sa; beinane06@gmail.com, sabeinane @ju.edu.sa; sidahmed@ju.edu.sa, sidahmed.sidha@gmail.com.

