INITIAL MACLAURIN COEFFICIENT ESTIMATES FOR λ-PSEUDO-STARLIKE BI-UNIVALENT FUNCTIONS ASSOCIATED WITH SAKAGUCHI-TYPE FUNCTIONS

Abbas Kareem Wanas, Al Diwaniyah, Basem Aref Frasin, Mafraq
Received March 22, 2020. Published online May 21, 2021.
Communicated by Grigore Sălăgean

Abstract. We introduce and study two certain classes of holomorphic and bi-univalent functions associating λ-pseudo-starlike functions with Sakaguchi-type functions. We determine upper bounds for the Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions belonging to these classes. Further we point out certain special cases for our results.

Keywords: holomorphic function; bi-univalent function; coefficient estimates; λ-pseudostarlike function; Sakaguchi-type function

MSC 2020: 30C45, 30C50

1. Introduction

Denote by \mathcal{A} the collection of all holomorphic functions in the unit $\operatorname{disc} U=$ $\{z \in \mathbb{C}:|z|<1\}$ that have the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

Further, assume that S stands for the sub-collection of the set \mathcal{A} consisting of functions in U satisfying (1.1) which are univalent in U.

Frasin (see [5]) introduced and studied the class $S(\gamma, m, n)$ consisting of functions $f \in \mathcal{A}$ which satisfy the condition

$$
\operatorname{Re}\left\{\frac{(m-n) z f^{\prime}(z)}{f(m z)-f(n z)}\right\}>\gamma,
$$

for some $0 \leqslant \gamma<1, m, n \in \mathbb{C}$ with $m \neq n,|m| \leqslant 1,|n| \leqslant 1$ and for all $z \in U$. We note that the class $S(\gamma, 1, n)$ was studied by Owa et al. (see [13]), while the class $S(\gamma, 1,-1) \equiv S_{s}(\gamma)$ was considered by Sakaguchi (see [14]) and is called the Sakaguchi function of order γ. Also, $S(0,1,-1) \equiv S_{s}$ is the class of starlike functions with respect to symmetrical points in U, and $S(\gamma, 1,0) \equiv S^{*}(\gamma)$ is the class of starlike functions of order $\gamma, 0 \leqslant \gamma<1$.

In [2] Babalola defined the class $\mathcal{L}_{\lambda}(\gamma)$ of λ-pseudo-starlike functions of order γ which are the functions $f \in \mathcal{A}$ such that

$$
\operatorname{Re}\left\{\frac{z\left(f^{\prime}(z)\right)^{\lambda}}{f(z)}\right\}>\gamma
$$

where $0 \leqslant \gamma<1, \lambda \geqslant 1$, and $z \in U$. In particular, Babalola (see [2]) showed that all λ-pseudo-starlike functions are Bazilevič of type $1-1 / \lambda$ and order $\gamma^{1 / \lambda}$ and are univalent in U. It is observed that for $\lambda=1$, we have the class of starlike functions.

According to the Koebe one-quarter theorem (see [4]) "every function $f \in S$ has an inverse f^{-1} which satisfies $f^{-1}(f(z))=z,(z \in U)$ and $f\left(f^{-1}(w)\right)=w,|w|<r_{0}(f)$, $r_{0}(f) \geqslant \frac{1}{4}$ ", where

$$
\begin{equation*}
g(w)=f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\ldots \tag{1.2}
\end{equation*}
$$

For $f \in \mathcal{A}$, if both f and f^{-1} are univalent in U, we say that f is a bi-univalent function in U. We denote by Σ the class of bi-univalent functions in U given by (1.1). In fact, Srivastava et al. (see [20]) have revived the study of holomorphic and biunivalent functions in recent years. Some examples of functions in the class Σ are

$$
\frac{z}{1-z}, \quad \frac{1}{2} \log \left(\frac{1+z}{1-z}\right) \quad \text { and } \quad-\log (1-z)
$$

with the corresponding inverse functions

$$
\frac{w}{1+w}, \quad \frac{\mathrm{e}^{2 w}-1}{\mathrm{e}^{2 w}+1} \quad \text { and } \quad \frac{\mathrm{e}^{w}-1}{\mathrm{e}^{w}}
$$

respectively. Conversely, examples of common functions that are not in Σ are

$$
z-\frac{z^{2}}{2} \quad \text { and } \quad \frac{z}{1-z^{2}}
$$

Many researchers (see, for example, [1], [6], [7], [10], [15]-[19], [21]-[24]) have recently introduced and investigated several interesting subclasses of the bi-univalent function class Σ and they have found non-sharp estimates on the first two TaylorMaclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$.

We require the following lemma that will be used to prove our main results.

Lemma 1.1 ([4]). If $h \in \mathcal{P}$, then $\left|c_{k}\right| \leqslant 2$ for each $k \in \mathbb{N}$, where \mathcal{P} is the class of all functions h holomorphic in U for which

$$
\operatorname{Re}(h(z))>0, \quad z \in U
$$

where

$$
h(z)=1+c_{1} z+c_{2} z^{2}+\ldots, \quad z \in U .
$$

2. Coefficient estimates for the function class $V_{\Sigma}(\delta, \lambda, m, n ; \alpha)$

Definition 2.1. A function $f \in \Sigma$ given by (1.1) is said to be in the class $V_{\Sigma}(\delta, \lambda, m, n ; \alpha)$ if the following conditions are satisfied:

$$
\begin{equation*}
\left|\arg \left((1-\delta) \frac{(m-n) z\left(f^{\prime}(z)\right)^{\lambda}}{f(m z)-f(n z)}+\delta \frac{(m-n)\left(\left(z f^{\prime}(z)\right)^{\prime}\right)^{\lambda}}{(f(m z)-f(n z))^{\prime}}\right)\right|<\frac{\alpha \pi}{2} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\arg \left((1-\delta) \frac{(m-n) w\left(g^{\prime}(w)\right)^{\lambda}}{g(m w)-g(n w)}+\delta \frac{(m-n)\left(\left(w g^{\prime}(w)\right)^{\prime}\right)^{\lambda}}{(g(m w)-g(n w))^{\prime}}\right)\right|<\frac{\alpha \pi}{2} \tag{2.2}
\end{equation*}
$$

where $0<\alpha \leqslant 1,0 \leqslant \delta \leqslant 1, \lambda \geqslant 1, m, n \in \mathbb{C}, m \neq n,|m| \leqslant 1,|n| \leqslant 1, z, w \in U$ and $g=f^{-1}$ is given by (1.2).

Remark 2.1. It should be remarked that the class $V_{\Sigma}(\delta, \lambda, m, n ; \alpha)$ is a generalization of well-known classes consider earlier. These classes are:
(1) For $\delta=0$, the class $V_{\Sigma}(\delta, \lambda, m, n ; \alpha)=\angle_{\Sigma}^{\lambda}(m, n, \alpha)$, which was introduced by Mazi and Opoola, see [11];
(2) For $\delta=n=0$ and $m=1$, the class $V_{\Sigma}(\delta, \lambda, m, n ; \alpha)=\mathfrak{L} B_{\Sigma}^{\lambda}(\alpha)$, which was given by Joshi et al. in [8];
(3) For $n=0$ and $\lambda=m=1$, the class $V_{\Sigma}(\delta, \lambda, m, n ; \alpha)=M_{\Sigma}(\alpha, \delta)$, which was investigated by Liu and Wang, see [9];
(4) For $\delta=n=0$ and $\lambda=m=1$, the class $V_{\Sigma}(\delta, \lambda, m, n ; \alpha)=S_{\Sigma}^{*}(\alpha)$, which was studied by Brannan and Taha, see [3].

We begin by finding the estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in the class $V_{\Sigma}(\delta, \lambda, m, n ; \alpha)$.

Theorem 2.1. Let $f \in V_{\Sigma}(\delta, \lambda, m, n ; \alpha)(0<\alpha \leqslant 1,0 \leqslant \delta \leqslant 1, \lambda \geqslant 1, m, n \in \mathbb{C}$, $m \neq n,|m| \leqslant 1,|n| \leqslant 1)$ be given by (1.1). Then

$$
\left|a_{2}\right| \leqslant \frac{2 \alpha}{\sqrt{\left|2 \alpha(\Upsilon(\delta, \lambda, m, n)-m n)+(1-\alpha)(\delta+1)^{2}(2 \lambda-m-n)^{2}\right|}}
$$

and

$$
\left|a_{3}\right| \leqslant \frac{4 \alpha^{2}}{(\delta+1)^{2}(2 \lambda-m-n)^{2}}+\frac{2 \alpha}{(2 \delta+1)\left(3 \lambda-m^{2}-n^{2}-m n\right)}
$$

where
(2.3) $\Upsilon(\delta, \lambda, m, n)=\delta\left(\left(m^{2}+n^{2}+4 m n\right)-6 \lambda(m+n-\lambda)\right)+\lambda(1-2(m+n-\lambda))$.

Proof. It follows from conditions (2.1) and (2.2) that

$$
\begin{equation*}
(1-\delta) \frac{(m-n) z\left(f^{\prime}(z)\right)^{\lambda}}{f(m z)-f(n z)}+\delta \frac{(m-n)\left(\left(z f^{\prime}(z)\right)^{\prime}\right)^{\lambda}}{(f(m z)-f(n z))^{\prime}}=(p(z))^{\alpha} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\delta) \frac{(m-n) w\left(g^{\prime}(w)\right)^{\lambda}}{g(m w)-g(n w)}+\delta \frac{(m-n)\left(\left(w g^{\prime}(w)\right)^{\prime}\right)^{\lambda}}{(g(m w)-g(n w))^{\prime}}=(q(w))^{\alpha} \tag{2.5}
\end{equation*}
$$

where $g=f^{-1}$ and p, q in \mathcal{P} have the following series representations:

$$
\begin{equation*}
p(z)=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\ldots \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
q(w)=1+q_{1} w+q_{2} w^{2}+q_{3} w^{3}+\ldots \tag{2.7}
\end{equation*}
$$

Comparing the corresponding coefficients of (2.4) and (2.5) yields
(2.8) $(\delta+1)(2 \lambda-m-n) a_{2}=\alpha p_{1}$,
(2.9) $(2 \delta+1)\left(3 \lambda-m^{2}-n^{2}-m n\right) a_{3}$ $+(3 \delta+1)\left((m+n)^{2}-2 \lambda(m+n-\lambda+1)\right) a_{2}^{2}=\alpha p_{2}+\frac{\alpha(\alpha-1)}{2} p_{1}^{2}$,
(2.10) $-(\delta+1)(2 \lambda-m-n) a_{2}=\alpha q_{1}$
and
(2.11) $\left(\left(6 \lambda-m^{2}-n^{2}\right)-2 \lambda(m+n-\lambda+1)-\delta\left(6 \lambda(m+n-\lambda-1)+(m-n)^{2}\right)\right) a_{2}^{2}$

$$
-(2 \delta+1)\left(3 \lambda-m^{2}-n^{2}-m n\right) a_{3}=\alpha q_{2}+\frac{\alpha(\alpha-1)}{2} q_{1}^{2} .
$$

In view of (2.8) and (2.10), we conclude that

$$
\begin{equation*}
p_{1}=-q_{1} \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
2(\delta+1)^{2}(2 \lambda-m-n)^{2} a_{2}^{2}=\alpha^{2}\left(p_{1}^{2}+q_{1}^{2}\right) \tag{2.13}
\end{equation*}
$$

Also, by using (2.9) and (2.11), together with (2.13), we find that

$$
\begin{aligned}
2\left(\delta \left(\left(m^{2}+n^{2}+4 m n\right)-6 \lambda(m+\right.\right. & n-\lambda))+\lambda(1-2(m+n-\lambda))-m n) a_{2}^{2} \\
& =\alpha\left(p_{2}+q_{2}\right)+\frac{\alpha(\alpha-1)}{2}\left(p_{1}^{2}+q_{1}^{2}\right) \\
& =\alpha\left(p_{2}+q_{2}\right)+\frac{(\alpha-1)(\delta+1)^{2}(2 \lambda-m-n)^{2}}{\alpha} a_{2}^{2} .
\end{aligned}
$$

Further computations show that

$$
\begin{equation*}
a_{2}^{2}=\frac{\alpha^{2}\left(p_{2}+q_{2}\right)}{2 \alpha(\Upsilon(\delta, \lambda, m, n)-m n)+(1-\alpha)(\delta+1)^{2}(2 \lambda-m-n)^{2}}, \tag{2.14}
\end{equation*}
$$

where $\Upsilon(\delta, \lambda, m, n)$ is given by (2.3).
By taking the absolute value of (2.14) and applying Lemma 1.1 for the coefficients p_{2} and q_{2}, we have

$$
\left|a_{2}\right| \leqslant \frac{2 \alpha}{\sqrt{\left|2 \alpha(\Upsilon(\delta, \lambda, m, n)-m n)+(1-\alpha)(\delta+1)^{2}(2 \lambda-m-n)^{2}\right|}}
$$

To determine the bound on $\left|a_{3}\right|$, by subtracting (2.11) from (2.9), we get
(2.15) $2(2 \delta+1)\left(3 \lambda-m^{2}-n^{2}-m n\right)\left(a_{3}-a_{2}^{2}\right)=\alpha\left(p_{2}-q_{2}\right)+\frac{\alpha(\alpha-1)}{2}\left(p_{1}^{2}-q_{1}^{2}\right)$.

Now, substituting the value of a_{2}^{2} from (2.13) into (2.15) and using (2.12), we deduce that

$$
\begin{equation*}
a_{3}=\frac{\alpha^{2}\left(p_{1}^{2}+q_{1}^{2}\right)}{2(\delta+1)^{2}(2 \lambda-m-n)^{2}}+\frac{\alpha\left(p_{2}-q_{2}\right)}{2(2 \delta+1)\left(3 \lambda-m^{2}-n^{2}-m n\right)} . \tag{2.16}
\end{equation*}
$$

Taking the absolute value of (2.16) and applying Lemma 1.1 once again for the coefficients p_{1}, p_{2}, q_{1} and q_{2}, it follows that

$$
\left|a_{3}\right| \leqslant \frac{4 \alpha^{2}}{(\delta+1)^{2}(2 \lambda-m-n)^{2}}+\frac{2 \alpha}{(2 \delta+1)\left(3 \lambda-m^{2}-n^{2}-m n\right)}
$$

Remark 2.2. In Theorem 2.1, if we choose
(1) $\delta=0$, then we have the results which were given by Mazi and Opoola in [11], Theorem 1;
(2) $\delta=n=0$ and $m=1$, then we have the results obtained by Joshi et al. in [8], Theorem 1;
(3) $n=0$ and $\lambda=m=1$, then we obtain the results obtained by Liu and Wang in [9], Theorem 2.2;
(4) $\delta=n=0$ and $\lambda=m=1$, then we get the results obtained by Murugusundaramoorthy et al. in [12], Corollary 6.

3. Coefficient estimates for the function class $V_{\Sigma}^{*}(\delta, \lambda, m, n ; \beta)$

Definition 3.1. A function $f \in \Sigma$ given by (1.1) is said to be in the class $V_{\Sigma}^{*}(\delta, \lambda, m, n ; \beta)$ if the following conditions are satisfied:

$$
\begin{equation*}
\operatorname{Re}\left\{(1-\delta) \frac{(m-n) z\left(f^{\prime}(z)\right)^{\lambda}}{f(m z)-f(n z)}+\delta \frac{(m-n)\left(\left(z f^{\prime}(z)\right)^{\prime}\right)^{\lambda}}{(f(m z)-f(n z))^{\prime}}\right\}>\beta \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left\{(1-\delta) \frac{(m-n) w\left(g^{\prime}(w)\right)^{\lambda}}{g(m w)-g(n w)}+\delta \frac{(m-n)\left(\left(w g^{\prime}(w)\right)^{\prime}\right)^{\lambda}}{(g(m w)-g(n w))^{\prime}}\right\}>\beta \tag{3.2}
\end{equation*}
$$

where $0 \leqslant \beta<1,0 \leqslant \delta \leqslant 1, \lambda \geqslant 1, m \neq n,|m| \leqslant 1,|n| \leqslant 1, z, w \in U$ and $g=f^{-1}$ is given by (1.2).

Remark 3.1. It should be remarked that the class $V_{\Sigma}^{*}(\delta, \lambda, m, n ; \beta)$ is a generalization of well-known classes consider earlier. These classes are:
(1) For $\delta=0$, the class $V_{\Sigma}^{*}(\delta, \lambda, m, n ; \beta)=\angle_{\Sigma}^{\lambda}(m, n, \beta)$, which was introduced by Mazi and Opoola, see [11];
(2) For $\delta=n=0$ and $m=1$, the class $V_{\Sigma}^{*}(\delta, \lambda, m, n ; \beta)=\mathfrak{L} B_{\Sigma}(\lambda, \beta)$, which was given by Joshi et al. in [8];
(3) For $n=0$ and $\lambda=m=1$, the class $V_{\Sigma}^{*}(\delta, \lambda, m, n ; \beta)=B_{\Sigma}(\beta, \delta)$, which was investigated by Liu and Wang, see [9];
(4) For $\delta=n=0$ and $\lambda=m=1$, the class $V_{\Sigma}^{*}(\delta, \lambda, m, n ; \beta)=S_{\Sigma}^{*}(\beta)$, which was studied by Brannan and Taha, see [3].

In this section, we find the estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in the class $V_{\Sigma}^{*}(\delta, \lambda, m, n ; \beta)$.

Theorem 3.1. Let $f \in V_{\Sigma}^{*}(\delta, \lambda, m, n ; \beta)(0 \leqslant \beta<1,0 \leqslant \delta \leqslant 1, \lambda \geqslant 1, m, n \in \mathbb{C}$, $m \neq n,|m| \leqslant 1,|n| \leqslant 1)$ be given by (1.1). Then

$$
\left|a_{2}\right| \leqslant \frac{\sqrt{2(1-\beta)}}{\sqrt{\left|\delta\left(\left(m^{2}+n^{2}+4 m n\right)-6 \lambda(m+n-\lambda)\right)+\lambda(1-2(m+n-\lambda))-m n\right|}}
$$

and

$$
\left|a_{3}\right| \leqslant \frac{4(1-\beta)^{2}}{(\delta+1)^{2}(2 \lambda-m-n)^{2}}+\frac{2(1-\beta)}{(2 \delta+1)\left(3 \lambda-m^{2}-n^{2}-m n\right)}
$$

Proof. In the light of the conditions (3.1) and (3.2), there are $p, q \in \mathcal{P}$ such that

$$
\begin{equation*}
(1-\delta) \frac{(m-n) z\left(f^{\prime}(z)\right)^{\lambda}}{f(m z)-f(n z)}+\delta \frac{(m-n)\left(\left(z f^{\prime}(z)\right)^{\prime}\right)^{\lambda}}{(f(m z)-f(n z))^{\prime}}=\beta+(1-\beta) p(z) \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\delta) \frac{(m-n) w\left(g^{\prime}(w)\right)^{\lambda}}{g(m w)-g(n w)}+\delta \frac{(m-n)\left(\left(w g^{\prime}(w)\right)^{\prime}\right)^{\lambda}}{(g(m w)-g(n w))^{\prime}}=\beta+(1-\beta) q(w) \tag{3.4}
\end{equation*}
$$

where $p(z)$ and $q(w)$ have the forms (2.6) and (2.7), respectively. Comparing the corresponding coefficients in (3.3) and (3.4) yields

$$
\begin{align*}
& (\delta+1)(2 \lambda-m-n) a_{2}=(1-\beta) p_{1} \tag{3.5}\\
& (2 \delta+1)\left(3 \lambda-m^{2}-n^{2}-m n\right) a_{3} \tag{3.6}\\
& \quad+(3 \delta+1)\left((m+n)^{2}-2 \lambda(m+n-\lambda+1)\right) a_{2}^{2}=(1-\beta) p_{2} \\
& -(\delta+1)(2 \lambda-m-n) a_{2}=(1-\beta) q_{1} \tag{3.7}
\end{align*}
$$

and
(3.8) $\left(\left(6 \lambda-m^{2}-n^{2}\right)-2 \lambda(m+n-\lambda+1)-\delta\left(6 \lambda(m+n-\lambda-1)+(m-n)^{2}\right)\right) a_{2}^{2}$

$$
-(2 \delta+1)\left(3 \lambda-m^{2}-n^{2}-m n\right) a_{3}=(1-\beta) q_{2}
$$

From (3.5) and (3.7), we get

$$
\begin{equation*}
p_{1}=-q_{1} \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
2(\delta+1)^{2}(2 \lambda-m-n)^{2} a_{2}^{2}=(1-\beta)^{2}\left(p_{1}^{2}+q_{1}^{2}\right) \tag{3.10}
\end{equation*}
$$

Adding (3.6) and (3.8), we obtain

$$
\begin{align*}
2\left(\delta \left(\left(m^{2}+n^{2}\right.\right.\right. & +4 m n)-6 \lambda(m+n-\lambda)) \tag{3.11}\\
& +\lambda(1-2(m+n-\lambda))-m n) a_{2}^{2}=(1-\beta)\left(p_{2}+q_{2}\right)
\end{align*}
$$

Hence, we find that

$$
a_{2}^{2}=\frac{(1-\beta)\left(p_{2}+q_{2}\right)}{2\left(\delta\left(\left(m^{2}+n^{2}+4 m n\right)-6 \lambda(m+n-\lambda)\right)+\lambda(1-2(m+n-\lambda))-m n\right)} .
$$

By applying Lemma 1.1 for the coefficients p_{2} and q_{2}, we deduce that

$$
\left|a_{2}\right| \leqslant \frac{\sqrt{2(1-\beta)}}{\sqrt{\left|\delta\left(\left(m^{2}+n^{2}+4 m n\right)-6 \lambda(m+n-\lambda)\right)+\lambda(1-2(m+n-\lambda))-m n\right|}}
$$

To determine the bound on $\left|a_{3}\right|$, by subtracting (3.8) from (3.6), we get

$$
2(2 \delta+1)\left(3 \lambda-m^{2}-n^{2}-m n\right)\left(a_{3}-a_{2}^{2}\right)=(1-\beta)\left(p_{2}-q_{2}\right)
$$

or equivalently

$$
\begin{equation*}
a_{3}=a_{2}^{2}+\frac{(1-\beta)\left(p_{2}-q_{2}\right)}{2(2 \delta+1)\left(3 \lambda-m^{2}-n^{2}-m n\right)} . \tag{3.12}
\end{equation*}
$$

Substituting the value of a_{2}^{2} from (3.10) into (3.12), it follows that

$$
a_{3}=\frac{(1-\beta)^{2}\left(p_{1}^{2}+q_{1}^{2}\right)}{2(\delta+1)^{2}(2 \lambda-m-n)^{2}}+\frac{(1-\beta)\left(p_{2}-q_{2}\right)}{2(2 \delta+1)\left(3 \lambda-m^{2}-n^{2}-m n\right)} .
$$

By applying Lemma 1.1 once again for the coefficients p_{1}, p_{2}, q_{1} and q_{2}, we deduce that

$$
\left|a_{3}\right| \leqslant \frac{4(1-\beta)^{2}}{(\delta+1)^{2}(2 \lambda-m-n)^{2}}+\frac{2(1-\beta)}{(2 \delta+1)\left(3 \lambda-m^{2}-n^{2}-m n\right)}
$$

Remark 3.2. In Theorem 3.1, if we choose
(1) $\delta=0$, then we have the results which were given by Mazi and Opoola, see [11], Theorem 2;
(2) $\delta=n=0$ and $m=1$, then we have the results obtained by Joshi et al. [8], Theorem 2;
(3) $n=0$ and $\lambda=m=1$, then we obtain the results obtained by Liu and Wang, see [9], Theorem 3.2;
(4) $\delta=n=0$ and $\lambda=m=1$, then we get the results obtained by Murugusundaramoorthy et al. in [12], Corollary 7.

References

[1] E. A. Adegani, S. Bulut, A. Zireh: Coefficient estimates for a subclass of analytic bi-univalent functions. Bull. Korean Math. Soc. 55 (2018), 405-413.
[2] K. O. Babalola: On λ-pseudo-starlike functions. J. Class. Anal. 3 (2013), 137-147.
zbl MR doi
[3] D. A. Brannan, T.S. Taha: On some classes of bi-univalent functions. Stud. Univ. Babeş-Bolyai Math. 31 (1986), 70-77.
zbl MR
[4] P. L. Duren: Univalent Functions. Grundlehren der Mathematischen Wissenschaften 259. Springer, New York, 1983.
zbl MR
[5] B. A. Frasin: Coefficient inequalities for certain classes of Sakaguchi type functions. Int. J. Nonlinear Sci. 10 (2010), 206-211.
[6] B. A. Frasin: Coefficient bounds for certain classes of bi-univalent functions. Hacet. J. Math. Stat. 43 (2014), 383-389.
zbl MR doi
[7] B. A. Frasin, M. K. Aouf: New subclasses of bi-univalent functions. Appl. Math. Lett. 24 (2011), 1569-1573.
zbl MR doi
[8] S. Joshi, S. Joshi, H. Pawar: On some subclasses of bi-univalent functions associated with pseudo-starlike functions. J. Egypt. Math. Soc. 24 (2016), 522-525.
zbl MR doi
[9] X.-F. Li, A.-P. Wang: Two new subclasses of bi-univalent functions. Int. Math. Forum 7 (2012), 1495-1504.
zbl MR
[10] N. Magesh, S. Bulut: Chebyshev polynomial coefficient estimates for a class of analytic bi-univalent functions related to pseudo-starlike functions. Afr. Mat. 29 (2018), 203-209.
[11] E. P. Mazi, T. O. Opoola: On some subclasses of bi-univalent functions associating pseudo-starlike functions with Sakaguchi type functions. Gen. Math. 25 (2017), 85-95.
[12] G. Murugusundaramoorthy, N. Magesh, V. Prameela: Coefficient bounds for certain subclasses of bi-univalent function. Abstr. Appl. Anal. 2013 (2013), Article ID 573017, 3 pages.
zbl MR doi
[13] S. Owa, T. Sekine, R. Yamakawa: On Sakaguchi type functions. Appl. Math. Comput. 187 (2007), 356-361.
[14] K. Sakaguchi: On a certain univalent mapping. J. Math. Soc. Japan 11 (1959), 72-75.
zbl MR doi
[15] B. Şeker: On a new subclass of bi-univalent functions defined by using Salagean operator. Turk. J. Math. 42 (2018), 2891-2896.
zbl MR doi
zbl MR doi
[16] H. M. Srivastava, Ş. Altınkaya, S. Yalçın: Certain subclasses of bi-univalent functions associated with the Horadam polynomials. Iran. J. Sci. Technol., Trans. A, Sci. 43 (2019), 1873-1879.

MR doi
[17] H. M. Srivastava, D. Bansal: Coefficient estimates for a subclass of analytic and bi-univalent functions. J. Egypt. Math. Soc. 23 (2015), 242-246.
zbl MR doi
[18] H. M. Srivastava, S.S.Eker, R. M. Ali: Coefficient bounds for a certain class of analytic and bi-univalent functions. Filomat 29 (2015), 1839-1845.
zbl MR doi
[19] H. M. Srivastava, S. Gaboury, F. Ghanim: Coefficient estimates for some general subclasses of analytic and bi-univalent functions. Afr. Math. 28 (2017), 693-706.
zbl MR doi
[20] H. M. Srivastava, A. K. Mishra, P. Gochhayat: Certain subclasses of analytic and biunivalent functions. Appl. Math. Lett. 23 (2010), 1188-1192.
zbl MR doi
[21] H. M. Srivastava, A. K. Wanas: Initial Maclaurin coefficient bounds for new subclasses of analytic and m-fold symmetric bi-univalent functions defined by a linear combination. Kyungpook Math. J. 59 (2019), 493-503.
zbl MR doi
[22] A. K. Wanas, A. L. Alina: Applications of Horadam polynomials on Bazilevic biunivalent function satisfying subordinate conditions. J. Phys., Conf. Ser. 1294 (2019), Article ID 032003, 6 pages.
[23] A. K. Wanas, A.H. Majeed: Chebyshev polynomial bounded for analytic and biunivalent functions with respect to symmetric conjugate points. Appl. Math. E-Notes 19 (2019), 14-21.
[24] A. K. Wanas, S. Yalçın: Initial coefficient estimates for a new subclasses of analytic and m-fold symmetric bi-univalent functions. Malaya J. Mat. 7 (2019), 472-476.

MR doi
Authors' addresses: Abbas Kareem Wanas, Department of Mathematics, College of Science, University of Al-Qadisiyah, Al Diwaniyah, Iraq, e-mail: abbas.kareem.w@qu.edu.iq; Basem Aref Frasin, Department of Mathematics, Faculty of Science, Al al-Bayt University, P.O. Box 130040, Mafraq 25113, Jordan, e-mail: bafrasin@yahoo.com.

